1
|
Smith JB, Hong SS, Murphy DJ, Dangcil E, Nacipucha J, Tucker A, Carayannopoulos NL, Beshy M, Chandrasekar S, Peci E, Kiel MY, Wackym PA, Yao JD, Mowery TM. Neuroanatomical Mapping of Gerbil Corticostriatal and Thalamostriatal Projections Reveals the Parafascicular Nucleus as a Relay for Vestibular Information to the Entire Striatum. eNeuro 2025; 12:ENEURO.0246-24.2025. [PMID: 39952676 PMCID: PMC11913323 DOI: 10.1523/eneuro.0246-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 02/17/2025] Open
Abstract
The striatum is the primary input nucleus of the basal ganglia, integrating a dense plexus of inputs from the cerebral cortex and thalamus to regulate action selection and learning. Neuroanatomical mapping of the striatum and its subcompartments has been carried out extensively in rats and mice, nonhuman primates, and cats allowing comparative neuroanatomy studies to derive heuristics about striatal composition and function. Here, we systematically map corticostriatal topography from motor, somatosensory, auditory, and visual cortices as well as thalamostriatal parafascicular (PfN) inputs in the Mongolian gerbil. We also map a pathway reported in mice from medial vestibular nucleus to the PfN that could convey vestibular information to the striatum. Our findings align with those of similar studies in other rodents, indicating homologous neuroanatomical connectivity patterns within the corticostriatal projectome across Rodentia. We observed corticostriatal peaks of dense labeling for each input with a diffuse projection throughout striatal subregions from each cortical region, suggesting a global integration of all cortical information by the striatum. Thalamostriatal projections from PfN covered most of the striatum with a peak of PfN-specific compartmentalized labeling similar to other sensory and motor systems. We also confirm the connection from the medial vestibular nucleus to PfN thalamus, indicating that vestibular information may be widely integrated throughout the striatum. The findings build upon our body of knowledge on striatal connectivity across mammalian species and provide a foundation for striatal research focusing on vestibulothalamostriatal circuits in Rodentia.
Collapse
Affiliation(s)
- Jared B Smith
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Sean S Hong
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
| | - Damian J Murphy
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
| | - Evelynne Dangcil
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
| | - Jacqueline Nacipucha
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
| | - Aaron Tucker
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
| | - Nicolas L Carayannopoulos
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
| | - Mina Beshy
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
| | - Shrivaishnavi Chandrasekar
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
| | - Eran Peci
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
| | - Matthew Y Kiel
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
| | - P Ashley Wackym
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
- Rutgers Brain Health Institute, New Brunswick, New Jersey 08854
| | - Justin D Yao
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
- Rutgers Brain Health Institute, New Brunswick, New Jersey 08854
| | - Todd M Mowery
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
- Rutgers Brain Health Institute, New Brunswick, New Jersey 08854
| |
Collapse
|
2
|
Masri S, Mowery TM, Fair R, Sanes DH. Developmental hearing loss-induced perceptual deficits are rescued by genetic restoration of cortical inhibition. Proc Natl Acad Sci U S A 2024; 121:e2311570121. [PMID: 38830095 PMCID: PMC11181144 DOI: 10.1073/pnas.2311570121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/25/2024] [Indexed: 06/05/2024] Open
Abstract
Even a transient period of hearing loss during the developmental critical period can induce long-lasting deficits in temporal and spectral perception. These perceptual deficits correlate with speech perception in humans. In gerbils, these hearing loss-induced perceptual deficits are correlated with a reduction of both ionotropic GABAA and metabotropic GABAB receptor-mediated synaptic inhibition in auditory cortex, but most research on critical period plasticity has focused on GABAA receptors. Therefore, we developed viral vectors to express proteins that would upregulate gerbil postsynaptic inhibitory receptor subunits (GABAA, Gabra1; GABAB, Gabbr1b) in pyramidal neurons, and an enzyme that mediates GABA synthesis (GAD65) presynaptically in parvalbumin-expressing interneurons. A transient period of developmental hearing loss during the auditory critical period significantly impaired perceptual performance on two auditory tasks: amplitude modulation depth detection and spectral modulation depth detection. We then tested the capacity of each vector to restore perceptual performance on these auditory tasks. While both GABA receptor vectors increased the amplitude of cortical inhibitory postsynaptic potentials, only viral expression of postsynaptic GABAB receptors improved perceptual thresholds to control levels. Similarly, presynaptic GAD65 expression improved perceptual performance on spectral modulation detection. These findings suggest that recovering performance on auditory perceptual tasks depends on GABAB receptor-dependent transmission at the auditory cortex parvalbumin to pyramidal synapse and point to potential therapeutic targets for developmental sensory disorders.
Collapse
Affiliation(s)
- Samer Masri
- Center for Neural Science, New York University, New York, NY10003
| | - Todd M. Mowery
- Department of Otolaryngology, Rutgers, New Brunswick, NJ08901
| | - Regan Fair
- Center for Neural Science, New York University, New York, NY10003
| | - Dan H. Sanes
- Center for Neural Science, New York University, New York, NY10003
- Department of Psychology, New York University, New York, NY10003
- Department of Biology, New York University, New York, NY10003
- Neuroscience Institute at New York University Langone School of Medicine, New York, NY10016
| |
Collapse
|
3
|
Alamatsaz N, Rosen MJ, Ihlefeld A. Increased reliance on temporal coding when target sound is softer than the background. Sci Rep 2024; 14:4457. [PMID: 38396044 PMCID: PMC10891139 DOI: 10.1038/s41598-024-54865-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Everyday environments often contain multiple concurrent sound sources that fluctuate over time. Normally hearing listeners can benefit from high signal-to-noise ratios (SNRs) in energetic dips of temporally fluctuating background sound, a phenomenon called dip-listening. Specialized mechanisms of dip-listening exist across the entire auditory pathway. Both the instantaneous fluctuating and the long-term overall SNR shape dip-listening. An unresolved issue regarding cortical mechanisms of dip-listening is how target perception remains invariant to overall SNR, specifically, across different tone levels with an ongoing fluctuating masker. Equivalent target detection over both positive and negative overall SNRs (SNR invariance) is reliably achieved in highly-trained listeners. Dip-listening is correlated with the ability to resolve temporal fine structure, which involves temporally-varying spike patterns. Thus the current work tests the hypothesis that at negative SNRs, neuronal readout mechanisms need to increasingly rely on decoding strategies based on temporal spike patterns, as opposed to spike count. Recordings from chronically implanted electrode arrays in core auditory cortex of trained and awake Mongolian gerbils that are engaged in a tone detection task in 10 Hz amplitude-modulated background sound reveal that rate-based decoding is not SNR-invariant, whereas temporal coding is informative at both negative and positive SNRs.
Collapse
Affiliation(s)
- Nima Alamatsaz
- Graduate School of Biomedical Sciences, Rutgers University, Newark, NJ, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Merri J Rosen
- Northeast Ohio Medical University (NEOMED), Rootstown, OH, USA.
- University Hospitals Hearing Research Center at NEOMED, Rootstown, OH, USA.
- Brain Health Research Institute, Kent State University, Kent, OH, USA.
| | | |
Collapse
|
4
|
Mowery TM, Wackym PA, Nacipucha J, Dangcil E, Stadler RD, Tucker A, Carayannopoulos NL, Beshy MA, Hong SS, Yao JD. Superior semicircular canal dehiscence and subsequent closure induces reversible impaired decision-making. Front Neurol 2023; 14:1259030. [PMID: 37905188 PMCID: PMC10613502 DOI: 10.3389/fneur.2023.1259030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/14/2023] [Indexed: 11/02/2023] Open
Abstract
Background Vestibular loss and dysfunction has been associated with cognitive deficits, decreased spatial navigation, spatial memory, visuospatial ability, attention, executive function, and processing speed among others. Superior semicircular canal dehiscence (SSCD) is a vestibular-cochlear disorder in humans in which a pathological third mobile window of the otic capsule creates changes to the flow of sound pressure energy through the perilymph/endolymph. The primary symptoms include sound-induced dizziness/vertigo, inner ear conductive hearing loss, autophony, headaches, and visual problems; however, individuals also experience measurable deficits in basic decision-making, short-term memory, concentration, spatial cognition, and depression. These suggest central mechanisms of impairment are associated with vestibular disorders; therefore, we directly tested this hypothesis using both an auditory and visual decision-making task of varying difficulty levels in our model of SSCD. Methods Adult Mongolian gerbils (n = 33) were trained on one of four versions of a Go-NoGo stimulus presentation rate discrimination task that included standard ("easy") or more difficult ("hard") auditory and visual stimuli. After 10 days of training, preoperative ABR and c+VEMP testing was followed by a surgical fenestration of the left superior semicircular canal. Animals with persistent circling or head tilt were excluded to minimize effects from acute vestibular injury. Testing recommenced at postoperative day 5 and continued through postoperative day 15 at which point final ABR and c+VEMP testing was carried out. Results Behavioral data (d-primes) were compared between preoperative performance (training day 8-10) and postoperative days 6-8 and 13-15. Behavioral performance was measured during the peak of SSCD induced ABR and c + VEMP impairment and the return towards baseline as the dehiscence began to resurface by osteoneogenesis. There were significant differences in behavioral performance (d-prime) and its behavioral components (Hits, Misses, False Alarms, and Correct Rejections). These changes were highly correlated with persistent deficits in c + VEMPs at the end of training (postoperative day 15). The controls demonstrated additional learning post procedure that was absent in the SSCD group. Conclusion These results suggest that aberrant asymmetric vestibular output results in decision-making impairments in these discrimination tasks and could be associated with the other cognitive impairments resulting from vestibular dysfunction.
Collapse
Affiliation(s)
- Todd M. Mowery
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
- Rutgers Brain Health Institute, New Brunswick, NJ, United States
| | - P. Ashley Wackym
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
- Rutgers Brain Health Institute, New Brunswick, NJ, United States
| | - Jacqueline Nacipucha
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Evelynne Dangcil
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Ryan D. Stadler
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Aaron Tucker
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Nicolas L. Carayannopoulos
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Mina A. Beshy
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Sean S. Hong
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Justin D. Yao
- Department of Otolaryngology – Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
- Rutgers Brain Health Institute, New Brunswick, NJ, United States
| |
Collapse
|
5
|
Paraouty N, Yao JD, Varnet L, Chou CN, Chung S, Sanes DH. Sensory cortex plasticity supports auditory social learning. Nat Commun 2023; 14:5828. [PMID: 37730696 PMCID: PMC10511464 DOI: 10.1038/s41467-023-41641-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
Social learning (SL) through experience with conspecifics can facilitate the acquisition of many behaviors. Thus, when Mongolian gerbils are exposed to a demonstrator performing an auditory discrimination task, their subsequent task acquisition is facilitated, even in the absence of visual cues. Here, we show that transient inactivation of auditory cortex (AC) during exposure caused a significant delay in task acquisition during the subsequent practice phase, suggesting that AC activity is necessary for SL. Moreover, social exposure induced an improvement in AC neuron sensitivity to auditory task cues. The magnitude of neural change during exposure correlated with task acquisition during practice. In contrast, exposure to only auditory task cues led to poorer neurometric and behavioral outcomes. Finally, social information during exposure was encoded in the AC of observer animals. Together, our results suggest that auditory SL is supported by AC neuron plasticity occurring during social exposure and prior to behavioral performance.
Collapse
Affiliation(s)
- Nihaad Paraouty
- Center for Neural Science New York University, New York, NY, 10003, USA.
| | - Justin D Yao
- Department of Otolaryngology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Léo Varnet
- Laboratoire des Systèmes Perceptifs, UMR 8248, Ecole Normale Supérieure, PSL University, Paris, 75005, France
| | - Chi-Ning Chou
- Center for Computational Neuroscience, Flatiron Institute, Simons Foundation, New York, NY, USA
- School of Engineering & Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - SueYeon Chung
- Center for Neural Science New York University, New York, NY, 10003, USA
- Center for Computational Neuroscience, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Dan H Sanes
- Center for Neural Science New York University, New York, NY, 10003, USA
- Department of Psychology, New York University, New York, NY, 10003, USA
- Department of Biology, New York University, New York, NY, 10003, USA
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, 10003, USA
| |
Collapse
|
6
|
Gay JD, Dangcil E, Nacipucha J, Botrous JE, Suresh N, Tucker A, Carayannopoulos NL, Khan MR, Meng R, Yao JD, Wackym PA, Mowery TM. An Animal Model of Neonatal Intensive Care Unit Exposure to Light and Sound in the Preterm Infant. Integr Comp Biol 2023; 63:585-596. [PMID: 37164937 PMCID: PMC10503467 DOI: 10.1093/icb/icad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023] Open
Abstract
According to the World Health Organization, ∼15 million children are born prematurely each year. Many of these infants end up spending days to weeks in a neonatal intensive care unit (NICU). Infants who are born prematurely are often exposed to noise and light levels that affect their auditory and visual development. Children often have long-term impairments in cognition, visuospatial processing, hearing, and language. We have developed a rodent model of NICU exposure to light and sound using the Mongolian gerbil (Meriones unguiculatus), which has a low-frequency human-like audiogram and is altricial. To simulate preterm infancy, the eyes and ears were opened prematurely, and animals were exposed to the NICU-like sensory environment throughout the gerbil's cortical critical period of auditory development. After the animals matured into adults, auditory perceptual testing was carried out followed by auditory brainstem response recordings and then histology to assess the white matter morphology of various brain regions. Compared to normal hearing control animals, NICU sensory-exposed animals had significant impairments in learning at later stages of training, increased auditory thresholds reflecting hearing loss, and smaller cerebellar white matter volumes. These have all been reported in longitudinal studies of preterm infants. These preliminary results suggest that this animal model could provide researchers with an ethical way to explore the effects of the sensory environment in the NICU on the preterm infant's brain development.
Collapse
Affiliation(s)
- Jennifer D Gay
- Department of Otolaryngology—Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA
- Rutgers Brain Health Institute, New Brunswick, NJ, USA
| | - Evelynne Dangcil
- Department of Otolaryngology—Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA
| | - Jacqueline Nacipucha
- Department of Otolaryngology—Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA
| | - Jonathon E Botrous
- Department of Otolaryngology—Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA
| | - Nikhil Suresh
- Department of Otolaryngology—Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA
| | - Aaron Tucker
- Department of Otolaryngology—Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA
| | - Nicolas L Carayannopoulos
- Department of Otolaryngology—Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA
| | - Muhammad R Khan
- Department of Otolaryngology—Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA
| | - Raphael Meng
- Department of Otolaryngology—Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA
| | - Justin D Yao
- Department of Otolaryngology—Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA
- Rutgers Brain Health Institute, New Brunswick, NJ, USA
| | - P Ashley Wackym
- Department of Otolaryngology—Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA
- Rutgers Brain Health Institute, New Brunswick, NJ, USA
| | - Todd M Mowery
- Department of Otolaryngology—Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA
- Rutgers Brain Health Institute, New Brunswick, NJ, USA
| |
Collapse
|
7
|
Zinnamon FA, Harrison FG, Wenas SS, Liu Q, Wang KH, Linden JF. Increased Central Auditory Gain and Decreased Parvalbumin-Positive Cortical Interneuron Density in the Df1/+ Mouse Model of Schizophrenia Correlate With Hearing Impairment. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:386-397. [PMID: 37519460 PMCID: PMC10382707 DOI: 10.1016/j.bpsgos.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022] Open
Abstract
Background Hearing impairment is a risk factor for schizophrenia. Patients with 22q11.2 deletion syndrome have a 25% to 30% risk of schizophrenia, and up to 60% also have varying degrees of hearing impairment, primarily from middle-ear inflammation. The Df1/+ mouse model of 22q11.2 deletion syndrome recapitulates many features of the human syndrome, including schizophrenia-relevant brain abnormalities and high interindividual variation in hearing ability. However, the relationship between brain abnormalities and hearing impairment in Df1/+ mice has not been examined. Methods We measured auditory brainstem responses, cortical auditory evoked potentials, and/or cortical parvalbumin-positive (PV+) interneuron density in over 70 adult mice (32 Df1/+, 39 wild-type). We also performed longitudinal auditory brainstem response measurements in an additional 20 animals (13 Df1/+, 7 wild-type) from 3 weeks of age. Results Electrophysiological markers of central auditory excitability were elevated in Df1/+ mice. PV+ interneurons, which are implicated in schizophrenia pathology, were reduced in density in the auditory cortex but not the secondary motor cortex. Both auditory brain abnormalities correlated with hearing impairment, which affected approximately 60% of adult Df1/+ mice and typically emerged before 6 weeks of age. Conclusions In the Df1/+ mouse model of 22q11.2 deletion syndrome, abnormalities in central auditory excitability and auditory cortical PV+ immunoreactivity correlate with hearing impairment. This is the first demonstration of cortical PV+ interneuron abnormalities correlating with hearing impairment in a mouse model of either schizophrenia or middle-ear inflammation.
Collapse
Affiliation(s)
- Fhatarah A. Zinnamon
- Ear Institute, University College London, London, United Kingdom
- Unit on Neural Circuits and Adaptive Behaviors, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Freya G. Harrison
- Ear Institute, University College London, London, United Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Sandra S. Wenas
- Ear Institute, University College London, London, United Kingdom
| | - Qing Liu
- Unit on Neural Circuits and Adaptive Behaviors, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Bethesda, Maryland
| | - Kuan Hong Wang
- Unit on Neural Circuits and Adaptive Behaviors, Clinical and Translational Neuroscience Branch, National Institute of Mental Health, Bethesda, Maryland
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, New York
| | - Jennifer F. Linden
- Ear Institute, University College London, London, United Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
8
|
Ye Y, Mattingly MM, Sunthimer MJ, Gay JD, Rosen MJ. Early-Life Stress Impairs Perception and Neural Encoding of Rapid Signals in the Auditory Pathway. J Neurosci 2023; 43:3232-3244. [PMID: 36973014 PMCID: PMC10162457 DOI: 10.1523/jneurosci.1787-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/24/2023] [Accepted: 03/03/2023] [Indexed: 03/29/2023] Open
Abstract
During developmental critical periods (CPs), early-life stress (ELS) induces cognitive deficits and alters neural circuitry in regions underlying learning, memory, and attention. Mechanisms underlying critical period plasticity are shared by sensory cortices and these higher neural regions, suggesting that sensory processing may also be vulnerable to ELS. In particular, the perception and auditory cortical (ACx) encoding of temporally-varying sounds both mature gradually, even into adolescence, providing an extended postnatal window of susceptibility. To examine the effects of ELS on temporal processing, we developed a model of ELS in the Mongolian gerbil, a well-established model for auditory processing. In both male and female animals, ELS induction impaired the behavioral detection of short gaps in sound, which are critical for speech perception. This was accompanied by reduced neural responses to gaps in auditory cortex, the auditory periphery, and auditory brainstem. ELS thus degrades the fidelity of sensory representations available to higher regions, and could contribute to well-known ELS-induced problems with cognition.SIGNIFICANCE STATEMENT In children and animal models, early-life stress (ELS) leads to deficits in cognition, including problems with learning, memory, and attention. Such problems could arise in part from a low-fidelity representation of sensory information available to higher-level neural regions. Here, we demonstrate that ELS degrades sensory responses to rapid variations in sound at multiple levels of the auditory pathway, and concurrently impairs perception of these rapidly-varying sounds. As these sound variations are intrinsic to speech, ELS may thus pose a challenge to communication and cognition through impaired sensory encoding.
Collapse
Affiliation(s)
- Yi Ye
- Hearing Research Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, 44272
- Brain Health Research Institute, Kent State University, Kent, Ohio, 44242
| | - Michelle M Mattingly
- Hearing Research Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, 44272
| | - Matthew J Sunthimer
- Hearing Research Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, 44272
| | - Jennifer D Gay
- Hearing Research Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, 44272
- Department of Otolaryngology, Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, 08901
| | - Merri J Rosen
- Hearing Research Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, 44272
- Brain Health Research Institute, Kent State University, Kent, Ohio, 44242
| |
Collapse
|
9
|
Yao JD, Zemlianova KO, Hocker DL, Savin C, Constantinople CM, Chung S, Sanes DH. Transformation of acoustic information to sensory decision variables in the parietal cortex. Proc Natl Acad Sci U S A 2023; 120:e2212120120. [PMID: 36598952 PMCID: PMC9926273 DOI: 10.1073/pnas.2212120120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/08/2022] [Indexed: 01/05/2023] Open
Abstract
The process by which sensory evidence contributes to perceptual choices requires an understanding of its transformation into decision variables. Here, we address this issue by evaluating the neural representation of acoustic information in the auditory cortex-recipient parietal cortex, while gerbils either performed a two-alternative forced-choice auditory discrimination task or while they passively listened to identical acoustic stimuli. During task engagement, stimulus identity decoding performance from simultaneously recorded parietal neurons significantly correlated with psychometric sensitivity. In contrast, decoding performance during passive listening was significantly reduced. Principal component and geometric analyses revealed the emergence of low-dimensional encoding of linearly separable manifolds with respect to stimulus identity and decision, but only during task engagement. These findings confirm that the parietal cortex mediates a transition of acoustic representations into decision-related variables. Finally, using a clustering analysis, we identified three functionally distinct subpopulations of neurons that each encoded task-relevant information during separate temporal segments of a trial. Taken together, our findings demonstrate how parietal cortex neurons integrate and transform encoded auditory information to guide sound-driven perceptual decisions.
Collapse
Affiliation(s)
- Justin D. Yao
- Center for Neural Science, New York University, New YorkNY 10003
- Department of Otolaryngology, Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ08901
- Brain Health Institute, Rutgers University, Piscataway, NJ08854
| | | | - David L. Hocker
- Center for Neural Science, New York University, New YorkNY 10003
| | - Cristina Savin
- Center for Neural Science, New York University, New YorkNY 10003
- Neuroscience Institute, New York University Langone School of Medicine, New York, NY10016
- Center for Data Science, New York University, New YorkNY 10011
| | - Christine M. Constantinople
- Center for Neural Science, New York University, New YorkNY 10003
- Neuroscience Institute, New York University Langone School of Medicine, New York, NY10016
| | - SueYeon Chung
- Center for Neural Science, New York University, New YorkNY 10003
- Flatiron Institute, Simons Foundation, New YorkNY 10010
| | - Dan H. Sanes
- Center for Neural Science, New York University, New YorkNY 10003
- Neuroscience Institute, New York University Langone School of Medicine, New York, NY10016
- Department of Psychology, New York University, New YorkNY 10003
- Department of Biology, New York University, New YorkNY 10003
| |
Collapse
|
10
|
Masri S, Fair R, Mowery TM, Sanes DH. Developmental hearing loss-induced perceptual deficits are rescued by cortical expression of GABA B receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523440. [PMID: 36711464 PMCID: PMC9882079 DOI: 10.1101/2023.01.10.523440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Even transient periods of developmental hearing loss during the developmental critical period have been linked to long-lasting deficits in auditory perception, including temporal and spectral processing, which correlate with speech perception and educational attainment. In gerbils, hearing loss-induced perceptual deficits are correlated with a reduction of both ionotropic GABAA and metabotropic GABAB receptor-mediated synaptic inhibition in auditory cortex, but most research on critical period plasticity has focused on GABAA receptors. We developed viral vectors to express both endogenous GABAA or GABAB receptor subunits in auditory cortex and tested their capacity to restore perception of temporal and spectral auditory cues following critical period hearing loss in the Mongolian gerbil. HL significantly impaired perception of both temporal and spectral auditory cues. While both vectors similarly increased IPSCs in auditory cortex, only overexpression of GABAB receptors improved perceptual thresholds after HL to be similar to those of animals without developmental hearing loss. These findings identify the GABAB receptor as an important regulator of sensory perception in cortex and point to potential therapeutic targets for developmental sensory disorders.
Collapse
Affiliation(s)
- Samer Masri
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003
| | - Regan Fair
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003
| | - Todd M. Mowery
- Brain Health Institute & Department of Otolaryngology, Rutgers University
| | - Dan H. Sanes
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003
- Department of Psychology, New York University
- Department of Biology, New York University
- Neuroscience Institute, New York University Langone Medical Center
| |
Collapse
|
11
|
Jamal A, Alsabea A, Tarakmeh M. Effect of Ear Infections on Hearing Ability: A Narrative Review on the Complications of Otitis Media. Cureus 2022; 14:e27400. [PMID: 36046317 PMCID: PMC9419542 DOI: 10.7759/cureus.27400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 11/05/2022] Open
Abstract
Otitis media (OM) is an infection that occurs in the middle ear and can affect the structures around the ear, as well as the auditory system. It is one of the most frequent diseases affecting young children each year, especially those aged around six years, due to the anatomical structure and developing immune system. Although some cases of OM resolve spontaneously, children often need medical care since difficulties persist with such infections. The incidence of OM is higher among children than adults, and therefore, their speaking, hearing, and learning capabilities and general development are impaired by recurring middle ear infections. The literature over the last 40 years has documented the impact of early auditory deprivation produced by early OM with effusion (OME) on central auditory processing (CAP). This study aimed to review the impact of acute ear infections on hearing capacity, assess the complications of OM, and document the scientific evidence around the implications of early OME-induced hearing loss in children. Studies have reported the association between hearing loss owing to early OME and alterations in CAP in both children and adolescents. The auditory foundation enables hearing capacity, but this is continually depleted. Therefore, the use of strong antibiotics, sound amplification, hearing rehabilitation, and ear surgery in children must be improved.
Collapse
Affiliation(s)
| | - Abdulla Alsabea
- Cardiology, Mohammed Bin Khalifa Bin Salman Al Khalifa Specialist Cardiac Centre, Awali, BHR
| | | |
Collapse
|
12
|
Anbuhl KL, Yao JD, Hotz RA, Mowery TM, Sanes DH. Auditory processing remains sensitive to environmental experience during adolescence in a rodent model. Nat Commun 2022; 13:2872. [PMID: 35610222 PMCID: PMC9130260 DOI: 10.1038/s41467-022-30455-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/02/2022] [Indexed: 11/09/2022] Open
Abstract
Elevated neural plasticity during development contributes to dramatic improvements in perceptual, motor, and cognitive skills. However, malleable neural circuits are vulnerable to environmental influences that may disrupt behavioral maturation. While these risks are well-established prior to sexual maturity (i.e., critical periods), the degree of neural vulnerability during adolescence remains uncertain. Here, we induce transient hearing loss (HL) spanning adolescence in gerbils, and ask whether behavioral and neural maturation are disrupted. We find that adolescent HL causes a significant perceptual deficit that can be attributed to degraded auditory cortex processing, as assessed with wireless single neuron recordings and within-session population-level analyses. Finally, auditory cortex brain slices from adolescent HL animals reveal synaptic deficits that are distinct from those typically observed after critical period deprivation. Taken together, these results show that diminished adolescent sensory experience can cause long-lasting behavioral deficits that originate, in part, from a dysfunctional cortical circuit.
Collapse
Affiliation(s)
- Kelsey L Anbuhl
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA.
| | - Justin D Yao
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA
| | - Robert A Hotz
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA
| | - Todd M Mowery
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA
- Department of Otolaryngology, Rutgers University, New Brunswick, NJ, USA
| | - Dan H Sanes
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA.
- Department of Psychology, New York University, New York, NY, USA.
- Department of Biology, New York University, New York, NY, USA.
- Neuroscience Institute at NYU Langone School of Medicine, New York, NY, USA.
| |
Collapse
|
13
|
Memory Specific to Temporal Features of Sound Is Formed by Cue-Selective Enhancements in Temporal Coding Enabled by Inhibition of an Epigenetic Regulator. J Neurosci 2021; 41:9192-9209. [PMID: 34544835 DOI: 10.1523/jneurosci.0691-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/23/2021] [Accepted: 08/18/2021] [Indexed: 11/21/2022] Open
Abstract
Recent investigation of memory-related functions in the auditory system have capitalized on the use of memory-modulating molecules to probe the relationship between memory and substrates of memory in auditory system coding. For example, epigenetic mechanisms, which regulate gene expression necessary for memory consolidation, are powerful modulators of learning-induced neuroplasticity and long-term memory (LTM) formation. Inhibition of the epigenetic regulator histone deacetylase 3 (HDAC3) promotes LTM, which is highly specific for spectral features of sound. The present work demonstrates for the first time that HDAC3 inhibition also enables memory for temporal features of sound. Adult male rats trained in an amplitude modulation (AM) rate discrimination task and treated with a selective inhibitor of HDAC3 formed memory that was highly specific to the AM rate paired with reward. Sound-specific memory revealed behaviorally was associated with a signal-specific enhancement in temporal coding in the auditory system; stronger phase locking that was specific to the rewarded AM rate was revealed in both the surface-recorded frequency following response and auditory cortical multiunit activity in rats treated with the HDAC3 inhibitor. Furthermore, HDAC3 inhibition increased trial-to-trial cortical response consistency (relative to naive and trained vehicle-treated rats), which generalized across different AM rates. Stronger signal-specific phase locking correlated with individual behavioral differences in memory specificity for the AM signal. These findings support that epigenetic mechanisms regulate activity-dependent processes that enhance discriminability of sensory cues encoded into LTM in both spectral and temporal domains, which may be important for remembering spectrotemporal features of sounds, for example, as in human voices and speech.SIGNIFICANCE STATEMENT Epigenetic mechanisms have recently been implicated in memory and information processing. Here, we use a pharmacological inhibitor of HDAC3 in a sensory model of learning to reveal the ability of HDAC3 to enable precise memory for amplitude-modulated sound cues. In so doing, we uncover neural substrates for memory's specificity for temporal sound cues. Memory specificity was supported by auditory cortical changes in temporal coding, including greater response consistency and stronger phase locking. HDAC3 appears to regulate effects across domains that determine specific cue saliency for behavior. Thus, epigenetic players may gate how sensory information is stored in long-term memory and can be leveraged to reveal the neural substrates of sensory details stored in memory.
Collapse
|
14
|
Downer JD, Verhein JR, Rapone BC, O'Connor KN, Sutter ML. An Emergent Population Code in Primary Auditory Cortex Supports Selective Attention to Spectral and Temporal Sound Features. J Neurosci 2021; 41:7561-7577. [PMID: 34210783 PMCID: PMC8425978 DOI: 10.1523/jneurosci.0693-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/19/2021] [Accepted: 05/28/2021] [Indexed: 11/21/2022] Open
Abstract
Textbook descriptions of primary sensory cortex (PSC) revolve around single neurons' representation of low-dimensional sensory features, such as visual object orientation in primary visual cortex (V1), location of somatic touch in primary somatosensory cortex (S1), and sound frequency in primary auditory cortex (A1). Typically, studies of PSC measure neurons' responses along few (one or two) stimulus and/or behavioral dimensions. However, real-world stimuli usually vary along many feature dimensions and behavioral demands change constantly. In order to illuminate how A1 supports flexible perception in rich acoustic environments, we recorded from A1 neurons while rhesus macaques (one male, one female) performed a feature-selective attention task. We presented sounds that varied along spectral and temporal feature dimensions (carrier bandwidth and temporal envelope, respectively). Within a block, subjects attended to one feature of the sound in a selective change detection task. We found that single neurons tend to be high-dimensional, in that they exhibit substantial mixed selectivity for both sound features, as well as task context. We found no overall enhancement of single-neuron coding of the attended feature, as attention could either diminish or enhance this coding. However, a population-level analysis reveals that ensembles of neurons exhibit enhanced encoding of attended sound features, and this population code tracks subjects' performance. Importantly, surrogate neural populations with intact single-neuron tuning but shuffled higher-order correlations among neurons fail to yield attention- related effects observed in the intact data. These results suggest that an emergent population code not measurable at the single-neuron level might constitute the functional unit of sensory representation in PSC.SIGNIFICANCE STATEMENT The ability to adapt to a dynamic sensory environment promotes a range of important natural behaviors. We recorded from single neurons in monkey primary auditory cortex (A1), while subjects attended to either the spectral or temporal features of complex sounds. Surprisingly, we found no average increase in responsiveness to, or encoding of, the attended feature across single neurons. However, when we pooled the activity of the sampled neurons via targeted dimensionality reduction (TDR), we found enhanced population-level representation of the attended feature and suppression of the distractor feature. This dissociation of the effects of attention at the level of single neurons versus the population highlights the synergistic nature of cortical sound encoding and enriches our understanding of sensory cortical function.
Collapse
Affiliation(s)
- Joshua D Downer
- Center for Neuroscience, University of California, Davis, Davis, California 95618
- Department of Otolaryngology, Head and Neck Surgery, University of California, San Francisco, California 94143
| | - Jessica R Verhein
- Center for Neuroscience, University of California, Davis, Davis, California 95618
- School of Medicine, Stanford University, Stanford, California 94305
| | - Brittany C Rapone
- Center for Neuroscience, University of California, Davis, Davis, California 95618
- School of Social Sciences, Oxford Brookes University, Oxford, OX4 0BP, United Kingdom
| | - Kevin N O'Connor
- Center for Neuroscience, University of California, Davis, Davis, California 95618
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, California 95618
| | - Mitchell L Sutter
- Center for Neuroscience, University of California, Davis, Davis, California 95618
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, California 95618
| |
Collapse
|
15
|
Manno FAM, An Z, Kumar R, Wu EX, He J, Feng Y, Lau C. Structural Alterations in a Rat Model of Short-Term Conductive Hearing Loss Are Associated With Reduced Resting State Functional Connectivity. Front Syst Neurosci 2021; 15:655172. [PMID: 34456689 PMCID: PMC8397539 DOI: 10.3389/fnsys.2021.655172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Conductive hearing loss (CHL) results in attenuation of air conducted sound reaching the inner ear. How a change in air conducted sound alters the auditory system resulting in cortical alterations is not well understood. Here, we have assessed structural and functional magnetic resonance imaging (MRI) in an adult (P60) rat model of short-term conductive hearing loss (1 week). Diffusion tensor imaging (DTI) revealed fractional anisotropy (FA) and axial diffusivity alterations after hearing loss that circumscribed the auditory cortex (AC). Tractography found the lateral lemniscus tract leading to the bilateral inferior colliculus (IC) was reduced. For baseline comparison, DTI and tractography alterations were not found for the somatosensory cortex. To determine functional connectivity changes due to hearing loss, seed-based analysis (SBA) and independent component analysis (ICA) were performed. Short term conductive hearing loss altered functional connectivity in the AC and IC, but not the somatosensory cortex. The results present an exploratory neuroimaging assessment of structural alterations coupled to a change in functional connectivity after conductive hearing loss. The results and implications for humans consist of structural-functional brain alterations following short term hearing loss in adults.
Collapse
Affiliation(s)
| | - Ziqi An
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Rachit Kumar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Medical Scientist Training Program, University of Pennsylvania, Philadelphia, PA, United States
| | - Ed X. Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, SAR China
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, SAR China
| | - Jufang He
- Department of Neuroscience, City University of Hong Kong, Hong Kong, SAR China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, SAR China
| | - Yanqiu Feng
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| | - Condon Lau
- Department of Physics, City University of Hong Kong, Hong Kong, SAR China
| |
Collapse
|
16
|
Downer JD, Bigelow J, Runfeldt MJ, Malone BJ. Temporally precise population coding of dynamic sounds by auditory cortex. J Neurophysiol 2021; 126:148-169. [PMID: 34077273 DOI: 10.1152/jn.00709.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fluctuations in the amplitude envelope of complex sounds provide critical cues for hearing, particularly for speech and animal vocalizations. Responses to amplitude modulation (AM) in the ascending auditory pathway have chiefly been described for single neurons. How neural populations might collectively encode and represent information about AM remains poorly characterized, even in primary auditory cortex (A1). We modeled population responses to AM based on data recorded from A1 neurons in awake squirrel monkeys and evaluated how accurately single trial responses to modulation frequencies from 4 to 512 Hz could be decoded as functions of population size, composition, and correlation structure. We found that a population-based decoding model that simulated convergent, equally weighted inputs was highly accurate and remarkably robust to the inclusion of neurons that were individually poor decoders. By contrast, average rate codes based on convergence performed poorly; effective decoding using average rates was only possible when the responses of individual neurons were segregated, as in classical population decoding models using labeled lines. The relative effectiveness of dynamic rate coding in auditory cortex was explained by shared modulation phase preferences among cortical neurons, despite heterogeneity in rate-based modulation frequency tuning. Our results indicate significant population-based synchrony in primary auditory cortex and suggest that robust population coding of the sound envelope information present in animal vocalizations and speech can be reliably achieved even with indiscriminate pooling of cortical responses. These findings highlight the importance of firing rate dynamics in population-based sensory coding.NEW & NOTEWORTHY Fundamental questions remain about population coding in primary auditory cortex (A1). In particular, issues of spike timing in models of neural populations have been largely ignored. We find that spike-timing in response to sound envelope fluctuations is highly similar across neuron populations in A1. This property of shared envelope phase preference allows for a simple population model involving unweighted convergence of neuronal responses to classify amplitude modulation frequencies with high accuracy.
Collapse
Affiliation(s)
- Joshua D Downer
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California
| | - James Bigelow
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California
| | - Melissa J Runfeldt
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California
| | - Brian J Malone
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, California.,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, California
| |
Collapse
|
17
|
Yao JD, Sanes DH. Temporal Encoding is Required for Categorization, But Not Discrimination. Cereb Cortex 2021; 31:2886-2897. [PMID: 33429423 DOI: 10.1093/cercor/bhaa396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 11/14/2022] Open
Abstract
Core auditory cortex (AC) neurons encode slow fluctuations of acoustic stimuli with temporally patterned activity. However, whether temporal encoding is necessary to explain auditory perceptual skills remains uncertain. Here, we recorded from gerbil AC neurons while they discriminated between a 4-Hz amplitude modulation (AM) broadband noise and AM rates >4 Hz. We found a proportion of neurons possessed neural thresholds based on spike pattern or spike count that were better than the recorded session's behavioral threshold, suggesting that spike count could provide sufficient information for this perceptual task. A population decoder that relied on temporal information outperformed a decoder that relied on spike count alone, but the spike count decoder still remained sufficient to explain average behavioral performance. This leaves open the possibility that more demanding perceptual judgments require temporal information. Thus, we asked whether accurate classification of different AM rates between 4 and 12 Hz required the information contained in AC temporal discharge patterns. Indeed, accurate classification of these AM stimuli depended on the inclusion of temporal information rather than spike count alone. Overall, our results compare two different representations of time-varying acoustic features that can be accessed by downstream circuits required for perceptual judgments.
Collapse
Affiliation(s)
- Justin D Yao
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Dan H Sanes
- Center for Neural Science, New York University, New York, NY 10003, USA.,Department of Psychology, New York University, New York, NY 10003, USA.,Department of Biology, New York University, New York, NY 10003, USA.,Neuroscience Institute, NYU Langone Medical Center, New York University, New York, NY 10016, USA
| |
Collapse
|
18
|
Conductive hearing loss during development does not appreciably alter the sharpness of cochlear tuning. Sci Rep 2021; 11:3955. [PMID: 33597563 PMCID: PMC7890061 DOI: 10.1038/s41598-021-83115-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/22/2021] [Indexed: 02/02/2023] Open
Abstract
An increasing number of studies show that listeners often have difficulty hearing in situations with background noise, despite normal tuning curves in quiet. One potential source of this difficulty could be sensorineural changes in the auditory periphery (the ear). Signal in noise detection deficits also arise in animals raised with developmental conductive hearing loss (CHL), a manipulation that induces acoustic attenuation to model how sound deprivation changes the central auditory system. This model attributes perceptual deficits to central changes by assuming that CHL does not affect sensorineural elements in the periphery that could raise masked thresholds. However, because of efferent feedback, altering the auditory system could affect cochlear elements. Indeed, recent studies show that adult-onset CHL can cause cochlear synapse loss, potentially calling into question the assumption of an intact periphery in early-onset CHL. To resolve this issue, we tested the long-term peripheral effects of CHL via developmental bilateral malleus displacement. Using forward masking tuning curves, we compared peripheral tuning in animals raised with CHL vs age-matched controls. Using compound action potential measurements from the round window, we assessed inner hair cell synapse integrity. Results indicate that developmental CHL can cause minor synaptopathy. However, developmental CHL does not appreciably alter peripheral frequency tuning.
Collapse
|
19
|
Uhler K, Hunter S, Gilley PM. Mismatched response predicts behavioral speech discrimination outcomes in infants with hearing loss and normal hearing. INFANCY 2021; 26:327-348. [PMID: 33481354 DOI: 10.1111/infa.12386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 11/20/2020] [Accepted: 12/17/2020] [Indexed: 01/22/2023]
Abstract
Children with hearing loss (HL) remain at risk for poorer language abilities than normal hearing (NH) children despite targeted interventions; reasons for these differences remain unclear. In NH children, research suggests speech discrimination is related to language outcomes, yet we know little about it in children with HL under the age of 2 years. We utilized a vowel contrast, /a-i/, and a consonant-vowel contrast, /ba-da/, to examine speech discrimination in 47 NH infants and 40 infants with HL. At Mean age =3 months, EEG recorded from 11 scalp electrodes was used to compute the time-frequency mismatched response (TF-MMRSE ) to the contrasts; at Mean age =9 months, behavioral discrimination was assessed using a head turn task. A machine learning (ML) classifier was used to predict behavioral discrimination when given an arbitrary TF-MMRSE as input, achieving accuracies of 73% for exact classification and 92% for classification within a distance of one class. Linear fits revealed a robust relationship regardless of hearing status or speech contrast. TF-MMRSE responses in the delta (1-3.5 Hz), theta (3.5-8 Hz), and alpha (8-12 Hz) bands explained the most variance in behavioral task performance. Our findings demonstrate the feasibility of using TF-MMRSE to predict later behavioral speech discrimination.
Collapse
Affiliation(s)
- Kristin Uhler
- Children's Hospital Colorado, University of Colorado, Anschutz School of Medicine, Aurora, CO, USA
| | - Sharon Hunter
- University of Colorado, Anschutz School of Medicine, Aurora, CO, USA
| | - Phillip M Gilley
- Institute of Cognitive Science, University of Colorado, Boulder, Boulder, CO, USA
| |
Collapse
|
20
|
Yao JD, Gimoto J, Constantinople CM, Sanes DH. Parietal Cortex Is Required for the Integration of Acoustic Evidence. Curr Biol 2020; 30:3293-3303.e4. [PMID: 32619478 DOI: 10.1016/j.cub.2020.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/12/2020] [Accepted: 06/04/2020] [Indexed: 01/31/2023]
Abstract
Sensory-driven decisions are formed by accumulating information over time. Although parietal cortex activity is thought to represent accumulated evidence for sensory-based decisions, recent perturbation studies in rodents and non-human primates have challenged the hypothesis that these representations actually influence behavior. Here, we asked whether the parietal cortex integrates acoustic features from auditory cortical inputs during a perceptual decision-making task. If so, we predicted that selective inactivation of this projection should impair subjects' ability to accumulate sensory evidence. We trained gerbils to perform an auditory discrimination task and obtained measures of integration time as a readout of evidence accumulation capability. Minimum integration time was calculated behaviorally as the shortest stimulus duration for which subjects could discriminate the acoustic signals. Direct pharmacological inactivation of parietal cortex increased minimum integration times, suggesting its role in the behavior. To determine the specific impact of sensory evidence, we chemogenetically inactivated the excitatory projections from auditory cortex to parietal cortex and found this was sufficient to increase minimum behavioral integration times. Our signal-detection-theory-based model accurately replicated behavioral outcomes and indicated that the deficits in task performance were plausibly explained by elevated sensory noise. Together, our findings provide causal evidence that parietal cortex plays a role in the network that integrates auditory features for perceptual judgments.
Collapse
Affiliation(s)
- Justin D Yao
- Center for Neural Science, New York University, New York, NY 10003, USA.
| | - Justin Gimoto
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Christine M Constantinople
- Center for Neural Science, New York University, New York, NY 10003, USA; Neuroscience Institute, NYU Langone Medical Center, New York University, New York, NY 10016, USA
| | - Dan H Sanes
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Psychology, New York University, New York, NY 10003, USA; Department of Biology, New York University, New York, NY 10003, USA; Neuroscience Institute, NYU Langone Medical Center, New York University, New York, NY 10016, USA
| |
Collapse
|
21
|
Borges LR, Sanfins MD, Donadon C, Tomlin D, Colella-Santos MF. Long-term effect of middle ear disease on temporal processing and P300 in two different populations of children. PLoS One 2020; 15:e0232839. [PMID: 32384118 PMCID: PMC7209102 DOI: 10.1371/journal.pone.0232839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/22/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND/OBJECTIVE The effects of otitis media on the function of the central auditory nervous system in different populations is unknown. Understanding how the history of otitis media affects children from different nations will guide health professionals worldwide on the importance of adequate auditory stimulus in childhood. For this reason, the aim of the present study was to investigate the long-term auditory effects of middle ear disease on temporal processing and P300 in two different populations of children: Australian and Brazilian. METHODS Temporal processing tests (Frequency Pattern Tests-FPT and Gaps in noise-GIN) and P300 were measured in 68 Brazilian and Australian children, aged between 8 to 14 years. The Brazilian otitis media group (BrOM) and Australian otitis media group (AusOM) consisted of 20 children each who had a documented history of otitis media. Control groups of 14 children (BrControl and AusControl) were also recruited from each country, all with no documented history of otitis media. RESULTS The BrOM group showed significantly poorer performance (p<0.001) for FPT and the GIN compared to BrControl. The P300 response showed significantly longer mean latencies (p = 0.02) compared to BrControls. The AusOM group also showed significant delayed latency of P300 (p = 0.04) compared to the AusControl. The FPT showed significantly poorer performance (p = 0.04) compared to AusControls. The two otitis media groups showed no significant differences between each other on P300. Significant differences were seen however in temporal processing tests performance between the two cohorts for the otitis media groups. The BrOM group had significantly poorer responses (p<0.001) for FPT and GIN compared to the AusOM group. CONCLUSIONS These findings support that although differences exist between BrOM and AusOM groups, otitis media can be demonstrated to affect the underlying mechanisms of the P300 measures and behavioral auditory responses in two different populations of children.
Collapse
Affiliation(s)
- Leticia Reis Borges
- Department of Pediatrics, State University of Campinas, Campinas, São Paulo, Brazil
| | | | - Caroline Donadon
- Department of Pediatrics, State University of Campinas, Campinas, São Paulo, Brazil
| | - Dani Tomlin
- Department of Audiology and Speech Pathology, the University of Melbourne, Melbourne, Australia
| | | |
Collapse
|
22
|
Preserving Inhibition during Developmental Hearing Loss Rescues Auditory Learning and Perception. J Neurosci 2019; 39:8347-8361. [PMID: 31451577 DOI: 10.1523/jneurosci.0749-19.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
Transient periods of childhood hearing loss can induce deficits in aural communication that persist long after auditory thresholds have returned to normal, reflecting long-lasting impairments to the auditory CNS. Here, we asked whether these behavioral deficits could be reversed by treating one of the central impairments: reduction of inhibitory strength. Male and female gerbils received bilateral earplugs to induce a mild, reversible hearing loss during the critical period of auditory cortex development. After earplug removal and the return of normal auditory thresholds, we trained and tested animals on an amplitude modulation detection task. Transient developmental hearing loss induced both learning and perceptual deficits, which were entirely corrected by treatment with a selective GABA reuptake inhibitor (SGRI). To explore the mechanistic basis for these behavioral findings, we recorded the amplitudes of GABAA and GABAB receptor-mediated IPSPs in auditory cortical and thalamic brain slices. In hearing loss-reared animals, cortical IPSP amplitudes were significantly reduced within a few days of hearing loss onset, and this reduction persisted into adulthood. SGRI treatment during the critical period prevented the hearing loss-induced reduction of IPSP amplitudes; but when administered after the critical period, it only restored GABAB receptor-mediated IPSP amplitudes. These effects were driven, in part, by the ability of SGRI to upregulate α1 subunit-dependent GABAA responses. Similarly, SGRI prevented the hearing loss-induced reduction of GABAA and GABAB IPSPs in the ventral nucleus of the medial geniculate body. Thus, by maintaining, or subsequently rescuing, GABAergic transmission in the central auditory thalamocortical pathway, some perceptual and cognitive deficits induced by developmental hearing loss can be prevented.SIGNIFICANCE STATEMENT Even a temporary period of childhood hearing loss can induce communication deficits that persist long after auditory thresholds return to normal. These deficits may arise from long-lasting central impairments, including the loss of synaptic inhibition. Here, we asked whether hearing loss-induced behavioral deficits could be reversed by reinstating normal inhibitory strength. Gerbils reared with transient hearing loss displayed both learning and perceptual deficits. However, when animals were treated with a selective GABA reuptake inhibitor during or after hearing loss, behavioral deficits were entirely corrected. This behavioral recovery was correlated with the return of normal thalamic and cortical inhibitory function. Thus, some perceptual and cognitive deficits induced by developmental hearing loss were prevented with a treatment that rescues a central synaptic property.
Collapse
|
23
|
Wang X, Liu J, Zhang J. Chronic Unilateral Hearing Loss Disrupts Neural Tuning to Sound-Source Azimuth in the Rat Primary Auditory Cortex. Front Neurosci 2019; 13:477. [PMID: 31133797 PMCID: PMC6524417 DOI: 10.3389/fnins.2019.00477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/26/2019] [Indexed: 02/05/2023] Open
Abstract
Accurate sound localization requires normal binaural input and precise auditory neuronal representation of sound spatial locations. Previous studies showed that unilateral hearing loss profoundly impaired the sound localization abilities. However, the underlying neural mechanism is not fully understood. Here, we investigated how chronic unilateral conductive hearing loss (UCHL) affected the neural tuning to sound source azimuth in the primary auditory cortex (AI). The UCHL was manipulated by the removal of tympanic membrane and malleus in the right ear of young (P14) rats and adult (P57) rats. We recorded the azimuth tuning of neurons in the left AI contralateral to the operated ear in the two groups of rats that experienced 2 months of UCHL, and in the left AI of age-matched control rats. We found that AI neurons in control rats showed predominant preference to sound from contralateral azimuths. However, UCHL weakened the cortical neuronal representation of contralateral azimuths on the operated ear side and strengthened the cortical neuronal representation of ipsilateral azimuths on the intact ear side. This effect was stronger in rats with UCHL at young age than in rats with UCHL in adulthood. Moreover, UCHL degraded the azimuth selectivity and azimuth sensitivity of AI neurons, and this effect was stronger in rats with UCHL in adulthood than in rats with UCHL at young age. These findings highlight a remarkable age-related experience-dependent plasticity of neural tuning to sound source azimuth in AI, and imply a neural mechanism for the impacts of chronic UCHL on sound localization abilities.
Collapse
Affiliation(s)
- Xiuwen Wang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jing Liu
- Key Laboratory of Brain Functional Genomics, Ministry of Education, NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiping Zhang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
24
|
Colella-Santos MF, Donadon C, Sanfins MD, Borges LR. Otitis Media: Long-Term Effect on Central Auditory Nervous System. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8930904. [PMID: 31032365 PMCID: PMC6458954 DOI: 10.1155/2019/8930904] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/13/2019] [Accepted: 03/18/2019] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To analyze the central auditory nervous system function through behavioral and electrophysiological tests in children with a history of otitis media and subsequent bilateral tubes placement surgery. METHODS The participants were divided into two groups between eight and 14 years old: control group (CG) consisted of 40 children with no history of otitis media; experimental group (EG) consisted of 50 children with documented history of otitis media and undertook a surgery for bilateral tubes placement. All children completed audiological evaluation (audiometry, speech audiometry, and immittance audiometry), behavioral evaluation (tests: dichotic digits, synthetic sentence identification with ipsilateral competing message, gaps-in-noise, frequency pattern), and electrophysiological evaluation (Auditory Brainstem Response, ABR, Frequency Following Response, FFR (verbal), and Long Latency Auditory Evoked Potential, LLAEP). RESULTS The EG group showed significantly poorer performance (p<0.001) than the CG for all auditory abilities studied. The results revealed significant latency delays and reduced amplitude (p<0.05) of waves III and V for ABR; significant latency delay was seen of potentials P2, N2, and P300 for LLAEP; significant latency delays and reduced amplitude (p<0.05) were observed for FFR in children with a history of otitis media. CONCLUSION The results demonstrate negative effect of otitis media in the auditory abilities and electrophysiological measures in children with a history of otitis media.
Collapse
Affiliation(s)
- Maria Francisca Colella-Santos
- Department of Human Development and Rehabilitation (DDHR), School of Medical Sciences, State University of Campinas (FCM/UNICAMP), Rua Tessália Vieira de Camargo 126, Cidade Universitária “Zeferino Vaz”, 13083-887 Campinas, SP, Brazil
| | - Caroline Donadon
- Child and Adolescent Health Program, Center for Investigation in Pediatrics, School of Medical Sciences, State University of Campinas (FCM/UNICAMP), Tessália Vieira de Camargo 126, 13083-887 Campinas, SP, Brazil
| | - Milaine Dominici Sanfins
- Child and Adolescent Health Program, Center for Investigation in Pediatrics, School of Medical Sciences, State University of Campinas (FCM/UNICAMP), Tessália Vieira de Camargo 126, 13083-887 Campinas, SP, Brazil
| | - Leticia Reis Borges
- Child and Adolescent Health Program, Center for Investigation in Pediatrics, School of Medical Sciences, State University of Campinas (FCM/UNICAMP), Tessália Vieira de Camargo 126, 13083-887 Campinas, SP, Brazil
| |
Collapse
|