1
|
Ramayya AG, Buch V, Richardson A, Lucas T, Gold JI. Human response times are governed by dual anticipatory processes with distinct neural signatures. Commun Biol 2025; 8:124. [PMID: 39863697 PMCID: PMC11762298 DOI: 10.1038/s42003-025-07516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Human behavior is strongly influenced by anticipation, but the underlying neural mechanisms are poorly understood. We obtained intracranial electrocephalography (iEEG) measurements in neurosurgical patients as they performed a simple sensory-motor task with variable (short or long) foreperiod delays that affected anticipation of the cue to respond. Participants showed two forms of anticipatory response biases, distinguished by more premature false alarms (FAs) or faster response times (RTs) on long-delay trials. These biases had distinct neural signatures in prestimulus neural activity modulations that were distributed and intermixed across the brain: the FA bias was most evident in preparatory motor activity immediately prior to response-cue presentation, whereas the RT bias was most evident in visuospatial activity at the beginning of the foreperiod. These results suggest that human anticipatory behavior emerges from a combination of motor-preparatory and attention-like modulations of neural activity, implemented by anatomically widespread and intermixed, but functionally identifiable, brain networks.
Collapse
Affiliation(s)
- Ashwin G Ramayya
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
| | - Vivek Buch
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Andrew Richardson
- Department of Neurosurgery, Hospital of University of Pennsylvania, Philadelphia, PA, USA
| | | | - Joshua I Gold
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Salinas E, Stanford TR. Conditional independence as a statistical assessment of evidence integration processes. PLoS One 2024; 19:e0297792. [PMID: 38722936 PMCID: PMC11081312 DOI: 10.1371/journal.pone.0297792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/12/2024] [Indexed: 05/13/2024] Open
Abstract
Intuitively, combining multiple sources of evidence should lead to more accurate decisions than considering single sources of evidence individually. In practice, however, the proper computation may be difficult, or may require additional data that are inaccessible. Here, based on the concept of conditional independence, we consider expressions that can serve either as recipes for integrating evidence based on limited data, or as statistical benchmarks for characterizing evidence integration processes. Consider three events, A, B, and C. We find that, if A and B are conditionally independent with respect to C, then the probability that C occurs given that both A and B are known, P(C|A, B), can be easily calculated without the need to measure the full three-way dependency between A, B, and C. This simplified approach can be used in two general ways: to generate predictions by combining multiple (conditionally independent) sources of evidence, or to test whether separate sources of evidence are functionally independent of each other. These applications are demonstrated with four computer-simulated examples, which include detecting a disease based on repeated diagnostic testing, inferring biological age based on multiple biomarkers of aging, discriminating two spatial locations based on multiple cue stimuli (multisensory integration), and examining how behavioral performance in a visual search task depends on selection histories. Besides providing a sound prescription for predicting outcomes, this methodology may be useful for analyzing experimental data of many types.
Collapse
Affiliation(s)
- Emilio Salinas
- Department of Neurobiology & Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Terrence R. Stanford
- Department of Neurobiology & Anatomy, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
3
|
Shourkeshti A, Marrocco G, Jurewicz K, Moore T, Ebitz RB. Pupil size predicts the onset of exploration in brain and behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.541981. [PMID: 37292773 PMCID: PMC10245915 DOI: 10.1101/2023.05.24.541981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In uncertain environments, intelligent decision-makers exploit actions that have been rewarding in the past, but also explore actions that could be even better. Several neuromodulatory systems are implicated in exploration, based, in part, on work linking exploration to pupil size-a peripheral correlate of neuromodulatory tone and index of arousal. However, pupil size could instead track variables that make exploration more likely, like volatility or reward, without directly predicting either exploration or its neural bases. Here, we simultaneously measured pupil size, exploration, and neural population activity in the prefrontal cortex while two rhesus macaques explored and exploited in a dynamic environment. We found that pupil size under constant luminance specifically predicted the onset of exploration, beyond what could be explained by reward history. Pupil size also predicted disorganized patterns of prefrontal neural activity at both the single neuron and population levels, even within periods of exploitation. Ultimately, our results support a model in which pupil-linked mechanisms promote the onset of exploration via driving the prefrontal cortex through a critical tipping point where prefrontal control dynamics become disorganized and exploratory decisions are possible.
Collapse
Affiliation(s)
- Akram Shourkeshti
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Gabriel Marrocco
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Katarzyna Jurewicz
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Tirin Moore
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - R. Becket Ebitz
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
4
|
Yao T, Vanduffel W. Spike rates of frontal eye field neurons predict reaction times in a spatial attention task. Cell Rep 2023; 42:112384. [PMID: 37043349 PMCID: PMC10157294 DOI: 10.1016/j.celrep.2023.112384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/08/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Which neuronal signal(s) predict reaction times when subjects respond to a target at covertly attended locations? Although recent studies showed that spike rates are not predictive, it remains a highly contested question. Therefore, we record single-unit activity from frontal eye field (FEF) neurons while macaques are performing a covert spatial attention task. We find that the attentional modulation of spike rates of FEF neurons is strongly correlated with behavioral reaction times. Moreover, this correlation already emerges 1 s before target dimming, which triggers the behavioral responses. This prediction of reaction times by spike rates is found in neurons showing attention-dependent enhanced and suppressed activity for targets and distractors, respectively, yet in varying degrees across subjects. Thus, spike rates of FEF neurons can predict reaction times persistently and well before the operant behavior during selective attention tasks. Such long prediction windows will be useful for developing spike-based brain-machine interfaces.
Collapse
Affiliation(s)
- Tao Yao
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven Medical School, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium.
| | - Wim Vanduffel
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven Medical School, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Boston, MA 02144, USA.
| |
Collapse
|
5
|
Marmolejo-Ramos F, Barrera-Causil C, Kuang S, Fazlali Z, Wegener D, Kneib T, De Bastiani F, Martinez-Flórez G. Generalised exponential-Gaussian distribution: a method for neural reaction time analysis. Cogn Neurodyn 2023; 17:221-237. [PMID: 36704631 PMCID: PMC9871144 DOI: 10.1007/s11571-022-09813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/23/2022] [Accepted: 04/15/2022] [Indexed: 01/29/2023] Open
Abstract
Reaction times (RTs) are an essential metric used for understanding the link between brain and behaviour. As research is reaffirming the tight coupling between neuronal and behavioural RTs, thorough statistical modelling of RT data is thus essential to enrich current theories and motivate novel findings. A statistical distribution is proposed herein that is able to model the complete RT's distribution, including location, scale and shape: the generalised-exponential-Gaussian (GEG) distribution. The GEG distribution enables shifting the attention from traditional means and standard deviations to the entire RT distribution. The mathematical properties of the GEG distribution are presented and investigated via simulations. Additionally, the GEG distribution is featured via four real-life data sets. Finally, we discuss how the proposed distribution can be used for regression analyses via generalised additive models for location, scale and shape (GAMLSS).
Collapse
Affiliation(s)
- Fernando Marmolejo-Ramos
- Centre for Change and Complexity in Learning, University of South Australia, Adelaide, 5000 Australia
| | - Carlos Barrera-Causil
- Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano -ITM, Medellín, 050034 Colombia
| | - Shenbing Kuang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zeinab Fazlali
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran ,Department of Psychiatry, Division of Integrative Neuroscience, Columbia University and the New York State Psychiatric Institute, New York, USA
| | - Detlef Wegener
- Brain Research Institute, Center for Cognitive Science, University of Bremen, Bremen, Germany
| | - Thomas Kneib
- Campus Institute Data Science (CIDAS) and Chair of Statistics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Fernanda De Bastiani
- Statistics Department, Federal University of Pernambuco, Recife, Pernambuco Brazil
| | - Guillermo Martinez-Flórez
- Departamento de Matemáticas y Estadística, Facultad de Ciencias, Universidad de Córdoba, Córdoba, 2300 Colombia ,Programa de Pós-Graduação em Modelagem e Métodos Quantitativos, Universidade Federal do Ceará, Fortaleza, Brazil
| |
Collapse
|
6
|
Jagadisan UK, Gandhi NJ. Population temporal structure supplements the rate code during sensorimotor transformations. Curr Biol 2022; 32:1010-1025.e9. [PMID: 35114097 PMCID: PMC8930729 DOI: 10.1016/j.cub.2022.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/02/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
Sensorimotor transformations are mediated by premotor brain networks where individual neurons represent sensory, cognitive, and movement-related information. Such multiplexing poses a conundrum-how does a decoder know precisely when to initiate a movement if its inputs are active at times when a movement is not desired (e.g., in response to sensory stimulation)? Here, we propose a novel hypothesis: movement is triggered not only by an increase in firing rate but, critically, also by a reliable temporal pattern in the population response. Laminar recordings in the macaque superior colliculus (SC), a midbrain hub of orienting control, and pseudo-population analyses in SC and cortical frontal eye fields (FEFs) corroborated this hypothesis. Specifically, using a measure that captures the fidelity of the population code-here called temporal stability-we show that the temporal structure fluctuates during the visual response but becomes increasingly stable during the movement command. Importantly, we used spatiotemporally patterned microstimulation to causally test the contribution of population temporal stability in gating movement initiation and found that stable stimulation patterns were more likely to evoke a movement. Finally, a spiking neuron model was able to discriminate between stable and unstable input patterns, providing a putative biophysical mechanism for decoding temporal structure. These findings offer new insights into the long-standing debate on motor preparation and generation by situating the movement gating signal in temporal features of activity in shared neural substrates, and they highlight the importance of short-term population history in neuronal communication and behavior.
Collapse
Affiliation(s)
- Uday K Jagadisan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Neeraj J Gandhi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
7
|
Gupta A, Bansal R, Alashwal H, Kacar AS, Balci F, Moustafa AA. Neural Substrates of the Drift-Diffusion Model in Brain Disorders. Front Comput Neurosci 2022; 15:678232. [PMID: 35069160 PMCID: PMC8776710 DOI: 10.3389/fncom.2021.678232] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/25/2021] [Indexed: 12/01/2022] Open
Abstract
Many studies on the drift-diffusion model (DDM) explain decision-making based on a unified analysis of both accuracy and response times. This review provides an in-depth account of the recent advances in DDM research which ground different DDM parameters on several brain areas, including the cortex and basal ganglia. Furthermore, we discuss the changes in DDM parameters due to structural and functional impairments in several clinical disorders, including Parkinson's disease, Attention Deficit Hyperactivity Disorder (ADHD), Autism Spectrum Disorders, Obsessive-Compulsive Disorder (OCD), and schizophrenia. This review thus uses DDM to provide a theoretical understanding of different brain disorders.
Collapse
Affiliation(s)
- Ankur Gupta
- CNRS UMR 5293, Institut des Maladies Neurodégénératives, Université de Bordeaux, Bordeaux, France
| | - Rohini Bansal
- Department of Medical Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hany Alashwal
- College of Information Technology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Anil Safak Kacar
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Fuat Balci
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ahmed A. Moustafa
- School of Psychology & Marcs Institute for Brain and Behaviour, Western Sydney University, Sydney, NSW, Australia
- School of Psychology, Faculty of Society and Design, Bond University, Robina, QLD, Australia
- Faculty of Health Sciences, Department of Human Anatomy and Physiology, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
8
|
Salinas E, Stanford TR. Under time pressure, the exogenous modulation of saccade plans is ubiquitous, intricate, and lawful. Curr Opin Neurobiol 2021; 70:154-162. [PMID: 34818614 PMCID: PMC8688226 DOI: 10.1016/j.conb.2021.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 09/29/2021] [Accepted: 10/27/2021] [Indexed: 11/21/2022]
Abstract
The choice of where to look next is determined by both exogenous (bottom-up) and endogenous (top-down) factors, but details of their interaction and distinct contributions to target selection have remained elusive. Recent experiments with urgent choice tasks, in which stimuli are evaluated while motor plans are already advancing, have greatly clarified these contributions. Specifically, exogenous modulations associated with stimulus detection act rapidly and briefly (∼25 ms) to automatically halt and/or boost ongoing motor plans as per spatial congruence rules. These stereotypical modulations explain, in quantitative detail, characteristic features of many saccadic tasks (e.g. antisaccade, countermanding, saccadic-inhibition, gap, and double-step). Thus, the same low-level visuomotor interactions contribute to diverse oculomotor phenomena traditionally attributed to different neural mechanisms.
Collapse
Affiliation(s)
- Emilio Salinas
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, 27157-1010, USA.
| | - Terrence R Stanford
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, 27157-1010, USA
| |
Collapse
|
9
|
Stanford TR, Salinas E. Urgent Decision Making: Resolving Visuomotor Interactions at High Temporal Resolution. Annu Rev Vis Sci 2021; 7:323-348. [PMID: 34171199 DOI: 10.1146/annurev-vision-100419-103842] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Measuring when exactly perceptual decisions are made is crucial for defining how the activation of specific neurons contributes to behavior. However, in traditional, nonurgent visuomotor tasks, the uncertainty of this temporal measurement is very large. This is a problem not only for delimiting the capacity of perception, but also for correctly interpreting the functional roles ascribed to choice-related neuronal responses. In this article, we review psychophysical, neurophysiological, and modeling work based on urgent visuomotor tasks in which this temporal uncertainty can be effectively overcome. The cornerstone of this work is a novel behavioral metric that describes the evolution of the subject's perceptual judgment moment by moment, allowing us to resolve numerous perceptual events that unfold within a few tens of milliseconds. In this framework, the neural distinction between perceptual evaluation and motor selection processes becomes particularly clear, as the conclusion of one is not contingent on that of the other. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Terrence R Stanford
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA; ,
| | - Emilio Salinas
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA; ,
| |
Collapse
|
10
|
Schall JD, Paré M. The unknown but knowable relationship between Presaccadic Accumulation of activity and Saccade initiation. J Comput Neurosci 2021; 49:213-228. [PMID: 33712942 DOI: 10.1007/s10827-021-00784-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 01/06/2021] [Accepted: 02/16/2021] [Indexed: 12/01/2022]
Abstract
The goal of this short review is to call attention to a yawning gap of knowledge that separates two processes essential for saccade production. On the one hand, knowledge about the saccade generation circuitry within the brainstem is detailed and precise - push-pull interactions between gaze-shifting and gaze-holding processes control the time of saccade initiation, which begins when omnipause neurons are inhibited and brainstem burst neurons are excited. On the other hand, knowledge about the cortical and subcortical premotor circuitry accomplishing saccade initiation has crystalized around the concept of stochastic accumulation - the accumulating activity of saccade neurons reaching a fixed value triggers a saccade. Here is the gap: we do not know how the reaching of a threshold by premotor neurons causes the critical pause and burst of brainstem neurons that initiates saccades. Why this problem matters and how it can be addressed will be discussed. Closing the gap would unify two rich but curiously disconnected empirical and theoretical domains.
Collapse
Affiliation(s)
- Jeffrey D Schall
- Centre for Vision Research, Vision Science to Application, Department of Biology, York University, Ontario, M3J 1P3, Toronto, Canada.
| | - Martin Paré
- Department of Biomedical & Molecular Sciences and of Psychology, Queen's University, Ontario, ON K7L 3N6, Kingston, Canada
| |
Collapse
|
11
|
Wang J, Hosseini E, Meirhaeghe N, Akkad A, Jazayeri M. Reinforcement regulates timing variability in thalamus. eLife 2020; 9:55872. [PMID: 33258769 PMCID: PMC7707818 DOI: 10.7554/elife.55872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 11/06/2020] [Indexed: 01/19/2023] Open
Abstract
Learning reduces variability but variability can facilitate learning. This paradoxical relationship has made it challenging to tease apart sources of variability that degrade performance from those that improve it. We tackled this question in a context-dependent timing task requiring humans and monkeys to flexibly produce different time intervals with different effectors. We identified two opposing factors contributing to timing variability: slow memory fluctuation that degrades performance and reward-dependent exploratory behavior that improves performance. Signatures of these opposing factors were evident across populations of neurons in the dorsomedial frontal cortex (DMFC), DMFC-projecting neurons in the ventrolateral thalamus, and putative target of DMFC in the caudate. However, only in the thalamus were the performance-optimizing regulation of variability aligned to the slow performance-degrading memory fluctuations. These findings reveal how variability caused by exploratory behavior might help to mitigate other undesirable sources of variability and highlight a potential role for thalamocortical projections in this process.
Collapse
Affiliation(s)
- Jing Wang
- Department of Bioengineering, University of Missouri, Columbia, United States.,McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Eghbal Hosseini
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Nicolas Meirhaeghe
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, United States
| | - Adam Akkad
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Mehrdad Jazayeri
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
12
|
Lee J, Darlington TR, Lisberger SG. The Neural Basis for Response Latency in a Sensory-Motor Behavior. Cereb Cortex 2020; 30:3055-3073. [PMID: 31828292 DOI: 10.1093/cercor/bhz294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 05/01/2019] [Accepted: 06/24/2019] [Indexed: 12/26/2022] Open
Abstract
We seek a neural circuit explanation for sensory-motor reaction times. In the smooth eye movement region of the frontal eye fields (FEFSEM), the latencies of pairs of neurons show trial-by-trial correlations that cause trial-by-trial correlations in neural and behavioral latency. These correlations can account for two-third of the observed variation in behavioral latency. The amplitude of preparatory activity also could contribute, but the responses of many FEFSEM neurons fail to support predictions of the traditional "ramp-to-threshold" model. As a correlate of neural processing that determines reaction time, the local field potential in FEFSEM includes a brief wave in the 5-15-Hz frequency range that precedes pursuit initiation and whose phase is correlated with the latency of pursuit in individual trials. We suggest that the latency of the incoming visual motion signals combines with the state of preparatory activity to determine the latency of the transient response that controls eye movement. IMPACT STATEMENT The motor cortex for smooth pursuit eye movements contributes to sensory-motor reaction time through the amplitude of preparatory activity and the latency of transient, visually driven responses.
Collapse
Affiliation(s)
- Joonyeol Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Timothy R Darlington
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Stephen G Lisberger
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
13
|
Ilan Y. Overcoming randomness does not rule out the importance of inherent randomness for functionality. J Biosci 2019; 44:132. [PMID: 31894113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Randomness is intrinsic to many natural processes. It is also clear that, under certain conditions, disorders are not associated with functionality. Several examples in which overcoming, suppressing, or combining both randomness and non-randomness is required are drawn from various fields. However, the need to suppress or overcome randomness does not negate its importance under certain conditions and its significance in valid processes and organ functions. Randomness should be acknowledged rather than ignored or suppressed; it can be viewed, at worst, as a disturbing disorder that may be treated to produce order, or, at best, as a 'beneficial disorder' that can be considered as a higher level of functionality.
Collapse
Affiliation(s)
- Yaron Ilan
- Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel,
| |
Collapse
|
14
|
Basu D, Murthy A. Parallel programming of saccades in the macaque frontal eye field: are sequential motor plans coactivated? J Neurophysiol 2019; 123:107-119. [PMID: 31721632 DOI: 10.1152/jn.00545.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We use sequences of saccadic eye movements to continually explore our visual environments. Previous behavioral studies have established that saccades in a sequence may be programmed in parallel by the oculomotor system. In this study, we tested the neural correlates of parallel programming of saccade sequences in the frontal eye field (FEF), using single-unit electrophysiological recordings from macaques performing a sequential saccade task. It is known that FEF visual neurons instantiate target selection whereas FEF movement neurons undertake saccade preparation, where the activity corresponding to a saccade vector gradually ramps up. The question of whether FEF movement neurons are involved in concurrent processing of saccade plans is as yet unresolved. In the present study, we show that, when a peripheral target is foveated after a sequence of two saccades, presaccadic activity of FEF movement neurons for the second saccade can be activated while the first is still underway. Moreover, the onset of movement activity varied parametrically with the behaviorally measured time available for parallel programming. Although at central fixation coactivated FEF movement activity may vectorially encode the retinotopic location of the second target with respect to the fixation point or the remapped location of the second target, with respect to the first our evidence suggests the possibility of early encoding of the remapped second saccade vector. Taken together, the results indicate that movement neurons, although located terminally in the FEF visual-motor spectrum, can accomplish concurrent processing of multiple saccade plans, leading to rapid execution of saccade sequences.NEW & NOTEWORTHY The execution of purposeful sequences underlies much of goal-directed behavior. How different brain areas accomplish sequencing is poorly understood. Using a modified double-step task to generate a rapid sequence of two saccades, we demonstrate that downstream movement neurons in the frontal eye field (FEF), a prefrontal oculomotor area, allow for coactivation of the first and second movement plans that constitute the sequence. These results provide fundamental insights into the neural control of action sequencing.
Collapse
Affiliation(s)
- Debaleena Basu
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Aditya Murthy
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| |
Collapse
|
15
|
Ilan Y. Overcoming randomness does not rule out the importance of inherent randomness for functionality. J Biosci 2019. [DOI: 10.1007/s12038-019-9958-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Salinas E, Steinberg BR, Sussman LA, Fry SM, Hauser CK, Anderson DD, Stanford TR. Voluntary and involuntary contributions to perceptually guided saccadic choices resolved with millisecond precision. eLife 2019; 8:46359. [PMID: 31225794 PMCID: PMC6645714 DOI: 10.7554/elife.46359] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/20/2019] [Indexed: 11/13/2022] Open
Abstract
In the antisaccade task, which is considered a sensitive assay of cognitive function, a salient visual cue appears and the participant must look away from it. This requires sensory, motor-planning, and cognitive neural mechanisms, but what are their unique contributions to performance, and when exactly are they engaged? Here, by manipulating task urgency, we generate a psychophysical curve that tracks the evolution of the saccadic choice process with millisecond precision, and resolve the distinct contributions of reflexive (exogenous) and voluntary (endogenous) perceptual mechanisms to antisaccade performance over time. Both progress extremely rapidly, the former driving the eyes toward the cue early on (∼100 ms after cue onset) and the latter directing them away from the cue ∼40 ms later. The behavioral and modeling results provide a detailed, dynamical characterization of attentional and oculomotor capture that is not only qualitatively consistent across participants, but also indicative of their individual perceptual capacities.
Collapse
Affiliation(s)
- Emilio Salinas
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
| | - Benjamin R Steinberg
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
| | - Lauren A Sussman
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
| | - Sophia M Fry
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
| | - Christopher K Hauser
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
| | - Denise D Anderson
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
| | - Terrence R Stanford
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
| |
Collapse
|
17
|
Distinct Sources of Variability Affect Eye Movement Preparation. J Neurosci 2019; 39:4511-4526. [PMID: 30914447 PMCID: PMC6554625 DOI: 10.1523/jneurosci.2329-18.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/28/2019] [Accepted: 03/22/2019] [Indexed: 01/01/2023] Open
Abstract
The sequence of events leading to an eye movement to a target begins the moment visual information has reached the brain, well in advance of the eye movement itself. The process by which visual information is encoded and used to generate a motor plan has been the focus of substantial interest partly because of the rapid and reproducible nature of saccadic eye movements, and the key role that they play in primate behavior. Signals related to eye movements are present in much of the primate brain, yet most neurophysiological studies of the transition from vision to eye movements have measured the activity of one neuron at a time. Less is known about how the coordinated action of populations of neurons contribute to the initiation of eye movements. One cortical area of particular interest in this process is the frontal eye fields, a region of prefrontal cortex that has descending projections to oculomotor control centers. We recorded from populations of frontal eye field neurons in macaque monkeys engaged in a memory-guided saccade task. We found a variety of neurons with visually evoked responses, saccade-aligned responses, and mixtures of both. We took advantage of the simultaneous nature of the recordings to measure variability in individual neurons and pairs of neurons from trial-to-trial, as well as the moment-to-moment population activity structure. We found that these measures were related to saccadic reaction times, suggesting that the population-level organization of frontal eye field activity is important for the transition from perception to movement.SIGNIFICANCE STATEMENT The transition from perception to action involves coordination among neurons across the brain. In the case of eye movements, visual and motor signals coexist in individual neurons as well as in neighboring neurons. We used a task designed to compartmentalize the visual and motor aspects of this transition and studied populations of neurons in the frontal eye fields, a key cortical area containing neurons that are implicated in the transition from vision to eye movements. We found that the time required for subjects to produce an eye movement could be predicted from the statistics of the neuronal response of populations of frontal eye field neurons, suggesting that these neurons coordinate their activity to optimize the transition from perception to action.
Collapse
|
18
|
When the simplest voluntary decisions appear patently suboptimal. Behav Brain Sci 2019; 41:e240. [PMID: 30767836 DOI: 10.1017/s0140525x18001474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Rahnev & Denison (R&D) catalog numerous experiments in which performance deviates, often in subtle ways, from the theoretical ideal. We discuss an extreme case, an elementary behavior (reactive saccades to single targets) for which a simple contextual manipulation results in responses that are dramatically different from those expected based on reward maximization - and yet are highly informative and amenable to mechanistic examination.
Collapse
|
19
|
Saccadic inhibition interrupts ongoing oculomotor activity to enable the rapid deployment of alternate movement plans. Sci Rep 2018; 8:14163. [PMID: 30242249 PMCID: PMC6155112 DOI: 10.1038/s41598-018-32224-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/04/2018] [Indexed: 11/09/2022] Open
Abstract
Diverse psychophysical and neurophysiological results show that oculomotor networks are continuously active, such that plans for making the next eye movement are always ongoing. So, when new visual information arrives unexpectedly, how are those plans affected? At what point can the new information start guiding an eye movement, and how? Here, based on modeling and simulation results, we make two observations that are relevant to these questions. First, we note that many experiments, including those investigating the phenomenon known as "saccadic inhibition", are consistent with the idea that sudden-onset stimuli briefly interrupt the gradual rise in neural activity associated with the preparation of an impending saccade. And second, we show that this stimulus-driven interruption is functionally adaptive, but only if perception is fast. In that case, putting on hold an ongoing saccade plan toward location A allows the oculomotor system to initiate a concurrent, alternative plan toward location B (where a stimulus just appeared), deliberate (briefly) on the priority of each target, and determine which plan should continue. Based on physiological data, we estimate that the advantage of this strategy, relative to one in which any plan once initiated must be completed, is of several tens of milliseconds per saccade.
Collapse
|