1
|
Tenger-Trolander A, Amiri E, Gantz V, Kwan CW, Sanders SA, Schmidt-Ott U. Genomic Resources for the Scuttle Fly Megaselia abdita: A Model Organism for Comparative Developmental Studies in Flies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.631075. [PMID: 39868096 PMCID: PMC11761607 DOI: 10.1101/2025.01.13.631075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The order Diptera (true flies) holds promise as a model taxon in evolutionary developmental biology due to the inclusion of the model organism, Drosophila melanogaster, and the ability to cost-effectively rear many species in laboratories. One of them, the scuttle fly Megaselia abdita (Phoridae) has been used in evolutionary developmental biology for 30 years and is an excellent phylogenetic intermediate between fruit flies and mosquitoes but remains underdeveloped in genomic resources. Here, we present a de novo chromosome-level assembly and annotation of M. abdita and transcriptomes of 9 embryonic and 4 postembryonic stages. We also compare 9 stage-matched embryonic transcriptomes between M. abdita and D. melanogaster. Our analysis of these resources reveals extensive chromosomal synteny with D. melanogaster, 28 orphan genes with embryo-specific expression including a novel F-box LRR gene in M. abdita, and conserved and diverged features of gene expression dynamics between M. abdita and D. melanogaster. Collectively, our results provide a new reference for studying the diversification of developmental processes in flies.
Collapse
Affiliation(s)
- Ayse Tenger-Trolander
- University of Chicago, Dept. of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| | - Ezra Amiri
- University of Chicago, Dept. of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| | - Valentino Gantz
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
- Pattern Biosciences, Inc. 681 Gateway Blvd, South San Francisco, CA 94080
| | - Chun Wai Kwan
- University of Chicago, Dept. of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
- Laboratory for Epithelial Morphogenesis, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Sheri A Sanders
- Notre Dame University, 252 Galvin Life Science Center/Freimann Life Science Center, Notre Dame, Indiana 46556, USA
| | - Urs Schmidt-Ott
- University of Chicago, Dept. of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| |
Collapse
|
2
|
Amiri EE, Tenger-Trolander A, Li M, Thomas Julian A, Kasan K, Sanders SA, Blythe S, Schmidt-Ott U. Conservation of symmetry breaking at the level of chromatin accessibility between fly species with unrelated anterior determinants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632851. [PMID: 39868093 PMCID: PMC11760685 DOI: 10.1101/2025.01.13.632851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Establishing the anterior-posterior body axis is a fundamental process during embryogenesis, and the fruit fly, Drosophila melanogaster, provides one of the best-known case studies of this process. In Drosophila, localized mRNA of bicoid serves as anterior determinant (AD). Bicoid engages in a concentration-dependent competition with nucleosomes and initiates symmetry-breaking along the AP axis by promoting chromatin accessibility at the loci of transcription factor (TF) genes that are expressed in the anterior of the embryo. However, ADs of other fly species are unrelated and structurally distinct, and little is known about how they function. We addressed this question in the moth fly, Clogmia albipunctata, in which a maternally expressed transcript isoform of the pair-rule segmentation gene odd-paired is localized in the anterior egg and has been co-opted as AD. We provide a de novo assembly and annotation of the Clogmia genome and describe how knockdown of zelda and maternal odd-paired transcript affect chromatin accessibility and expression of TF-encoding loci. The results of these experiments suggest direct roles of Cal-Zld in opening and closing chromatin during nuclear cleavage cycles and show that Clogmia's maternal odd-paired activity promotes chromatin accessibility and anterior expression during the early phase of zygotic genome activation at Clogmia's homeobrain and sloppy-paired loci. We conclude that unrelated dipteran ADs initiate anterior-posterior axis-specification at the level of enhancer accessibility and that homeobrain and sloppy-paired homologs may serve a more widely conserved role in the initiation of anterior pattern formation given their early anterior expression and function in head development in other insects.
Collapse
Affiliation(s)
- Ezra E. Amiri
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| | - Ayse Tenger-Trolander
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| | - Muzi Li
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| | - Alexander Thomas Julian
- Illinois Institute of Technology, Department of Biology, 3105 South Dearborn Street, Chicago, Illinois 60616, USA
| | - Koray Kasan
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| | - Sheri A. Sanders
- Notre Dame University, 252 Galvin Life Science Center/Freimann Life Science Center, Notre Dame, Indiana 46556, USA
| | - Shelby Blythe
- Northwestern University, Department of Molecular Biosciences, 2205 Tech Drive, Evanston, Illinois 60208, USA
- Northwestern University and The University of Chicago, National Institute for Theory and Mathematics in Biology, 875 North Michigan Avenue, Suite 3500, Chicago, Illinois 60611, USA
| | - Urs Schmidt-Ott
- The University of Chicago, Department of Organismal Biology and Anatomy, 1027 East 57 Street, Chicago, Illinois 60637, USA
| |
Collapse
|
3
|
Panfilio KA, Chuva de Sousa Lopes SM. The extended analogy of extraembryonic development in insects and amniotes. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210268. [PMID: 36252225 PMCID: PMC9574626 DOI: 10.1098/rstb.2021.0268] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/14/2022] [Indexed: 12/22/2022] Open
Abstract
It is fascinating that the amnion and serosa/chorion, two extraembryonic (EE) tissues that are characteristic of the amniote vertebrates (mammals, birds and reptiles), have also independently evolved in insects. In this review, we offer the first detailed, macroevolutionary comparison of EE development and tissue biology across these animal groups. Some commonalities represent independent solutions to shared challenges for protecting the embryo (environmental assaults, risk of pathogens) and supporting its development, including clear links between cellular properties (e.g. polyploidy) and physiological function. Further parallels encompass developmental features such as the early segregation of the serosa/chorion compared to later, progressive differentiation of the amnion and formation of the amniotic cavity from serosal-amniotic folds as a widespread morphogenetic mode across species. We also discuss common developmental roles for orthologous transcription factors and BMP signalling in EE tissues of amniotes and insects, and between EE and cardiac tissues, supported by our exploration of new resources for global and tissue-specific gene expression. This highlights the degree to which general developmental principles and protective tissue features can be deduced from each of these animal groups, emphasizing the value of broad comparative studies to reveal subtle developmental strategies and answer questions that are common across species. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
| | - Susana M. Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
- Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
4
|
Schmidt-Ott U, Kwan CW. How two extraembryonic epithelia became one: serosa and amnion features and functions of Drosophila's amnioserosa. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210265. [PMID: 36252222 PMCID: PMC9574642 DOI: 10.1098/rstb.2021.0265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/30/2022] [Indexed: 01/19/2023] Open
Abstract
The conservation of gene networks that specify and differentiate distinct tissues has long been a subject of great interest to evolutionary developmental biologists, but the question of how pre-existing tissue-specific developmental trajectories merge is rarely asked. During the radiation of flies, two extraembryonic epithelia, known as serosa and amnion, evolved into one, called amnioserosa. This unique extraembryonic epithelium is found in fly species of the group Schizophora, including the genetic model organism Drosophila melanogaster, and has been studied in depth. Close relatives of this group develop a serosa and a rudimentary amnion. The scuttle fly Megaselia abdita has emerged as an excellent model organism to study this extraembryonic tissue organization. In this review, development and functions of the extraembryonic tissue complements of Drosophila and Megaselia are compared. It is concluded that the amnioserosa combines cells, genetic pathway components and functions that were previously associated either with serosa development or amnion development. The composite developmental trajectory of the amnioserosa raises the question of whether merging tissue-specific gene networks is a common evolutionary process. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Urs Schmidt-Ott
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL 60637, USA
| | - Chun Wai Kwan
- Laboratory for Epithelial Morphogenesis, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
5
|
Smith SJ, Guillon E, Holley SA. The roles of inter-tissue adhesion in development and morphological evolution. J Cell Sci 2022; 135:275268. [PMID: 35522159 PMCID: PMC9264361 DOI: 10.1242/jcs.259579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The study of how neighboring tissues physically interact with each other, inter-tissue adhesion, is an emerging field at the interface of cell biology, biophysics and developmental biology. Inter-tissue adhesion can be mediated by either cell-extracellular matrix adhesion or cell-cell adhesion, and both the mechanisms and consequences of inter-tissue adhesion have been studied in vivo in numerous vertebrate and invertebrate species. In this Review, we discuss recent progress in understanding the many functions of inter-tissue adhesion in development and evolution. Inter-tissue adhesion can couple the motion of adjacent tissues, be the source of mechanical resistance that constrains morphogenesis, and transmit tension required for normal development. Tissue-tissue adhesion can also create mechanical instability that leads to tissue folding or looping. Transient inter-tissue adhesion can facilitate tissue invasion, and weak tissue adhesion can generate friction that shapes and positions tissues within the embryo. Lastly, we review studies that reveal how inter-tissue adhesion contributes to the diversification of animal morphologies.
Collapse
Affiliation(s)
- Sarah Jacquelyn Smith
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Emilie Guillon
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Scott A Holley
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
6
|
Stern T, Shvartsman SY, Wieschaus EF. Deconstructing gastrulation at single-cell resolution. Curr Biol 2022; 32:1861-1868.e7. [PMID: 35290798 PMCID: PMC9221752 DOI: 10.1016/j.cub.2022.02.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/03/2021] [Accepted: 02/22/2022] [Indexed: 12/12/2022]
Abstract
Gastrulation movements in all animal embryos start with regulated deformations of patterned epithelial sheets, which are driven by cell divisions, cell shape changes, and cell intercalations. Each of these behaviors has been associated with distinct aspects of gastrulation1-4 and has been a subject of intense research using genetic, cell biological, and more recently, biophysical approaches.5-14 Most of these studies, however, focus either on cellular processes driving gastrulation or on large-scale tissue deformations.15-23 Recent advances in microscopy and image processing create a unique opportunity for integrating these complementary viewpoints.24-28 Here, we take a step toward bridging these complementary strategies and deconstruct the early stages of gastrulation in the entire Drosophila embryo. Our approach relies on an integrated computational framework for cell segmentation and tracking and on efficient algorithms for event detection. The detected events are then mapped back onto the blastoderm shell, providing an intuitive visual means to examine complex cellular activity patterns within the context of their initial anatomic domains. By analyzing these maps, we identified that the loss of nearly half of surface cells to invaginations is compensated primarily by transient mitotic rounding. In addition, by analyzing mapped cell intercalation events, we derived direct quantitative relations between intercalation frequency and the rate of axis elongation. This work is setting the stage for systems-level dissection of a pivotal step in animal development.
Collapse
Affiliation(s)
- Tomer Stern
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Stanislav Y Shvartsman
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Eric F Wieschaus
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
7
|
Zilova L, Weinhardt V, Tavhelidse T, Schlagheck C, Thumberger T, Wittbrodt J. Fish primary embryonic pluripotent cells assemble into retinal tissue mirroring in vivo early eye development. eLife 2021; 10:e66998. [PMID: 34252023 PMCID: PMC8275126 DOI: 10.7554/elife.66998] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Organoids derived from pluripotent stem cells promise the solution to current challenges in basic and biomedical research. Mammalian organoids are however limited by long developmental time, variable success, and lack of direct comparison to an in vivo reference. To overcome these limitations and address species-specific cellular organization, we derived organoids from rapidly developing teleosts. We demonstrate how primary embryonic pluripotent cells from medaka and zebrafish efficiently assemble into anterior neural structures, particularly retina. Within 4 days, blastula-stage cell aggregates reproducibly execute key steps of eye development: retinal specification, morphogenesis, and differentiation. The number of aggregated cells and genetic factors crucially impacted upon the concomitant morphological changes that were intriguingly reflecting the in vivo situation. High efficiency and rapid development of fish-derived organoids in combination with advanced genome editing techniques immediately allow addressing aspects of development and disease, and systematic probing of impact of the physical environment on morphogenesis and differentiation.
Collapse
Affiliation(s)
- Lucie Zilova
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Venera Weinhardt
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Tinatini Tavhelidse
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Christina Schlagheck
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
- Heidelberg International Biosciences Graduate School HBIGS and HeiKa Graduate School on “Functional Materials”HeidelbergGermany
| | - Thomas Thumberger
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Joachim Wittbrodt
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| |
Collapse
|
8
|
Jain A, Ulman V, Mukherjee A, Prakash M, Cuenca MB, Pimpale LG, Münster S, Haase R, Panfilio KA, Jug F, Grill SW, Tomancak P, Pavlopoulos A. Regionalized tissue fluidization is required for epithelial gap closure during insect gastrulation. Nat Commun 2020; 11:5604. [PMID: 33154375 PMCID: PMC7645651 DOI: 10.1038/s41467-020-19356-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 10/05/2020] [Indexed: 12/15/2022] Open
Abstract
Many animal embryos pull and close an epithelial sheet around the ellipsoidal egg surface during a gastrulation process known as epiboly. The ovoidal geometry dictates that the epithelial sheet first expands and subsequently compacts. Moreover, the spreading epithelium is mechanically stressed and this stress needs to be released. Here we show that during extraembryonic tissue (serosa) epiboly in the insect Tribolium castaneum, the non-proliferative serosa becomes regionalized into a solid-like dorsal region with larger non-rearranging cells, and a more fluid-like ventral region surrounding the leading edge with smaller cells undergoing intercalations. Our results suggest that a heterogeneous actomyosin cable contributes to the fluidization of the leading edge by driving sequential eviction and intercalation of individual cells away from the serosa margin. Since this developmental solution utilized during epiboly resembles the mechanism of wound healing, we propose actomyosin cable-driven local tissue fluidization as a conserved morphogenetic module for closure of epithelial gaps. The mechanics of embryonic tissue spreading over spherical eggs is not fully understood. Here, the authors show that during gastrulation in the red flour beetle, extraembryonic tissue epiboly is facilitated by local actomyosin-mediated fluidization of the tissue at the leading edge.
Collapse
Affiliation(s)
- Akanksha Jain
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Technische Universität Dresden, Dresden, Germany
| | - Vladimir Ulman
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,IT4Innovations, Technical University of Ostrava, Ostrava, Czech Republic
| | | | - Mangal Prakash
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Center for Systems Biology, Dresden, Germany
| | - Marina B Cuenca
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Lokesh G Pimpale
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Biotechnology Center, TU Dresden, Dresden, Germany
| | - Stefan Münster
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max-Planck-Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology, Dresden, Germany.,Biotechnology Center, TU Dresden, Dresden, Germany
| | - Robert Haase
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Center for Systems Biology, Dresden, Germany
| | - Kristen A Panfilio
- Institute for Zoology: Developmental Biology, University of Cologne, Cologne, Germany.,School of Life Sciences, University of Warwick, Coventry, UK
| | - Florian Jug
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Center for Systems Biology, Dresden, Germany
| | - Stephan W Grill
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Center for Systems Biology, Dresden, Germany.,Biotechnology Center, TU Dresden, Dresden, Germany.,Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Pavel Tomancak
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany. .,IT4Innovations, Technical University of Ostrava, Ostrava, Czech Republic.
| | - Anastasios Pavlopoulos
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA. .,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece.
| |
Collapse
|
9
|
Tissue-Scale Mechanical Coupling Reduces Morphogenetic Noise to Ensure Precision during Epithelial Folding. Dev Cell 2020; 53:212-228.e12. [PMID: 32169160 DOI: 10.1016/j.devcel.2020.02.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 12/13/2019] [Accepted: 02/13/2020] [Indexed: 12/18/2022]
Abstract
Morphological constancy is universal in developing systems. It is unclear whether precise morphogenesis stems from faithful mechanical interpretation of gene expression patterns. We investigate the formation of the cephalic furrow, an epithelial fold that is precisely positioned with a linear morphology. Fold initiation is specified by a precise genetic code with single-cell row resolution. This positional code activates and spatially confines lateral myosin contractility to induce folding. However, 20% of initiating cells are mis-specified because of fluctuating myosin intensities at the cellular level. Nevertheless, the furrow remains linearly aligned. We find that lateral myosin is planar polarized, integrating contractile membrane interfaces into supracellular "ribbons." Local reduction of mechanical coupling at the "ribbons" using optogenetics decreases furrow linearity. Furthermore, 3D vertex modeling indicates that polarized, interconnected contractility confers morphological robustness against noise. Thus, tissue-scale mechanical coupling functions as a denoising mechanism to ensure morphogenetic precision despite noisy decoding of positional information.
Collapse
|
10
|
Lischik CQ, Adelmann L, Wittbrodt J. Enhanced in vivo-imaging in medaka by optimized anaesthesia, fluorescent protein selection and removal of pigmentation. PLoS One 2019; 14:e0212956. [PMID: 30845151 PMCID: PMC6405165 DOI: 10.1371/journal.pone.0212956] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/12/2019] [Indexed: 02/07/2023] Open
Abstract
Fish are ideally suited for in vivo-imaging due to their transparency at early stages combined with a large genetic toolbox. Key challenges to further advance imaging are fluorophore selection, immobilization of the specimen and approaches to eliminate pigmentation. We addressed all three and identified the fluorophores and anaesthesia of choice by high throughput time-lapse imaging. Our results indicate that eGFP and mCherry are the best conservative choices for in vivo-fluorescence experiments, when availability of well-established antibodies and nanobodies matters. Still, mVenusNB and mGFPmut2 delivered highest absolute fluorescence intensities in vivo. Immobilization is of key importance during extended in vivo imaging. Here, traditional approaches are outperformed by mRNA injection of α-Bungarotoxin which allows a complete and reversible, transient immobilization. In combination with fully transparent juvenile and adult fish established by the targeted inactivation of both, oca2 and pnp4a via CRISPR/Cas9-mediated gene editing in medaka we could dramatically improve the state-of-the art imaging conditions in post-embryonic fish, now enabling light-sheet microscopy of the growing retina, brain, gills and inner organs in the absence of side effects caused by anaesthetic drugs or pigmentation.
Collapse
Affiliation(s)
- Colin Q Lischik
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany.,Heidelberg Biosciences International Graduate School, Heidelberg University, Heidelberg, Germany
| | - Leonie Adelmann
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|