1
|
Bierwirth P, Antov MI, Stockhorst U. Oscillatory and non-oscillatory brain activity reflects fear expression in an immediate and delayed fear extinction task. Psychophysiology 2023:e14283. [PMID: 36906880 DOI: 10.1111/psyp.14283] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 03/13/2023]
Abstract
Fear extinction is pivotal for inhibiting fear responding to former threat-predictive stimuli. In rodents, short intervals between fear acquisition and extinction impair extinction recall compared to long intervals. This is called Immediate Extinction Deficit (IED). Importantly, human studies of the IED are sparse and its neurophysiological correlates have not been examined in humans. We, therefore, investigated the IED by recording electroencephalography (EEG), skin conductance responses (SCRs), an electrocardiogram (ECG), and subjective ratings of valence and arousal. Forty male participants were randomly assigned to extinction learning either 10 min after fear acquisition (immediate extinction) or 24 h afterward (delayed extinction). Fear and extinction recall were assessed 24 h after extinction learning. We observed evidence for an IED in SCR responses, but not in the ECG, subjective ratings, or in any assessed neurophysiological marker of fear expression. Irrespective of extinction timing (immediate vs. delayed), fear conditioning caused a tilt of the non-oscillatory background spectrum with decreased low-frequency power (<30 Hz) for threat-predictive stimuli. When controlling for this tilt, we observed a suppression of theta and alpha oscillations to threat-predictive stimuli, especially pronounced during fear acquisition. In sum, our data show that delayed extinction might be partially advantageous over immediate extinction in reducing sympathetic arousal (as assessed via SCR) to former threat-predictive stimuli. However, this effect was limited to SCR responses since all other fear measures were not affected by extinction timing. Additionally, we demonstrate that oscillatory and non-oscillatory activity is sensitive to fear conditioning, which has important implications for fear conditioning studies examining neural oscillations.
Collapse
Affiliation(s)
- Philipp Bierwirth
- Institute of Psychology, Experimental Psychology II and Biological Psychology, University of Osnabrück, Osnabrück, Germany
| | - Martin I Antov
- Institute of Psychology, Experimental Psychology II and Biological Psychology, University of Osnabrück, Osnabrück, Germany
| | - Ursula Stockhorst
- Institute of Psychology, Experimental Psychology II and Biological Psychology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
2
|
Stressed rats fail to exhibit avoidance reactions to innately aversive social calls. Neuropsychopharmacology 2022; 47:1145-1155. [PMID: 34848856 PMCID: PMC9018727 DOI: 10.1038/s41386-021-01230-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/01/2021] [Accepted: 10/30/2021] [Indexed: 02/02/2023]
Abstract
Disruptions in amygdalar function, a brain area involved in encoding emotionally salient information, has been implicated in stress-related affective disorders. Earlier animal studies on the behavioral consequences of stress-induced abnormalities in the amygdala focused on learned behaviors using fear conditioning paradigms. If and how stress affects unconditioned, innate fear responses to ethologically natural aversive stimuli remains unexplored. Hence, we subjected rats to aversive ultrasonic vocalization calls emitted on one end of a linear track. Unstressed control rats exhibited a robust avoidance response by spending more time away from the source of the playback calls. Unexpectedly, prior exposure to chronic immobilization stress prevented this avoidance reaction, rather than enhancing it. Further, this stress-induced impairment extended to other innately aversive stimuli, such as white noise and electric shock in an inhibitory avoidance task. However, conditioned fear responses were enhanced by the same stress. Inactivation of the basolateral amygdala (BLA) in control rats prevented this avoidance reaction evoked by the playback. Consistent with this, analysis of the immediate early gene cFos revealed higher activity in the BLA of control, but not stressed rats, after exposure to the playback. Further, in vivo recordings in freely behaving control rats exposed to playback showed enhanced theta activity in the BLA, which also was absent in stressed rats. These findings offer a new framework for studying stress-induced alterations in amygdala-dependent maladaptive responses to more naturally threatening and emotionally relevant social stimuli. The divergent impact of stress on defensive responses--impaired avoidance responses together with increased conditioned fear--also has important implications for models of learned helplessness and depression.
Collapse
|
3
|
Vafaei AA, Rashidy-Pour A, Trahomi P, Omoumi S, Dadkhah M. Role of Amygdala-Infralimbic Cortex Circuitry in Glucocorticoid-induced Facilitation of Auditory Fear Memory Extinction. Basic Clin Neurosci 2022; 13:193-205. [PMID: 36425953 PMCID: PMC9682312 DOI: 10.32598/bcn.2021.2161.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/15/2021] [Accepted: 03/10/2021] [Indexed: 05/10/2023] Open
Abstract
INTRODUCTION The basolateral amygdala (BLA) and infralimbic area (IL) of the medial prefrontal cortex (mPFC) are two interconnected brain structures that mediate both fear memory expression and extinction. Besides the well-known role of the BLA in the acquisition and expression of fear memory, projections from IL to BLA inhibit fear expression and have a critical role in fear extinction. However, the details of IL-BLA interaction have remained unclear. Here, we investigated the role of functional reciprocal interactions between BLA and IL in mediating fear memory extinction. METHODS Using lidocaine (LID), male rats underwent unilateral or bilateral inactivation of the BLA and then unilateral intra-IL infusion of corticosterone (CORT) prior to extinction training of the auditory fear conditioning paradigm. Freezing behavior was reported as an index for conditioned fear. Infusions were performed before the extinction training, allowing us to examine the effects on fear expression and further extinction memory. Experiments 1-3 investigated the effects of left or right infusion of CORT into IL and LID unilaterally into BLA on fear memory extinction. RESULTS Intra-IL infusion of CORT in the right hemisphere reduced freezing behavior when administrated before the extinction training. Auditory fear memory extinction was impaired by asymmetric inactivation of BLA and CORT infusion in the right IL; however, the same effect was not observed with symmetric inactivation of BLA. CONCLUSION IL-BLA neural circuit may provide additional evidence for the contribution of this circuit to auditory fear extinction. This study demonstrates dissociable roles for right or left BLA in subserving the auditory fear extinction. Our finding also raises the possibility that left BLA-IL circuitry may mediate auditory fear memory extinction via underlying mechanisms. However, further research is required in this area. HIGHLIGHTS Corticosterone infusion in the right (but not the left) infralimbic area facilitates auditory fear memory extinction.Corticosterone infusion in the right infralimbic area following symmetric basolateral amygdala inactivation has no effect on auditory fear memory extinction.Asymmetric basolateral amygdala inactivation prior to corticosterone infusion into the right infralimbic area impairs auditory fear memory extinction. PLAIN LANGUAGE SUMMARY Previous studies have established that glucocorticoids, which are released in stressful conditions, enhance fear memory extinction. In this study, we found that corticosterone infusion into the right infralimbic area, but not the left one, facilitates auditory fear memory extinction. The effect of corticosterone infusion in the infralimbic area was not blocked by the intra-basolateral amygdala injections of lidocaine when administrated in the ipsilateral hemisphere. However, asymmetric basolateral amygdala inactivation and corticosterone infusion into the right infralimbic area impairs auditory fear memory extinction.
Collapse
Affiliation(s)
- Abbas Ali Vafaei
- Research Center of Physiology, Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Parnia Trahomi
- Student Research Committee, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Samira Omoumi
- Student Research Committee, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Corresponding Author: Masoomeh Dadkhah, PhD., Address: Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran., Tel: +98 (45) 33522437-39, E-mail:
| |
Collapse
|
4
|
Chakraborty P, Chattarji S, Jeanneteau F. A salience hypothesis of stress in PTSD. Eur J Neurosci 2021; 54:8029-8051. [PMID: 34766390 DOI: 10.1111/ejn.15526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/13/2021] [Accepted: 10/30/2021] [Indexed: 11/30/2022]
Abstract
Attention to key features of contexts and things is a necessary tool for all organisms. Detecting these salient features of cues, or simply, salience, can also be affected by exposure to traumatic stress, as has been widely reported in individuals suffering from post-traumatic stress disorder (PTSD). Interestingly, similar observations have been robustly replicated across many animal models of stress as well. By using evidence from such rodent stress paradigms, in the present review, we explore PTSD through the lens of salience processing. In this context, we propose that interaction between the neurotrophin brain-derived neurotrophic factor (BDNF) and glucocorticoids determines the long lasting cellular and behavioural consequences of stress salience. We also describe the dual effect of glucocorticoid therapy in the amelioration of PTSD symptoms. Finally, by integrating in vivo observations at multiple scales of plasticity, we propose a unifying hypothesis that pivots on a crucial role of glucocorticoid signalling in dynamically orchestrating stress salience.
Collapse
Affiliation(s)
- Prabahan Chakraborty
- Institut de Genomique Fonctionnelle, University of Montpellier, Inserm, CNRS, Montpellier, 34090, France.,Tata Institute of Fundamental Research, National Centre for Biological Sciences, Bellary Road, Bangalore, 560065, India
| | - Sumantra Chattarji
- Tata Institute of Fundamental Research, National Centre for Biological Sciences, Bellary Road, Bangalore, 560065, India.,Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India.,Centre for Discovery Brain Sciences, Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Freddy Jeanneteau
- Institut de Genomique Fonctionnelle, University of Montpellier, Inserm, CNRS, Montpellier, 34090, France
| |
Collapse
|
5
|
Bierwirth P, Sperl MFJ, Antov MI, Stockhorst U. Prefrontal Theta Oscillations Are Modulated by Estradiol Status During Fear Recall and Extinction Recall. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:1071-1080. [PMID: 33711549 DOI: 10.1016/j.bpsc.2021.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Emerging human studies demonstrate that theta oscillations in the dorsal anterior cingulate cortex are enhanced during fear recall (enhanced fear expression) and reduced during successful extinction recall (reduced fear expression). Although evidence suggests sex differences in fear recall and extinction recall, there are currently no human studies examining the oscillatory foundations of these memory processes separately in men and women. METHODS Because previous studies suggest that estradiol partially mediates these sex differences, we examined 20 men (low estradiol and low progesterone), 20 women using oral contraceptives (low estradiol and low progesterone), and 20 free-cycling women during midcycle (high estradiol and low progesterone). We used a fear-conditioning procedure, allowing us to separately assess fear recall and extinction recall 24 hours after fear and extinction learning. Skin conductance responses and electroencephalography were recorded during fear recall and extinction recall, and prefrontal oscillations were source localized. RESULTS We found elevated fear expression during fear recall and impaired extinction recall, as indicated by increased peripheral arousal (skin conductance responses) and fronto-central theta oscillations, source localized in the dorsal anterior cingulate cortex and dorsomedial prefrontal cortex. Importantly, peripheral arousal and dorsal anterior cingulate cortex theta oscillations were stronger in men and women on oral contraceptives than in women from the midcycle group. CONCLUSIONS Our data show that neural oscillatory and peripheral correlates of heightened fear expression during fear recall and (impaired) extinction recall do not simply differ between sexes but depend on hormonal fluctuations within women.
Collapse
Affiliation(s)
- Philipp Bierwirth
- Institute of Psychology, Experimental Psychology II and Biological Psychology, University of Osnabrück, Osnabrück, Germany.
| | - Matthias F J Sperl
- Department of Psychology, Personality Psychology and Assessment, University of Marburg, Marburg, Germany; Department of Psychology, Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany
| | - Martin I Antov
- Institute of Psychology, Experimental Psychology II and Biological Psychology, University of Osnabrück, Osnabrück, Germany
| | - Ursula Stockhorst
- Institute of Psychology, Experimental Psychology II and Biological Psychology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
6
|
Brain circuits at risk in psychiatric diseases and pharmacological pathways. Therapie 2020; 76:75-86. [PMID: 33358639 DOI: 10.1016/j.therap.2020.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/24/2020] [Indexed: 12/23/2022]
Abstract
The multiple brain circuits involved in psychiatric diseases may appear daunting, but we prefer to concentrate on a select few, with a particular sensitivity to stress and neurodevelopmental issues, with a clear pharmacotherapy. This review is structured around 1. the key circuits, their role in health and disease, and the neurotransmitters maintaining them, 2. The influence of upbringing, stress, chronobiology, inflammation and infection, 3. The genetic and epigenetic influence on these circuits, particularly regarding copy number variants and neuronal plasticity, 4. The use and abuse of pharmacological agents with the particular risks of stress and chronobiology at critical periods. A major emphasis is placed on the links between hippocampus, prefrontal cortex and amygdala/periaqueductal grey which control specific aspects of cognition, mood, pain and even violence. Some of the research findings were from the innovative medicine initiative (IMI) NEWMEDS, a 22M€ academic/industrial consortium on the brain circuits critical for psychiatric disease.
Collapse
|
7
|
Liu J, Likhtik E, Shereen AD, Dennis-Tiwary TA, Casaccia P. White Matter Plasticity in Anxiety: Disruption of Neural Network Synchronization During Threat-Safety Discrimination. Front Cell Neurosci 2020; 14:587053. [PMID: 33250713 PMCID: PMC7674975 DOI: 10.3389/fncel.2020.587053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
Recent evidence highlighted the importance of white matter tracts in typical and atypical behaviors. White matter dynamically changes in response to learning, stress, and social experiences. Several lines of evidence have reported white matter dysfunction in psychiatric conditions, including depression, stress- and anxiety-related disorders. The mechanistic underpinnings of these associations, however, remain poorly understood. Here, we outline an integrative perspective positing a link between aberrant myelin plasticity and anxiety. Drawing on extant literature and emerging new findings, we suggest that in anxiety, unique changes may occur in response to threat and to safety learning and the ability to discriminate between both types of stimuli. We propose that altered myelin plasticity in the neural circuits underlying these two forms of learning relates to the emergence of anxiety-related disorders, by compromising mechanisms of neural network synchronization. The clinical and translational implications of this model for anxiety-related disorders are discussed.
Collapse
Affiliation(s)
- Jia Liu
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University of New York, New York, NY, United States
| | - Ekaterina Likhtik
- Department of Biology, Hunter College, City University of New York, New York, NY, United States
- Graduate Program in Biology at the Graduate Center, City University of New York, New York, NY, United States
| | - A. Duke Shereen
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University of New York, New York, NY, United States
| | - Tracy A. Dennis-Tiwary
- Department of Psychology, Hunter College, City University of New York, New York, NY, United States
- Graduate Program in Psychology and Behavioral and Cognitive Neuroscience at the Graduate Center, City University of New York, New York, NY, United States
| | - Patrizia Casaccia
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University of New York, New York, NY, United States
- Graduate Program in Biology at the Graduate Center, City University of New York, New York, NY, United States
- Graduate Program in Biochemistry at the Graduate Center, City University of New York, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
8
|
Toward an animal model of borderline personality disorder. Psychopharmacology (Berl) 2019; 236:2485-2500. [PMID: 31201478 PMCID: PMC6697600 DOI: 10.1007/s00213-019-05289-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 05/30/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Borderline personality disorder (BPD) is a pervasive psychiatric disorder characterized by emotion dysregulation, impulsivity, impaired self-perceptions, and interpersonal relationships and currently affects 1-3% of the US population as reported by Torgersen et al. (Arch Gen Psychiatry 58:590-596, Torgersen et al. 2001), Lenzenweger et al. (Biol Psychiatry 62:553-564, Lenzenweger et al. 2007), and Tomko et al. (J Personal Disord 28:734-750, Tomko et al. 2014). One major obstacle to our understanding of the neural underpinnings of BPD is a lack of valid animal models that translate the key known features of the disorder to a system that is amenable to study. OBJECTIVE To summarize the etiology, major symptoms, and symptom triggers of BPD and then propose a blueprint for building an animal model of BPD by choosing key components of the disorder that can be implemented in rodents. RESULTS We identify the role of early life stress and subsequent mild stress in adulthood as contributing etiological factors and the potential use of altered communication between frontal cortices and the amygdala in extinction and habituation, increased impulsivity, dysregulation of the hypothalamic pituitary axis (HPA), and increased neuroinflammation as biological markers of BPD. Building upon these features of BPD, we propose a two-hit animal model that uses maternal abandonment to alter maturation of the HPA axis and mild secondary adult stress to evoke behavioral symptoms such as increased impulsivity and impaired extinction, habituation, and social interactions. CONCLUSION Through exploration of the etiology, symptom presentation, and altered neurological function, we propose an animal model of BPD. We believe that a number of existing animal paradigms that model other mental health disorders should be combined in a unique way to reflect the etiology, symptom presentation, and altered neurological function that is evident in BPD. These model, when compared with available human data, will inform research and treatment in humans for better understanding of systems from the micro-molecular level to more global physiology underlying BPD.
Collapse
|
9
|
Cardenas A, Blanca M, Dimitrov E. Persistent pain intensifies recall of consolidated fear memories. Neurobiol Stress 2019; 10:100163. [PMID: 31193505 PMCID: PMC6535623 DOI: 10.1016/j.ynstr.2019.100163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 12/04/2022] Open
Abstract
Ensembles of principal neurons in the basolateral amygdala (BLA) generate the initial engrams for fear memories, while projections from the BLA to the medial prefrontal cortex (mPFC) are essential for the encoding, transfer and storage of remote fear memories. We tested the effects of chronic pain on remote fear memories in mice. Male mice underwent classic fear conditioning by pairing a single tone (conditional stimulus, CS) with a single electric foot shock (unconditional stimulus, US). Sciatic nerve constriction was used to induce neuropathic pain at various time points before or after the fear conditioning. The mice with sciatic nerve cuffs implanted 48 h after the fear conditioning showed an increased freezing response to CS when compared to mice without cuffs or when compared to mice in which the nerve cuffing was performed 48 h before the fear conditioning. The enhancing effect of pain on consolidated fear memory was further tested and mice in which the nerve cuffing was performed 14 days after the fear conditioning also showed an increased fear response when tested 56 days later. We used immunostaining to detect morphological changes in the BLA that could suggest a mechanism for the observed increase in fear response. We found an increased number of calbindin/parvalbumin positive neurons in the BLA and increased perisomatic density of GAD65 on projection neurons that connect BLA to mPFC in mice with nerve cuffs. Despite the strong increase of c-Fos expression in BLA and mPFC that was induced by fear recall, neither the BLA to mPFC nor the mPFC to BLA projection neurons were activated in mice with nerve cuffs. Furthermore, non-injured mice had an increased fear response when BLA to mPFC projections were inhibited by a chemogenetic method. In conclusion, this study provides evidence that persistent pain has a significant impact on consolidated fear memories. Very likely the underlying mechanism for this phenomenon is increased inhibitory input onto the BLA to mPFC projection neurons, possibly from neurons with induced parvalbumin expression. Conceivably, the increased fear response to consolidated fear memory is a harbinger for the later development of anxiety and depression symptoms associated with chronic pain.
Collapse
Affiliation(s)
- Andrea Cardenas
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Michelle Blanca
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Eugene Dimitrov
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| |
Collapse
|