1
|
Velasco-Gomariz M, Sulzer J, Faber F, Fröhlich K. An sRNA overexpression library reveals AbnZ as a negative regulator of an essential translocation module in Caulobacter crescentus. Nucleic Acids Res 2025; 53:gkae1139. [PMID: 39657128 PMCID: PMC11724286 DOI: 10.1093/nar/gkae1139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 12/17/2024] Open
Abstract
Small RNAs (sRNAs) play a crucial role in modulating target gene expression through short base-pairing interactions and serve as integral components of many stress response pathways and regulatory circuits in bacteria. Transcriptome analyses have facilitated the annotation of dozens of sRNA candidates in the ubiquitous environmental model bacterium Caulobacter crescentus, but their physiological functions have not been systematically investigated so far. To address this gap, we have established CauloSOEP, a multi-copy plasmid library of C. crescentus sRNAs, which can be studied in a chosen genetic background and under select conditions. Demonstrating the power of CauloSOEP, we identified sRNA AbnZ to impair cell viability and morphology. AbnZ is processed from the 3' end of the polycistronic abn mRNA encoding the tripartite envelope-spanning efflux pump AcrAB-NodT. A combinatorial approach revealed the essential membrane translocation module TamAB as a target of AbnZ, implying that growth inhibition by AbnZ is linked to repression of this system.
Collapse
Affiliation(s)
| | - Johannes Sulzer
- Julius-Maximilians-University of Würzburg, Faculty of Medicine, Institute for Hygiene and Microbiology, 97080 Würzburg, Germany
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for RNA‐based Infection Research (HIRI), 97080 Würzburg, Germany
| | - Franziska Faber
- Julius-Maximilians-University of Würzburg, Faculty of Medicine, Institute for Hygiene and Microbiology, 97080 Würzburg, Germany
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for RNA‐based Infection Research (HIRI), 97080 Würzburg, Germany
| | - Kathrin S Fröhlich
- Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
- Microverse Cluster, Friedrich Schiller University, 07743 Jena, Germany
| |
Collapse
|
2
|
Vogt LN, Panis G, Schäpers A, Peschek N, Huber M, Papenfort K, Viollier PH, Fröhlich KS. Genome-wide profiling of Hfq-bound RNAs reveals the iron-responsive small RNA RusT in Caulobacter crescentus. mBio 2024; 15:e0315323. [PMID: 38511926 PMCID: PMC11005374 DOI: 10.1128/mbio.03153-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
The alphaproteobacterium Caulobacter crescentus thrives in oligotrophic environments and is able to optimally exploit minimal resources by entertaining an intricate network of gene expression control mechanisms. Numerous transcriptional activators and repressors have been reported to contribute to these processes, but only few studies have focused on regulation at the post-transcriptional level in C. crescentus. Small RNAs (sRNAs) are a prominent class of regulators of bacterial gene expression, and most sRNAs characterized today engage in direct base-pairing interactions to modulate the translation and/or stability of target mRNAs. In many cases, the ubiquitous RNA chaperone, Hfq, contributes to the establishment of RNA-RNA interactions. Although the deletion of the hfq gene is associated with a severe loss of fitness in C. crescentus, the RNA ligands of the chaperone have remained largely unexplored. Here we report on the identification of coding and non-coding transcripts associated with Hfq in C. crescentus and demonstrate Hfq-dependent post-transcriptional regulation in this organism. We show that the Hfq-bound sRNA RusT is transcriptionally controlled by the NtrYX two-component system and induced in response to iron starvation. By combining RusT pulse expression with whole-genome transcriptome analysis, we determine 16 candidate target transcripts that are deregulated, many of which encode outer membrane transporters. We hence suggest RusT to support remodeling of the C. crescentus cell surface when iron supplies are limited.IMPORTANCEThe conserved RNA-binding protein Hfq contributes significantly to the adaptation of bacteria to different environmental conditions. Hfq not only stabilizes associated sRNAs but also promotes inter-molecular base-pairing interactions with target transcripts. Hfq plays a pivotal role for growth and survival, controlling central metabolism and cell wall synthesis in the oligotroph Caulobacter crescentus. However, direct evidence for Hfq-dependent post-transcriptional regulation and potential oligotrophy in C. crescentus has been lacking. Here, we identified sRNAs and mRNAs associated with Hfq in vivo, and demonstrated the requirement of Hfq for sRNA-mediated regulation, particularly of outer membrane transporters in C. crescentus.
Collapse
Affiliation(s)
- Laura N. Vogt
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
- Department of Biology I, Microbiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gaël Panis
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Anna Schäpers
- Department of Biology I, Microbiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nikolai Peschek
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
- Department of Biology I, Microbiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michaela Huber
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
- Department of Biology I, Microbiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kai Papenfort
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
- Department of Biology I, Microbiology, Ludwig-Maximilians-University Munich, Munich, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
| | - Patrick H. Viollier
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Kathrin S. Fröhlich
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
- Department of Biology I, Microbiology, Ludwig-Maximilians-University Munich, Munich, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
3
|
Fang X, Wu H, Huang W, Ma Z, Jia Y, Min Y, Ma Q, Cai R. The WRKY transcription factor ZmWRKY92 binds to GA synthesis-related genes to regulate maize plant height. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108422. [PMID: 38335889 DOI: 10.1016/j.plaphy.2024.108422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/25/2023] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
The plant height is a crucial agronomic trait in contemporary maize breeding. Appropriate plant height can improve crop lodging resistance, increase the planting density and harvest index of crops, and thus contribute to stable and increased yields. In this study, molecular characterization showed that ZmWRKY92 is a nuclear protein and has transcriptional activation in yeast. ZmWRKY92 can specifically bind to the W-box (TTGACC), which was confirmed by double LUC experiments and Yeast one-hybrid assays. Subsequently we screened wrky92 mutants from a library of ethyl methanesulfonate (EMS)-induced mutants. The mutation of a base in ZmWRKY92 leading to the formation of a truncated protein variant is responsible for the dwarfing phenotype of the mutant, which was further verified by allelic testing. Detailed phenotypic analysis revealed that wrky92 mutants have shorter internodes due to reduced internode cell size and lower levels of GA3 and IAA. Transcriptome analysis revealed that the ZmWRKY92 mutation caused significant changes in the expression of genes related to plant height in maize. Additionally, ZmWRKY92 was found to interact with the promoters of ZmGA20ox7 and ZmGID1L2, which are associated with GA synthesis. This study shows that ZmWRKY92 significantly affects the plants height in maize and is crucial in identifying new varieties suitable for growing in high-density conditions.
Collapse
Affiliation(s)
- Xiu Fang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Hao Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Wanchang Huang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Zhongxian Ma
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yue Jia
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yongwei Min
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Qing Ma
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Engineering Research Center for Maize of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Ronghao Cai
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China; Engineering Research Center for Maize of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
4
|
Correia Santos S, Bischler T, Westermann AJ, Vogel J. MAPS integrates regulation of actin-targeting effector SteC into the virulence control network of Salmonella small RNA PinT. Cell Rep 2021; 34:108722. [PMID: 33535041 DOI: 10.1016/j.celrep.2021.108722] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/25/2020] [Accepted: 01/13/2021] [Indexed: 10/22/2022] Open
Abstract
A full understanding of the contribution of small RNAs (sRNAs) to bacterial virulence demands knowledge of their target suites under infection-relevant conditions. Here, we take an integrative approach to capturing targets of the Hfq-associated sRNA PinT, a known post-transcriptional timer of the two major virulence programs of Salmonella enterica. Using MS2 affinity purification and RNA sequencing (MAPS), we identify PinT ligands in bacteria under in vitro conditions mimicking specific stages of the infection cycle and in bacteria growing inside macrophages. This reveals PinT-mediated translational inhibition of the secreted effector kinase SteC, which had gone unnoticed in previous target searches. Using genetic, biochemical, and microscopic assays, we provide evidence for PinT-mediated repression of steC mRNA, eventually delaying actin rearrangements in infected host cells. Our findings support the role of PinT as a central post-transcriptional regulator in Salmonella virulence and illustrate the need for complementary methods to reveal the full target suites of sRNAs.
Collapse
Affiliation(s)
- Sara Correia Santos
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Thorsten Bischler
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany
| | - Alexander J Westermann
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany; Helmholtz Institute for RNA-Based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.
| | - Jörg Vogel
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany; Helmholtz Institute for RNA-Based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.
| |
Collapse
|
5
|
Fröhlich KS, Velasco Gomariz M. RNA-controlled regulation in Caulobacter crescentus. Curr Opin Microbiol 2021; 60:1-7. [PMID: 33529919 DOI: 10.1016/j.mib.2021.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 01/10/2023]
Abstract
In the past decades, Caulobacter crescentus has been extensively studied, mostly regarding its dimorphic, asymmetric life cycle. Its distinct mode of reproduction and the need to optimally adapt to ever-changing environmental conditions require tight coordination of gene regulation. Post-transcriptional regulation through non-coding RNAs and RNA-binding proteins constitutes an important layer of expression control in bacteria, but its principles and mechanisms in Caulobacter have only recently been explored. RNA-binding proteins including the RNA chaperone Hfq and ribonuclease RNase E contribute to the activity of regulatory RNAs. Riboswitches and RNA thermometers govern expression of downstream open reading frames, while the small regulatory RNAs CrfA, ChvR and GsrN instead control targets encoded in trans by direct base-pairing interactions.
Collapse
Affiliation(s)
- Kathrin S Fröhlich
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany; Microverse Cluster, Friedrich Schiller University, Jena, Germany.
| | | |
Collapse
|
6
|
Al-Husini N, Tomares DT, Pfaffenberger ZJ, Muthunayake NS, Samad MA, Zuo T, Bitar O, Aretakis JR, Bharmal MHM, Gega A, Biteen JS, Childers WS, Schrader JM. BR-Bodies Provide Selectively Permeable Condensates that Stimulate mRNA Decay and Prevent Release of Decay Intermediates. Mol Cell 2020; 78:670-682.e8. [PMID: 32343944 PMCID: PMC7245546 DOI: 10.1016/j.molcel.2020.04.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/16/2019] [Accepted: 03/30/2020] [Indexed: 12/22/2022]
Abstract
Biomolecular condensates play a key role in organizing RNAs and proteins into membraneless organelles. Bacterial RNP-bodies (BR-bodies) are a biomolecular condensate containing the RNA degradosome mRNA decay machinery, but the biochemical function of such organization remains poorly defined. Here, we define the RNA substrates of BR-bodies through enrichment of the bodies followed by RNA sequencing (RNA-seq). We find that long, poorly translated mRNAs, small RNAs, and antisense RNAs are the main substrates, while rRNA, tRNA, and other conserved non-coding RNAs (ncRNAs) are excluded from these bodies. BR-bodies stimulate the mRNA decay rate of enriched mRNAs, helping to reshape the cellular mRNA pool. We also observe that BR-body formation promotes complete mRNA decay, avoiding the buildup of toxic endo-cleaved mRNA decay intermediates. The combined selective permeability of BR-bodies for both enzymes and substrates together with the stimulation of the sub-steps of mRNA decay provide an effective organization strategy for bacterial mRNA decay.
Collapse
MESH Headings
- Caulobacter crescentus/genetics
- Caulobacter crescentus/growth & development
- Caulobacter crescentus/metabolism
- Endoribonucleases/genetics
- Endoribonucleases/metabolism
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Escherichia coli/metabolism
- Humans
- Multienzyme Complexes/genetics
- Multienzyme Complexes/metabolism
- Organelles/genetics
- Organelles/metabolism
- Polyribonucleotide Nucleotidyltransferase/genetics
- Polyribonucleotide Nucleotidyltransferase/metabolism
- RNA Helicases/genetics
- RNA Helicases/metabolism
- RNA Stability
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
Collapse
Affiliation(s)
- Nadra Al-Husini
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Dylan T Tomares
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | - Mohammad A Samad
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Tiancheng Zuo
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Obaidah Bitar
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - James R Aretakis
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | - Alisa Gega
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Julie S Biteen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - W Seth Childers
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Jared M Schrader
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
7
|
Loss of Bacterial Cell Pole Stabilization in Caulobacter crescentus Sensitizes to Outer Membrane Stress and Peptidoglycan-Directed Antibiotics. mBio 2020; 11:mBio.00538-20. [PMID: 32371598 PMCID: PMC7403779 DOI: 10.1128/mbio.00538-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Maintenance of an intact cell envelope is essential for free-living bacteria to protect themselves against their environment. In the case of rod-shaped bacteria, the poles of the cell are potential weak points in the cell envelope due to the high curvature of the layers and the need to break and reform the cell envelope at the division plane as the cells divide. We have found that TipN, a factor required for correct division and cell pole development in Caulobacter crescentus, is also needed for maintaining normal levels of resistance to cell wall-targeting antibiotics such as vancomycin and cefixime, which interfere with peptidoglycan synthesis. Since TipN is normally located at the poles of the cell and at the division plane just before cells complete division, our results suggest that it is involved in stabilization of these weak points of the cell envelope as well as its other roles inside the cell. Rod-shaped bacteria frequently localize proteins to one or both cell poles in order to regulate processes such as chromosome replication or polar organelle development. However, the roles of polar factors in responses to extracellular stimuli have been generally unexplored. We employed chemical-genetic screening to probe the interaction between one such factor from Caulobacter crescentus, TipN, and extracellular stress and found that TipN is required for normal resistance of cell envelope-directed antibiotics, including vancomycin which does not normally inhibit growth of Gram-negative bacteria. Forward genetic screening for suppressors of vancomycin sensitivity in the absence of TipN revealed the TonB-dependent receptor ChvT as the mediator of vancomycin sensitivity. Loss of ChvT improved resistance to vancomycin and cefixime in the otherwise sensitive ΔtipN strain. The activity of the two-component system regulating ChvT (ChvIG) was increased in ΔtipN cells relative to the wild type under some, but not all, cell wall stress conditions that this strain was sensitized to, in particular cefixime and detergent exposure. Together, these results indicate that TipN contributes to cell envelope stress resistance in addition to its roles in intracellular development, and its loss influences signaling through the ChvIG two-component system which has been co-opted as a sensor of cell wall stress in Caulobacter.
Collapse
|
8
|
Fröhlich KS, Förstner KU, Gitai Z. Post-transcriptional gene regulation by an Hfq-independent small RNA in Caulobacter crescentus. Nucleic Acids Res 2019; 46:10969-10982. [PMID: 30165530 PMCID: PMC6237742 DOI: 10.1093/nar/gky765] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/21/2018] [Indexed: 12/15/2022] Open
Abstract
Bacterial small RNAs (sRNAs) are a heterogeneous group of post-transcriptional regulators that often act at the heart of large networks. Hundreds of sRNAs have been discovered by genome-wide screens and most of these sRNAs exert their functions by base-pairing with target mRNAs. However, studies addressing the molecular roles of sRNAs have been largely confined to gamma-proteobacteria, such as Escherichia coli. Here we identify and characterize a novel sRNA, ChvR, from the alpha-proteobacterium Caulobacter crescentus. Transcription of chvR is controlled by the conserved two-component system ChvI-ChvG and it is expressed in response to DNA damage, low pH, and growth in minimal medium. Transient over-expression of ChvR in combination with genome-wide transcriptome profiling identified the mRNA of the TonB-dependent receptor ChvT as the sole target of ChvR. Genetic and biochemical analyses showed that ChvR represses ChvT at the post-transcriptional level through direct base-pairing. Fine-mapping of the ChvR-chvT interaction revealed the requirement of two distinct base-pairing sites for full target regulation. Finally, we show that ChvR-controlled repression of chvT is independent of the ubiquitous RNA-chaperone Hfq, and therefore distinct from previously reported mechanisms employed by prototypical bacterial sRNAs. These findings have implications for the mechanism and evolution of sRNA function across bacterial species.
Collapse
Affiliation(s)
- Kathrin S Fröhlich
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratories, Princeton, NJ 08544, USA.,Department of Biology I, Microbiology, Ludwig-Maximilians-University Munich, D-82152 Martinsried, Germany
| | - Konrad U Förstner
- Core Unit Systems Medicine, University of Würzburg, D-97080 Würzburg, Germany
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratories, Princeton, NJ 08544, USA
| |
Collapse
|
9
|
Transcriptome analysis provides insights into the molecular mechanisms responsible for evisceration behavior in the sea cucumber Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:143-157. [PMID: 30851504 DOI: 10.1016/j.cbd.2019.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 01/05/2023]
Abstract
The sea cucumber Apostichopus japonicus (Selenka) is a valuable economic species in Southeast Asia. It has many fascinating behavioral characteristics, such as autolysis, aestivation, regeneration, and evisceration, thus it is a notable species for studies of special behaviors. Evisceration and autotomy are controlled by the neural network and involve a complicated physiological process. The occurrence of evisceration behavior in sea cucumbers is strongly related to their environment, and it negatively impacts their economic value. Evisceration behavior plays a pivotal role in the survival of A. japonicus, and when it is induced by dramatic changes in the coastal ecological environment and the aquaculture setting it can strongly affect the economic performance of this species. Although numerous studies have focused on intestinal regeneration of A. japonicus, less is known about evisceration behavior, especially its underlying molecular mechanisms. Thus, identification of genes that regulate evisceration in the sea cucumber likely will provide a scientific explanation for this significant specific behavior. In this study, Illumina sequencing (RNA-Seq) was performed on A. japonicus specimens in three states: normal (TCQ), eviscerating (TCZ), and 3 h after evisceration (TCH). In total, 129,905 unigenes were generated with an N50 length of 2651 base pairs, and 54,787 unigenes were annotated from seven functional databases (KEGG, KOG, GO, NR, NT, Interpro, and Swiss-Prot). Additionally, 190, 191, and 320 genes were identified as differentially expressed genes (DEGs) in the comparisons of TCQ vs. TCZ, TCZ vs. TCH, and TCQ vs. TCH, respectively. These DEGs mapped to 157, 113, and 190 signaling pathways in the KEGG database, respectively. KEGG analyses also revealed that potential DEGs enriched in the categories of "environmental information processing," "organismal system," "metabolism," and "cellular processes," and they were involved in evisceration behavior in A. japonicus. These DEGs are related to muscle contraction, hormone and neurotransmitter secretion, nerve and muscle damage, energy support, cellular stress, and apoptosis. In conclusion, through our comparative analysis of A. japonicus in different stages, we identified many candidate evisceration-related genes and signaling pathways that likely are involved in evisceration behavior. These results should help further elucidate the mechanisms underlying evisceration behavior in sea cucumbers.
Collapse
|
10
|
Coherent Feedforward Regulation of Gene Expression by Caulobacter σ T and GsrN during Hyperosmotic Stress. J Bacteriol 2018; 200:JB.00349-18. [PMID: 30012732 DOI: 10.1128/jb.00349-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 07/12/2018] [Indexed: 01/05/2023] Open
Abstract
GsrN is a conserved small RNA that is under transcriptional control of the general stress sigma factor, σT, and that functions as a posttranscriptional regulator of Caulobacter crescentus survival under multiple stress conditions. We have defined features of GsrN structure that determine survival under hyperosmotic stress, and we have applied transcriptomic and proteomic methods to identify regulatory targets of GsrN under hyperosmotic conditions. The 5' end of GsrN, which includes a conserved cytosine-rich stem-loop structure, is necessary for cell survival after osmotic upshock. GsrN both activates and represses gene expression in this stress condition. Expression of an uncharacterized open reading frame predicted to encode a glycine zipper protein, osrP, is strongly activated by GsrN. Our data support a model in which GsrN physically interacts with osrP mRNA through its 5' C-rich stem-loop to enhance OsrP protein expression. We conclude that sigT, gsrN, and osrP form a coherent feedforward loop in which σT activates gsrN and osrP transcription during stress and GsrN activates OsrP protein expression at the posttranscriptional level. This study delineates transcriptional and posttranscriptional layers of Caulobacter gene expression control during hyperosmotic stress, uncovers a new regulatory target of GsrN, and defines a coherent feedforward motif in the Caulobacter general stress response (GSR) regulatory network.IMPORTANCE Bacteria inhabit diverse niches and must adapt their physiology to constant environmental fluctuations. A major response to environmental perturbation is to change gene expression. Caulobacter and other alphaproteobacteria initiate a complex gene expression program known as the general stress response (GSR) under conditions including oxidative stress, osmotic stress, and nutrient limitation. The GSR enables cell survival in these environments. Understanding how bacteria survive stress requires that we dissect gene expression responses, such as the GSR, at the molecular level. This study is significant, as it defines transcriptional and posttranscriptional layers of gene expression regulation in response to hyperosmotic stress. We further provide evidence that a coherent feedforward motif influences the system properties of the Caulobacter GSR pathway.
Collapse
|
11
|
Beroual W, Brilli M, Biondi EG. Non-coding RNAs Potentially Controlling Cell Cycle in the Model Caulobacter crescentus: A Bioinformatic Approach. Front Genet 2018; 9:164. [PMID: 29899753 PMCID: PMC5988900 DOI: 10.3389/fgene.2018.00164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/23/2018] [Indexed: 11/13/2022] Open
Abstract
Caulobacter crescentus represents a remarkable model system to investigate global regulatory programs in bacteria. In particular, several decades of intensive study have revealed that its cell cycle is controlled by a cascade of master regulators, such as DnaA, GcrA, CcrM, and CtrA, that are responsible for the activation of functions required to progress through DNA replication, cell division and morphogenesis of polar structures (flagellum and stalk). In order to accomplish this task, several post-translational (phosphorylation and proteolysis) and transcriptional mechanisms are involved. Surprisingly, the role of non-coding RNAs (ncRNAs) in regulating the cell cycle has not been investigated. Here we describe a bioinformatic analysis that revealed that ncRNAs may well play a crucial role regulating cell cycle in C. crescentus. We used available prediction tools to understand which target genes may be regulated by ncRNAs in this bacterium. Furthermore, we predicted whether ncRNAs with a cell cycle regulated expression profile may be directly regulated by DnaA, GcrA, and CtrA, at the onset, during or end of the S-phase/swarmer cell, or if any of them has CcrM methylation sites in the promoter region. Our analysis suggests the existence of a potentially very important network of ncRNAs regulated by or regulating well-known cell cycle genes in C. crescentus. Our hypothesis is that ncRNAs are intimately connected to the known regulatory network, playing a crucial modulatory role in cell cycle progression.
Collapse
Affiliation(s)
- Wanassa Beroual
- Laboratoire de Chimie Bactérienne, Centre National de la Recherche Scientifique, Aix Marseille University, Marseille, France
| | - Matteo Brilli
- Department of Biosciences, Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi, " University of Milan, Milan, Italy
| | - Emanuele G Biondi
- Laboratoire de Chimie Bactérienne, Centre National de la Recherche Scientifique, Aix Marseille University, Marseille, France
| |
Collapse
|
12
|
A Single-Domain Response Regulator Functions as an Integrating Hub To Coordinate General Stress Response and Development in Alphaproteobacteria. mBio 2018; 9:mBio.00809-18. [PMID: 29789370 PMCID: PMC5964349 DOI: 10.1128/mbio.00809-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The alphaproteobacterial general stress response is governed by a conserved partner-switching mechanism that is triggered by phosphorylation of the response regulator PhyR. In the model organism Caulobacter crescentus, PhyR was proposed to be phosphorylated by the histidine kinase PhyK, but biochemical evidence in support of such a role of PhyK is missing. Here, we identify a single-domain response regulator, MrrA, that is essential for general stress response activation in C. crescentus We demonstrate that PhyK does not function as a kinase but accepts phosphoryl groups from MrrA and passes them on to PhyR, adopting the role of a histidine phosphotransferase. MrrA is phosphorylated by at least six histidine kinases that likely serve as stress sensors. MrrA also transfers phosphate to LovK, a histidine kinase involved in C. crescentus holdfast production and attachment, which also negatively regulates the general stress response. We show that LovK together with the response regulator LovR acts as a phosphate sink to redirect phosphate flux away from the PhyKR branch. In agreement with the biochemical data, an mrrA mutant is unable to activate the general stress response and shows a hyperattachment phenotype, which is linked to decreased expression of the major holdfast inhibitory protein HfiA. We propose that MrrA serves as a central phosphorylation hub that coordinates the general stress response with C. crescentus development and other adaptive behaviors. The characteristic bow-tie architecture of this phosphorylation network with MrrA as the central knot may expedite the evolvability and species-specific niche adaptation of this group of bacteria.IMPORTANCE Two-component systems (TCSs) consisting of a histidine kinase and a cognate response regulator are predominant signal transduction systems in bacteria. To avoid cross talk, TCSs are generally thought to be highly insulated from each other. However, this notion is based largely on studies of the HisKA subfamily of histidine kinases, while little information is available for the HWE and HisKA2 subfamilies. The latter have been implicated in the alphaproteobacterial general stress response. Here, we show that in the model organism Caulobacter crescentus an atypical FATGUY-type single-domain response regulator, MrrA, is highly promiscuous in accepting and transferring phosphoryl groups from and to multiple up- and downstream kinases, challenging the current view of strictly insulated TCSs. Instead, we propose that FATGUY response regulators have evolved in alphaproteobacteria as central phosphorylation hubs to broadly sample information and distribute phosphoryl groups between the general stress response pathway and other TCSs, thereby coordinating multiple cellular behaviors.
Collapse
|