1
|
Behera P, Mishra M. Lipid Droplet in Lipodystrophy and Neurodegeneration. Biol Cell 2025; 117:e70009. [PMID: 40249069 DOI: 10.1111/boc.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 02/22/2025] [Accepted: 04/01/2025] [Indexed: 04/19/2025]
Abstract
Lipid droplets are ubiquitous yet distinct intracellular organelles that are gaining attention for their uses outside of energy storage. Their formation, role in the physiological function, and the onset of the pathology have been gaining attention recently. Their structure, synthesis, and turnover play dynamic roles in both lipodystrophy and neurodegeneration. Factors like development, aging, inflammation, and cellular stress regulate the synthesis of lipid droplets. The biogenesis of lipid droplets has a critical role in reducing cellular stress. Lipid droplets, in response to stress, sequester hazardous lipids into their neutral lipid core, preserving energy and redox balance while guarding against lipotoxicity. Thus, the maintenance of lipid droplet homeostasis in adipose tissue, CNS, and other body tissues is essential for maintaining organismal health. Insulin resistance, hypertriglyceridemia, and lipid droplet accumulation are the severe metabolic abnormalities that accompany lipodystrophy-related fat deficit. Accumulation of lipid droplets is detected in almost all neurodegenerative diseases like Alzheimer's, Parkinson's, Huntington's, and Hereditary spastic paraplegia. Hence, the regulation of lipid droplets can be used as an alternative approach to the treatment of several diseases. The current review summarizes the structure, composition, biogenesis, and turnover of lipid droplets, with an emphasis on the factors responsible for the accumulation and importance of lipid droplets in lipodystrophy and neurodegenerative disease.
Collapse
Affiliation(s)
- Priyatama Behera
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India
| |
Collapse
|
2
|
Grinat J, Shriever NP, Christophorou MA. Fantastic proteins and where to find them - histones, in the nucleus and beyond. J Cell Sci 2024; 137:jcs262071. [PMID: 39704565 PMCID: PMC11827605 DOI: 10.1242/jcs.262071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
Animal genomes are packaged into chromatin, a highly dynamic macromolecular structure of DNA and histone proteins organised into nucleosomes. This accommodates packaging of lengthy genomic sequences within the physical confines of the nucleus while also enabling precise regulation of access to genetic information. However, histones existed before chromatin and have lesser-known functions beyond genome regulation. Most notably, histones are potent antimicrobial agents, and the release of chromatin to the extracellular space is a defence mechanism nearly as ancient and widespread as chromatin itself. Histone sequences have changed very little throughout evolution, suggesting the possibility that some of their 'non-canonical' functions are at play in parallel or in concert with their genome regulatory functions. In this Review, we take an evolutionary perspective of histone, nuclear chromatin and extracellular chromatin biology and describe the known extranuclear and extracellular functions of histones. We detail molecular mechanisms of chromatin release and extracellular chromatin sensing, and we discuss their roles in physiology and disease. Finally, we present evidence and give a perspective on the potential of extracellular histones to act as bioactive, cell modulatory factors.
Collapse
|
3
|
Bhatt AD, Brown MG, Wackford AB, Shindo Y, Amodeo AA. Local nuclear to cytoplasmic ratio regulates H3.3 incorporation via cell cycle state during zygotic genome activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603602. [PMID: 39071352 PMCID: PMC11275841 DOI: 10.1101/2024.07.15.603602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Early embryos often have unique chromatin states prior to zygotic genome activation (ZGA). In Drosophila, ZGA occurs after 13 reductive nuclear divisions during which the nuclear to cytoplasmic (N/C) ratio grows exponentially. Previous work found that histone H3 chromatin incorporation decreases while its variant H3.3 increases leading up to ZGA. In other cell types, H3.3 is associated with sites of active transcription and heterochromatin, suggesting a link between H3.3 and ZGA. Here, we test what factors regulate H3.3 incorporation at ZGA. We find that H3 nuclear availability falls more rapidly than H3.3 leading up to ZGA. We generate H3/H3.3 chimeric proteins at the endogenous H3.3A locus and observe that chaperone binding, but not gene structure, regulates H3.3 behavior. We identify the N/C ratio as a major determinant of H3.3 incorporation. To isolate how the N/C ratio regulates H3.3 incorporation we test the roles of genomic content, zygotic transcription, and cell cycle state. We determine that cell cycle regulation, but not H3 availability or transcription, controls H3.3 incorporation. Overall, we propose that local N/C ratios control histone variant usage via cell cycle state during ZGA.
Collapse
Affiliation(s)
- Anusha D. Bhatt
- Department of Biological sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Madeleine G. Brown
- Department of Biological sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Aurora B. Wackford
- Department of Biological sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Yuki Shindo
- Department of Biological sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Amanda A. Amodeo
- Department of Biological sciences, Dartmouth College, Hanover, NH 03755, USA
- Lead contact
| |
Collapse
|
4
|
Corbo JH, Chung J. Mechanisms of lipid droplet degradation. Curr Opin Cell Biol 2024; 90:102402. [PMID: 39053179 DOI: 10.1016/j.ceb.2024.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Lipid droplets (LDs) are subcellular organelles that play an integral role in lipid metabolism by regulating the storage and release of fatty acids, which are essential for energy production and various cellular processes. Lipolysis and lipophagy are the two major LD degradation pathways that mediate the utilization of lipids stored in these organelles. Recent studies have further uncovered alternative pathways, including direct lysosomal LD degradation and LD exocytosis. Here, we highlight recent findings that dissect the molecular basis of these diverse LD degradation pathways. Then, we discuss speculations on the crosstalk among these pathways and the potential unconventional roles of LD degradation.
Collapse
Affiliation(s)
- J H Corbo
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | - J Chung
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
5
|
Murphy PJ, Berger F. The chromatin source-sink hypothesis: a shared mode of chromatin-mediated regulations. Development 2023; 150:dev201989. [PMID: 38771301 PMCID: PMC10629678 DOI: 10.1242/dev.201989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/12/2023] [Indexed: 11/05/2023]
Abstract
We propose that several chromatin-mediated regulatory processes are dominated by source-sink relationships in which factors operate as 'sources' to produce or provide a resource and compete with each other to occupy separate 'sinks'. In this model, large portions of genomic DNA operate as 'sinks', which are filled by 'sources', such as available histone variants, covalent modifications to histones, the readers of these modifications and non-coding RNAs. Competing occupation for the sinks by different sources leads to distinct states of genomic equilibrium in differentiated cells. During dynamic developmental events, such as sexual reproduction, we propose that dramatic and rapid reconfiguration of source-sink relationships modifies chromatin states. We envision that re-routing of sources could occur by altering the dimensions of the sink, by reconfiguration of existing sink occupation or by varying the size of the source, providing a central mechanism to explain a plethora of epigenetic phenomena, which contribute to phenotypic variegation, zygotic genome activation and nucleolar dominance.
Collapse
Affiliation(s)
- Patrick J. Murphy
- University of Rochester, Department of Biomedical Genetics and Department of Biology, 601 Elmwood Ave., Rochester NY 14620, USA
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter; Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
6
|
Giedt MS, Thomalla JM, White RP, Johnson MR, Lai ZW, Tootle TL, Welte MA. Adipose triglyceride lipase promotes prostaglandin-dependent actin remodeling by regulating substrate release from lipid droplets. Development 2023; 150:dev201516. [PMID: 37306387 PMCID: PMC10281261 DOI: 10.1242/dev.201516] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
Lipid droplets (LDs), crucial regulators of lipid metabolism, accumulate during oocyte development. However, their roles in fertility remain largely unknown. During Drosophila oogenesis, LD accumulation coincides with the actin remodeling necessary for follicle development. Loss of the LD-associated Adipose Triglyceride Lipase (ATGL) disrupts both actin bundle formation and cortical actin integrity, an unusual phenotype also seen when the prostaglandin (PG) synthase Pxt is missing. Dominant genetic interactions and PG treatment of follicles indicate that ATGL acts upstream of Pxt to regulate actin remodeling. Our data suggest that ATGL releases arachidonic acid (AA) from LDs to serve as the substrate for PG synthesis. Lipidomic analysis detects AA-containing triglycerides in ovaries, and these are increased when ATGL is lost. High levels of exogenous AA block follicle development; this is enhanced by impairing LD formation and suppressed by reducing ATGL. Together, these data support the model that AA stored in LD triglycerides is released by ATGL to drive the production of PGs, which promote the actin remodeling necessary for follicle development. We speculate that this pathway is conserved across organisms to regulate oocyte development and promote fertility.
Collapse
Affiliation(s)
- Michelle S. Giedt
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | - Roger P. White
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Matthew R. Johnson
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Zon Weng Lai
- Harvard T.H. Chan Advanced Multi-omics Platform, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Tina L. Tootle
- Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Michael A. Welte
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
7
|
Sarmento MJ, Llorente A, Petan T, Khnykin D, Popa I, Nikolac Perkovic M, Konjevod M, Jaganjac M. The expanding organelle lipidomes: current knowledge and challenges. Cell Mol Life Sci 2023; 80:237. [PMID: 37530856 PMCID: PMC10397142 DOI: 10.1007/s00018-023-04889-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/13/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
Lipids in cell membranes and subcellular compartments play essential roles in numerous cellular processes, such as energy production, cell signaling and inflammation. A specific organelle lipidome is characterized by lipid synthesis and metabolism, intracellular trafficking, and lipid homeostasis in the organelle. Over the years, considerable effort has been directed to the identification of the lipid fingerprints of cellular organelles. However, these fingerprints are not fully characterized due to the large variety and structural complexity of lipids and the great variability in the abundance of different lipid species. The process becomes even more challenging when considering that the lipidome differs in health and disease contexts. This review summarizes the information available on the lipid composition of mammalian cell organelles, particularly the lipidome of the nucleus, mitochondrion, endoplasmic reticulum, Golgi apparatus, plasma membrane and organelles in the endocytic pathway. The lipid compositions of extracellular vesicles and lamellar bodies are also described. In addition, several examples of subcellular lipidome dynamics under physiological and pathological conditions are presented. Finally, challenges in mapping organelle lipidomes are discussed.
Collapse
Affiliation(s)
- Maria J Sarmento
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway
- Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, 0167, Oslo, Norway
- Faculty of Medicine, Centre for Cancer Cell Reprogramming, University of Oslo, Montebello, 0379, Oslo, Norway
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Denis Khnykin
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Iuliana Popa
- Pharmacy Department, Bâtiment Henri Moissan, University Paris-Saclay, 17 Avenue des Sciences, 91400, Orsay, France
| | | | - Marcela Konjevod
- Division of Molecular Medicine, Ruder Boskovic Institute, 10000, Zagreb, Croatia
| | - Morana Jaganjac
- Division of Molecular Medicine, Ruder Boskovic Institute, 10000, Zagreb, Croatia.
| |
Collapse
|
8
|
Hammoudeh N, Soukkarieh C, Murphy DJ, Hanano A. Mammalian lipid droplets: structural, pathological, immunological and anti-toxicological roles. Prog Lipid Res 2023; 91:101233. [PMID: 37156444 DOI: 10.1016/j.plipres.2023.101233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Mammalian lipid droplets (LDs) are specialized cytosolic organelles consisting of a neutral lipid core surrounded by a membrane made up of a phospholipid monolayer and a specific population of proteins that varies according to the location and function of each LD. Over the past decade, there have been significant advances in the understanding of LD biogenesis and functions. LDs are now recognized as dynamic organelles that participate in many aspects of cellular homeostasis plus other vital functions. LD biogenesis is a complex, highly-regulated process with assembly occurring on the endoplasmic reticulum although aspects of the underpinning molecular mechanisms remain elusive. For example, it is unclear how many enzymes participate in the biosynthesis of the neutral lipid components of LDs and how this process is coordinated in response to different metabolic cues to promote or suppress LD formation and turnover. In addition to enzymes involved in the biosynthesis of neutral lipids, various scaffolding proteins play roles in coordinating LD formation. Despite their lack of ultrastructural diversity, LDs in different mammalian cell types are involved in a wide range of biological functions. These include roles in membrane homeostasis, regulation of hypoxia, neoplastic inflammatory responses, cellular oxidative status, lipid peroxidation, and protection against potentially toxic intracellular fatty acids and lipophilic xenobiotics. Herein, the roles of mammalian LDs and their associated proteins are reviewed with a particular focus on their roles in pathological, immunological and anti-toxicological processes.
Collapse
Affiliation(s)
- Nour Hammoudeh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, CF37 1DL, Wales, United Kingdom..
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria..
| |
Collapse
|
9
|
Abstract
In this chapter, we highlight examples of the diverse array of developmental, cellular, and biochemical insights that can be gained by using Drosophila melanogaster oogenesis as a model tissue. We begin with an overview of ovary development and adult oogenesis. Then we summarize how the adult Drosophila ovary continues to advance our understanding of stem cells, cell cycle, cell migration, cytoplasmic streaming, nurse cell dumping, and cell death. We also review emerging areas of study, including the roles of lipid droplets, ribosomes, and nuclear actin in egg development. Finally, we conclude by discussing the growing conservation of processes and signaling pathways that regulate oogenesis and female reproduction from flies to humans.
Collapse
|
10
|
White RP, Welte MA. Visualizing Lipid Droplets in Drosophila Oogenesis. Methods Mol Biol 2023; 2626:233-251. [PMID: 36715908 DOI: 10.1007/978-1-0716-2970-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lipid droplets (LDs) are fat storage organelles highly abundant in oocytes and eggs of many vertebrates and invertebrates. They have roles both during oogenesis and in provisioning the developing embryo. In Drosophila, large numbers of LDs are generated in nurse cells during mid-oogenesis and then transferred to oocytes. Their number and spatial distribution changes developmentally and in response to various experimental manipulations. This chapter demonstrates how to visualize LDs in Drosophila follicles, both in fixed tissues and living samples. For fixed samples, the protocol explains how to prepare female flies, dissect ovaries, isolate follicles, fix, apply stains, mount the tissue, and perform imaging. For live samples, the protocol shows how to dissect ovaries, apply a fluorescent LD dye, and culture follicles such that they remain alive and healthy during imaging. Finally, a method is provided that employs in vivo centrifugation to assess colocalization of markers with LDs.
Collapse
Affiliation(s)
- Roger P White
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Michael A Welte
- Department of Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
11
|
Balachandra S, Sarkar S, Amodeo AA. The Nuclear-to-Cytoplasmic Ratio: Coupling DNA Content to Cell Size, Cell Cycle, and Biosynthetic Capacity. Annu Rev Genet 2022; 56:165-185. [PMID: 35977407 PMCID: PMC10165727 DOI: 10.1146/annurev-genet-080320-030537] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Though cell size varies between different cells and across species, the nuclear-to-cytoplasmic (N/C) ratio is largely maintained across species and within cell types. A cell maintains a relatively constant N/C ratio by coupling DNA content, nuclear size, and cell size. We explore how cells couple cell division and growth to DNA content. In some cases, cells use DNA as a molecular yardstick to control the availability of cell cycle regulators. In other cases, DNA sets a limit for biosynthetic capacity. Developmentally programmed variations in the N/C ratio for a given cell type suggest that a specific N/C ratio is required to respond to given physiological demands. Recent observations connecting decreased N/C ratios with cellular senescence indicate that maintaining the proper N/C ratio is essential for proper cellular functioning. Together, these findings suggest a causative, not simply correlative, role for the N/C ratio in regulating cell growth and cell cycle progression.
Collapse
Affiliation(s)
- Shruthi Balachandra
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA; ,
| | - Sharanya Sarkar
- Department of Microbiology and Immunology, Dartmouth College, Hanover, New Hampshire, USA;
| | - Amanda A Amodeo
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA; ,
| |
Collapse
|
12
|
Sánchez-Álvarez M, del Pozo MÁ, Bosch M, Pol A. Insights Into the Biogenesis and Emerging Functions of Lipid Droplets From Unbiased Molecular Profiling Approaches. Front Cell Dev Biol 2022; 10:901321. [PMID: 35756995 PMCID: PMC9213792 DOI: 10.3389/fcell.2022.901321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Lipid droplets (LDs) are spherical, single sheet phospholipid-bound organelles that store neutral lipids in all eukaryotes and some prokaryotes. Initially conceived as relatively inert depots for energy and lipid precursors, these highly dynamic structures play active roles in homeostatic functions beyond metabolism, such as proteostasis and protein turnover, innate immunity and defense. A major share of the knowledge behind this paradigm shift has been enabled by the use of systematic molecular profiling approaches, capable of revealing and describing these non-intuitive systems-level relationships. Here, we discuss these advances and some of the challenges they entail, and highlight standing questions in the field.
Collapse
Affiliation(s)
- Miguel Sánchez-Álvarez
- Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Ángel del Pozo
- Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Marta Bosch
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
13
|
Krawczyk HE, Sun S, Doner NM, Yan Q, Lim MSS, Scholz P, Niemeyer PW, Schmitt K, Valerius O, Pleskot R, Hillmer S, Braus GH, Wiermer M, Mullen RT, Ischebeck T. SEED LIPID DROPLET PROTEIN1, SEED LIPID DROPLET PROTEIN2, and LIPID DROPLET PLASMA MEMBRANE ADAPTOR mediate lipid droplet-plasma membrane tethering. THE PLANT CELL 2022; 34:2424-2448. [PMID: 35348751 PMCID: PMC9134073 DOI: 10.1093/plcell/koac095] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 05/27/2023]
Abstract
Membrane contact sites (MCSs) are interorganellar connections that allow for the direct exchange of molecules, such as lipids or Ca2+ between organelles, but can also serve to tether organelles at specific locations within cells. Here, we identified and characterized three proteins of Arabidopsis thaliana that form a lipid droplet (LD)-plasma membrane (PM) tethering complex in plant cells, namely LD-localized SEED LD PROTEIN (SLDP) 1 and SLDP2 and PM-localized LD-PLASMA MEMBRANE ADAPTOR (LIPA). Using proteomics and different protein-protein interaction assays, we show that both SLDPs associate with LIPA. Disruption of either SLDP1 and SLDP2 expression, or that of LIPA, leads to an aberrant clustering of LDs in Arabidopsis seedlings. Ectopic co-expression of one of the SLDPs with LIPA is sufficient to reconstitute LD-PM tethering in Nicotiana tabacum pollen tubes, a cell type characterized by dynamically moving LDs in the cytosolic streaming. Furthermore, confocal laser scanning microscopy revealed both SLDP2.1 and LIPA to be enriched at LD-PM contact sites in seedlings. These and other results suggest that SLDP and LIPA interact to form a tethering complex that anchors a subset of LDs to the PM during post-germinative seedling growth in Arabidopsis.
Collapse
Affiliation(s)
- Hannah Elisa Krawczyk
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
| | - Siqi Sun
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
| | - Nathan M Doner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Qiqi Yan
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Molecular Biology of Plant-Microbe Interactions Research Group, University of Göttingen, Göttingen, Germany
| | - Magdiel Sheng Satha Lim
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
| | - Patricia Scholz
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
| | - Philipp William Niemeyer
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
| | - Kerstin Schmitt
- Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Department for Molecular Microbiology and Genetics, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Oliver Valerius
- Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Department for Molecular Microbiology and Genetics, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Roman Pleskot
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Stefan Hillmer
- Electron Microscopy Core Facility, Heidelberg University, Heidelberg, Germany
| | - Gerhard H Braus
- Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Department for Molecular Microbiology and Genetics, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Marcel Wiermer
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Molecular Biology of Plant-Microbe Interactions Research Group, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Till Ischebeck
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
- Institute of Plant Biology and Biotechnology (IBBP), Green Biotechnology, University of Münster, Münster, Germany
| |
Collapse
|
14
|
Shindo Y, Brown MG, Amodeo AA. Versatile roles for histones in early development. Curr Opin Cell Biol 2022; 75:102069. [PMID: 35279563 PMCID: PMC9064922 DOI: 10.1016/j.ceb.2022.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022]
Abstract
The nuclear environment changes dramatically over the course of early development. Histones are core chromatin components that play critical roles in regulating gene expression and nuclear architecture. Additionally, the embryos of many species, including Drosophila, Zebrafish, and Xenopus use the availability of maternally deposited histones to time critical early embryonic events including cell cycle slowing and zygotic genome activation. Here, we review recent insights into how histones control early development. We first discuss the regulation of chromatin functions through interaction of histones and transcription factors, incorporation of variant histones, and histone post-translational modifications. We also highlight emerging roles for histones as developmental regulators independent of chromatin association.
Collapse
Affiliation(s)
- Yuki Shindo
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| | - Madeleine G Brown
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Amanda A Amodeo
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
15
|
Histone variant H2A.Z regulates zygotic genome activation. Nat Commun 2021; 12:7002. [PMID: 34853314 PMCID: PMC8636486 DOI: 10.1038/s41467-021-27125-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
During embryogenesis, the genome shifts from transcriptionally quiescent to extensively active in a process known as Zygotic Genome Activation (ZGA). In Drosophila, the pioneer factor Zelda is known to be essential for the progression of development; still, it regulates the activation of only a small subset of genes at ZGA. However, thousands of genes do not require Zelda, suggesting that other mechanisms exist. By conducting GRO-seq, HiC and ChIP-seq in Drosophila embryos, we demonstrate that up to 65% of zygotically activated genes are enriched for the histone variant H2A.Z. H2A.Z enrichment precedes ZGA and RNA Polymerase II loading onto chromatin. In vivo knockdown of maternally contributed Domino, a histone chaperone and ATPase, reduces H2A.Z deposition at transcription start sites, causes global downregulation of housekeeping genes at ZGA, and compromises the establishment of the 3D chromatin structure. We infer that H2A.Z is essential for the de novo establishment of transcriptional programs during ZGA via chromatin reorganization. During embryogenesis, the genome becomes transcriptionally active in a process known as zygotic genome activation (ZGA); how ZGA is initiated is still an open question. Here the authors show histone variant H2A.Z deposition precedes RNA polymerase II binding on chromatin, before ZGA. H2A.Z loss causes transcriptional downregulation of ZGA genes and leads to changes in the 3D genome organization.
Collapse
|
16
|
Hello from the other side: Membrane contact of lipid droplets with other organelles and subsequent functional implications. Prog Lipid Res 2021; 85:101141. [PMID: 34793861 DOI: 10.1016/j.plipres.2021.101141] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023]
Abstract
Lipid droplets (LDs) are ubiquitous organelles that play crucial roles in response to physiological and environmental cues. The identification of several neutral lipid synthesizing and regulatory protein complexes have propelled significant advance on the mechanisms of LD biogenesis in the endoplasmic reticulum (ER). Increasing evidence suggests that distinct proteins and regulatory factors, which localize to membrane contact sites (MCS), are involved not only in interorganellar lipid exchange and transport, but also function in other important cellular processes, including autophagy, mitochondrial dynamics and inheritance, ion signaling and inter-regulation of these MCS. More and more tethers and molecular determinants are associated to MCS and to a diversity of cellular and pathophysiological processes, demonstrating the dynamics and importance of these junctions in health and disease. The conjugation of lipids with proteins in supramolecular complexes is known to be paramount for many biological processes, namely membrane biosynthesis, cell homeostasis, regulation of organelle division and biogenesis, and cell growth. Ultimately, this physical organization allows the contact sites to function as crucial metabolic hubs that control the occurrence of chemical reactions. This leads to biochemical and metabolite compartmentalization for the purposes of energetic efficiency and cellular homeostasis. In this review, we will focus on the structural and functional aspects of LD-organelle interactions and how they ensure signaling exchange and metabolites transfer between organelles.
Collapse
|
17
|
Stephenson RA, Thomalla JM, Chen L, Kolkhof P, White RP, Beller M, Welte MA. Sequestration to lipid droplets promotes histone availability by preventing turnover of excess histones. Development 2021; 148:271212. [PMID: 34355743 DOI: 10.1242/dev.199381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 07/05/2021] [Indexed: 12/15/2022]
Abstract
Because both dearth and overabundance of histones result in cellular defects, histone synthesis and demand are typically tightly coupled. In Drosophila embryos, histones H2B, H2A and H2Av accumulate on lipid droplets (LDs), which are cytoplasmic fat storage organelles. Without LD binding, maternally provided H2B, H2A and H2Av are absent; however, how LDs ensure histone storage is unclear. Using quantitative imaging, we uncover when during oogenesis these histones accumulate, and which step of accumulation is LD dependent. LDs originate in nurse cells (NCs) and are transported to the oocyte. Although H2Av accumulates on LDs in NCs, the majority of the final H2Av pool is synthesized in oocytes. LDs promote intercellular transport of the histone anchor Jabba and thus its presence in the ooplasm. Ooplasmic Jabba then prevents H2Av degradation, safeguarding the H2Av stockpile. Our findings provide insight into the mechanism for establishing histone stores during Drosophila oogenesis and shed light on the function of LDs as protein-sequestration sites.
Collapse
Affiliation(s)
- Roxan A Stephenson
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | - Lili Chen
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Petra Kolkhof
- Institute for Mathematical Modeling of Biological Systems, Systems Biology of Lipid Metabolism, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Roger P White
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Mathias Beller
- Institute for Mathematical Modeling of Biological Systems, Systems Biology of Lipid Metabolism, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Michael A Welte
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
18
|
Reza AHMM, Zhou Y, Qin J, Tang Y. Aggregation-induced emission luminogens for lipid droplet imaging. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 184:101-144. [PMID: 34749970 DOI: 10.1016/bs.pmbts.2021.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lipid droplets (LDs) are evolutionarily conserved organelles involved in energy homeostasis and versatile intracellular processes in different cell types. Their importance is ubiquitous, ranges from utilization as the biofunctional components to third-generation biofuel production from microalgae, while morphology and functional perturbations could also relate to the multiple diseases in higher mammals. Biosynthesis of lipids can be triggered by multiple factors related to organismal physiology and the surrounding environment. An early prediction of this might help take necessary actions toward desired outcomes. In vivo visualization of LDs can give molecular insight into regulatory mechanisms and the underlying connections with other cellular structures. Traditional bioprobes for LDs detection often suffer from different dye-specific limitations such as aggregation-caused quenching and self-decomposition phenomena that hinder the research advancement. The emergence of lipid-specific nanoprobes with aggregation-induced emission (AIE) attributes in recent years is promising in remunerative characteristics with defined bioimaging properties. By utilizing the easy synthetic techniques and exploiting the unique physical features of these molecules, highly selective, stable, biocompatible and facile fluorescent probes could be fabricated for lipid detection. This chapter will provide up-to-date insight into the recent advances in lipid-specific AIE-based probes to enhance the opportunities for basic research related to the distinct roles of LDs in living organisms.
Collapse
Affiliation(s)
- A H M Mohsinul Reza
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia; Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Yabin Zhou
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia.
| | - Youhong Tang
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia; Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
19
|
Ralhan I, Chang CL, Lippincott-Schwartz J, Ioannou MS. Lipid droplets in the nervous system. J Cell Biol 2021; 220:e202102136. [PMID: 34152362 PMCID: PMC8222944 DOI: 10.1083/jcb.202102136] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 01/20/2023] Open
Abstract
Lipid droplets are dynamic intracellular lipid storage organelles that respond to the physiological state of cells. In addition to controlling cell metabolism, they play a protective role for many cellular stressors, including oxidative stress. Despite prior descriptions of lipid droplets appearing in the brain as early as a century ago, only recently has the role of lipid droplets in cells found in the brain begun to be understood. Lipid droplet functions have now been described for cells of the nervous system in the context of development, aging, and an increasing number of neuropathologies. Here, we review the basic mechanisms of lipid droplet formation, turnover, and function and discuss how these mechanisms enable lipid droplets to function in different cell types of the nervous system under healthy and pathological conditions.
Collapse
Affiliation(s)
- Isha Ralhan
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Chi-Lun Chang
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA
| | | | - Maria S. Ioannou
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
20
|
Zembroski AS, Andolino C, Buhman KK, Teegarden D. Proteomic Characterization of Cytoplasmic Lipid Droplets in Human Metastatic Breast Cancer Cells. Front Oncol 2021; 11:576326. [PMID: 34141606 PMCID: PMC8204105 DOI: 10.3389/fonc.2021.576326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
One of the characteristic features of metastatic breast cancer is increased cellular storage of neutral lipid in cytoplasmic lipid droplets (CLDs). CLD accumulation is associated with increased cancer aggressiveness, suggesting CLDs contribute to metastasis. However, how CLDs contribute to metastasis is not clear. CLDs are composed of a neutral lipid core, a phospholipid monolayer, and associated proteins. Proteins that associate with CLDs regulate both cellular and CLD metabolism; however, the proteome of CLDs in metastatic breast cancer and how these proteins may contribute to breast cancer progression is unknown. Therefore, the purpose of this study was to identify the proteome and assess the characteristics of CLDs in the MCF10CA1a human metastatic breast cancer cell line. Utilizing shotgun proteomics, we identified over 1500 proteins involved in a variety of cellular processes in the isolated CLD fraction. Interestingly, unlike other cell lines such as adipocytes or enterocytes, the most enriched protein categories were involved in cellular processes outside of lipid metabolism. For example, cell-cell adhesion was the most enriched category of proteins identified, and many of these proteins have been implicated in breast cancer metastasis. In addition, we characterized CLD size and area in MCF10CA1a cells using transmission electron microscopy. Our results provide a hypothesis-generating list of potential players in breast cancer progression and offers a new perspective on the role of CLDs in cancer.
Collapse
Affiliation(s)
- Alyssa S Zembroski
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Chaylen Andolino
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Kimberly K Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Dorothy Teegarden
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
21
|
Vaughan RM, Kupai A, Rothbart SB. Chromatin Regulation through Ubiquitin and Ubiquitin-like Histone Modifications. Trends Biochem Sci 2020; 46:258-269. [PMID: 33308996 DOI: 10.1016/j.tibs.2020.11.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Chromatin functions are influenced by the addition, removal, and recognition of histone post-translational modifications (PTMs). Ubiquitin and ubiquitin-like (UBL) PTMs on histone proteins can function as signaling molecules by mediating protein-protein interactions. Fueled by the identification of novel ubiquitin and UBL sites and the characterization of the writers, erasers, and readers, the breadth of chromatin functions associated with ubiquitin signaling is emerging. Here, we highlight recently appreciated roles for histone ubiquitination in DNA methylation control, PTM crosstalk, nucleosome structure, and phase separation. We also discuss the expanding diversity and functions associated with histone UBL modifications. We conclude with a look toward the future and pose key questions that will drive continued discovery at the interface of epigenetics and ubiquitin signaling.
Collapse
Affiliation(s)
- Robert M Vaughan
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ariana Kupai
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Scott B Rothbart
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
22
|
Jin Y, Tan Y, Zhao P, Ren Z. SEIPIN: A Key Factor for Nuclear Lipid Droplet Generation and Lipid Homeostasis. Int J Mol Sci 2020; 21:ijms21218208. [PMID: 33147895 PMCID: PMC7663086 DOI: 10.3390/ijms21218208] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/28/2022] Open
Abstract
Lipid homeostasis is essential for normal cell physiology. Generally, lipids are stored in a lipid droplet (LD), a ubiquitous organelle consisting of a neutral lipid core and a single layer of phospholipid membrane. It is thought that LDs are generated from the endoplasmic reticulum and then released into the cytosol. Recent studies indicate that LDs can exist in the nucleus, where they play an important role in the maintenance of cell phospholipid homeostasis. However, the details of nuclear lipid droplet (nLD) generation have not yet been clearly characterized. SEIPIN is a nonenzymatic protein encoded by the Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) gene. It is associated with lipodystrophy diseases. Many recent studies have indicated that SEIPIN is essential for LDs generation. Here, we review much of this research in an attempt to explain the role of SEIPIN in nLD generation. From an integrative perspective, we conclude by proposing a theoretical model to explain how SEIPIN might participate in maintaining homeostasis of lipid metabolism.
Collapse
Affiliation(s)
- Yi Jin
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (Y.J.); (Y.T.); (P.Z.)
- Bio-Medical Center of Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yanjie Tan
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (Y.J.); (Y.T.); (P.Z.)
- Institute of Biomedical Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong, China
| | - Pengxiang Zhao
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (Y.J.); (Y.T.); (P.Z.)
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (Y.J.); (Y.T.); (P.Z.)
- Bio-Medical Center of Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Correspondence:
| |
Collapse
|
23
|
Spastin mutations impair coordination between lipid droplet dispersion and reticulum. PLoS Genet 2020; 16:e1008665. [PMID: 32315314 PMCID: PMC7173978 DOI: 10.1371/journal.pgen.1008665] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/12/2020] [Indexed: 12/22/2022] Open
Abstract
Lipid droplets (LD) are affected in multiple human disorders. These highly dynamic organelles are involved in many cellular roles. While their intracellular dispersion is crucial to ensure their function and other organelles-contact, underlying mechanisms are still unclear. Here we show that Spastin, one of the major proteins involved in Hereditary Spastic Paraplegia (HSP), controls LD dispersion. Spastin depletion in zebrafish affects metabolic properties and organelle dynamics. These functions are ensured by a conserved complex set of splice variants. M1 isoforms determine LD dispersion in the cell by orchestrating endoplasmic reticulum (ER) shape along microtubules (MTs). To further impact LD fate, Spastin modulates transcripts levels and subcellular location of other HSP key players, notably Seipin and REEP1. In pathological conditions, mutations in human Spastin M1 disrupt this mechanism and impacts LD network. Spastin depletion influences not only other key proteins but also modulates specific neutral lipids and phospholipids, revealing an impact on membrane and organelle components. Altogether our results show that Spastin and its partners converge in a common machinery that coordinates LD dispersion and ER shape along MTs. Any alteration of this system results in HSP clinical features and impacts lipids profile, thus opening new avenues for novel biomarkers of HSP.
Collapse
|
24
|
Jarc E, Petan T. A twist of FATe: Lipid droplets and inflammatory lipid mediators. Biochimie 2020; 169:69-87. [DOI: 10.1016/j.biochi.2019.11.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
|
25
|
The Puzzling Conservation and Diversification of Lipid Droplets from Bacteria to Eukaryotes. Results Probl Cell Differ 2020; 69:281-334. [PMID: 33263877 DOI: 10.1007/978-3-030-51849-3_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Membrane compartments are amongst the most fascinating markers of cell evolution from prokaryotes to eukaryotes, some being conserved and the others having emerged via a series of primary and secondary endosymbiosis events. Membrane compartments comprise the system limiting cells (one or two membranes in bacteria, a unique plasma membrane in eukaryotes) and a variety of internal vesicular, subspherical, tubular, or reticulated organelles. In eukaryotes, the internal membranes comprise on the one hand the general endomembrane system, a dynamic network including organelles like the endoplasmic reticulum, the Golgi apparatus, the nuclear envelope, etc. and also the plasma membrane, which are linked via direct lateral connectivity (e.g. between the endoplasmic reticulum and the nuclear outer envelope membrane) or indirectly via vesicular trafficking. On the other hand, semi-autonomous organelles, i.e. mitochondria and chloroplasts, are disconnected from the endomembrane system and request vertical transmission following cell division. Membranes are organized as lipid bilayers in which proteins are embedded. The budding of some of these membranes, leading to the formation of the so-called lipid droplets (LDs) loaded with hydrophobic molecules, most notably triacylglycerol, is conserved in all clades. The evolution of eukaryotes is marked by the acquisition of mitochondria and simple plastids from Gram-positive bacteria by primary endosymbiosis events and the emergence of extremely complex plastids, collectively called secondary plastids, bounded by three to four membranes, following multiple and independent secondary endosymbiosis events. There is currently no consensus view of the evolution of LDs in the Tree of Life. Some features are conserved; others show a striking level of diversification. Here, we summarize the current knowledge on the architecture, dynamics, and multitude of functions of the lipid droplets in prokaryotes and in eukaryotes deriving from primary and secondary endosymbiosis events.
Collapse
|
26
|
Abstract
Lipid droplets have a unique structure among organelles consisting of a dense hydrophobic core of neutral lipids surrounded by a single layer of phospholipids decorated with various proteins. Often labeled merely as passive fat storage repositories, they in fact have a remarkably dynamic life cycle. Being formed within the endoplasmic reticulum membrane, lipid droplets rapidly grow, shrink, traverse the cytosol, and engage in contacts with other organelles to exchange proteins and lipids. Their lipid and protein composition changes dynamically in response to cellular states and nutrient availability. Remarkably, their biogenesis is induced when cells experience various forms of nutrient, energy, and redox imbalances, including lipid excess and complete nutrient deprivation. Cancer cells are continuously exposed to nutrient and oxygen fluctuations and have the capacity to switch between alternative nutrient acquisition and metabolic pathways in order to strive even during severe stress. Their supply of lipids is ensured by a series of nutrient uptake and scavenging mechanisms, upregulation of de novo lipid synthesis, repurposing of their structural lipids via enzymatic remodeling, or lipid recycling through autophagy. Importantly, most of these pathways of lipid acquisition converge at lipid droplets, which combine different lipid fluxes and control their usage based on specific cellular needs. It is thus not surprising that lipid droplet breakdown is an elaborately regulated process that occurs via a complex interplay of neutral lipases and autophagic degradation. Cancer cells employ lipid droplets to ensure energy production and redox balance, modulate autophagy, drive membrane synthesis, and control its composition, thereby minimizing stress and fostering tumor progression. As regulators of (poly)unsaturated fatty acid trafficking, lipid droplets are also emerging as modulators of lipid peroxidation and sensitivity to ferroptosis. Clearly, dysregulated lipid droplet turnover may also be detrimental to cancer cells, which should provide potential therapeutic opportunities in the future. In this review, we explore how lipid droplets consolidate lipid acquisition and trafficking pathways in order to match lipid supply with the requirements for cancer cell survival, growth, and metastasis.
Collapse
|
27
|
Abstract
Lipid droplets (LDs) are fat storage organelles integral to energy homeostasis and a wide range of cellular processes. LDs physically and functionally interact with many partner organelles, including the ER, mitochondria, lysosomes, and peroxisomes. Recent findings suggest that the dynamics of LD inter-organelle contacts is in part controlled by LD intracellular motility. LDs can be transported directly by motor proteins along either actin filaments or microtubules, via Kinesin-1, Cytoplasmic Dynein, and type V Myosins. LDs can also be propelled indirectly, by hitchhiking on other organelles, cytoplasmic flows, and potentially actin polymerization. Although the anchors that attach motors to LDs remain elusive, other regulators of LD motility have been identified, ranging from modification of the tracks to motor co-factors to members of the perilipin family of LD proteins. Manipulating these regulatory pathways provides a tool to probe whether altered motility affects organelle contacts and has revealed that LD motility can promote interactions with numerous partners, with profound consequences for metabolism. LD motility can cause dramatic redistribution of LDs between a clustered and a dispersed state, resulting in altered organelle contacts and LD turnover. We propose that LD motility can thus promote switches in the metabolic state of a cell. Finally, LD motility is also important for LD allocation during cell division. In a number of animal embryos, uneven allocation results in a large difference in LD content in distinct daughter cells, suggesting cell-type specific LD needs.
Collapse
Affiliation(s)
- Marcus D Kilwein
- Department of Biology, University of Rochester, RC Box 270211, Rochester, NY 14627, USA
| | - M A Welte
- Department of Biology, University of Rochester, RC Box 270211, Rochester, NY 14627, USA
| |
Collapse
|
28
|
Chen L, Chen XW, Huang X, Song BL, Wang Y, Wang Y. Regulation of glucose and lipid metabolism in health and disease. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1420-1458. [PMID: 31686320 DOI: 10.1007/s11427-019-1563-3] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023]
Abstract
Glucose and fatty acids are the major sources of energy for human body. Cholesterol, the most abundant sterol in mammals, is a key component of cell membranes although it does not generate ATP. The metabolisms of glucose, fatty acids and cholesterol are often intertwined and regulated. For example, glucose can be converted to fatty acids and cholesterol through de novo lipid biosynthesis pathways. Excessive lipids are secreted in lipoproteins or stored in lipid droplets. The metabolites of glucose and lipids are dynamically transported intercellularly and intracellularly, and then converted to other molecules in specific compartments. The disorders of glucose and lipid metabolism result in severe diseases including cardiovascular disease, diabetes and fatty liver. This review summarizes the major metabolic aspects of glucose and lipid, and their regulations in the context of physiology and diseases.
Collapse
Affiliation(s)
- Ligong Chen
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China.
| | - Xiao-Wei Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yiguo Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
29
|
Jarc E, Petan T. Lipid Droplets and the Management of Cellular Stress. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:435-452. [PMID: 31543707 PMCID: PMC6747940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Lipid droplets are cytosolic fat storage organelles present in most eukaryotic cells. Long regarded merely as inert fat reservoirs, they are now emerging as major regulators of cellular metabolism. They act as hubs that coordinate the pathways of lipid uptake, distribution, storage, and use in the cell. Recent studies have revealed that they are also essential components of the cellular stress response. One of the hallmark characteristics of lipid droplets is their capacity to buffer excess lipids and to finely tune their subsequent release based on specific cellular requirements. This simple feature of lipid droplet biology, buffering and delayed release of lipids, forms the basis for their pleiotropic roles in the cellular stress response. In stressed cells, lipid droplets maintain energy and redox homeostasis and protect against lipotoxicity by sequestering toxic lipids into their neutral lipid core. Their mobility and dynamic interactions with mitochondria enable an efficient delivery of fatty acids for optimal energy production. Lipid droplets are also involved in the maintenance of membrane and organelle homeostasis by regulating membrane composition, preventing lipid peroxidation and removing damaged proteins and lipids. Finally, they also engage in a symbiotic relationship with autophagy and act as reservoirs of bioactive lipids that regulate inflammation and immunity. Thus, lipid droplets are central managers of lipid metabolism that function as safeguards against various types of cellular stress.
Collapse
Affiliation(s)
- Eva Jarc
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia,To whom all correspondence should be addressed: Toni Petan, Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Tel: +386 1 477 3713, Fax: +386 1 477 3984,
| |
Collapse
|
30
|
Thiam AR, Dugail I. Lipid droplet-membrane contact sites - from protein binding to function. J Cell Sci 2019; 132:132/12/jcs230169. [PMID: 31209063 DOI: 10.1242/jcs.230169] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the general context of an increasing prevalence of obesity-associated diseases, which follows changing paradigms in food consumption and worldwide use of industry-transformed foodstuffs, much attention has been given to the consequences of excessive fattening on health. Highly related to this clinical problem, studies at the cellular and molecular level are focused on the fundamental mechanism of lipid handling in dedicated lipid droplet (LD) organelles. This Review briefly summarizes how views on LD functions have evolved from those of a specialized intracellular compartment dedicated to lipid storage to exerting a more generalized role in the stress response. We focus on the current understanding of how proteins bind to LDs and determine their function, and on the new paradigms that have emerged from the discoveries of the multiple contact sites formed by LDs. We argue that elucidating the important roles of LD tethering to other cellular organelles allows for a better understanding of LD diversity and dynamics.
Collapse
Affiliation(s)
- Abdou Rachid Thiam
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, 75005 Paris, France
| | - Isabelle Dugail
- U1269 INSERM/Sorbonne Université, Nutriomics, Faculté de Médecine Pitié-Salpêtrière, 75013 Paris, France
| |
Collapse
|
31
|
Sênos Demarco R, Uyemura BS, D'Alterio C, Jones DL. Mitochondrial fusion regulates lipid homeostasis and stem cell maintenance in the Drosophila testis. Nat Cell Biol 2019; 21:710-720. [PMID: 31160709 DOI: 10.1038/s41556-019-0332-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 04/23/2019] [Indexed: 01/02/2023]
Abstract
The capacity of stem cells to self-renew or differentiate has been attributed to distinct metabolic states. A genetic screen targeting regulators of mitochondrial dynamics revealed that mitochondrial fusion is required for the maintenance of male germline stem cells (GSCs) in Drosophila melanogaster. Depletion of Mitofusin (dMfn) or Opa1 led to dysfunctional mitochondria, activation of Target of rapamycin (TOR) and a marked accumulation of lipid droplets. Enhancement of lipid utilization by the mitochondria attenuated TOR activation and rescued the loss of GSCs that was caused by inhibition of mitochondrial fusion. Moreover, constitutive activation of the TOR-pathway target and lipogenesis factor Sterol regulatory element binding protein (SREBP) also resulted in GSC loss, whereas inhibition of SREBP rescued GSC loss triggered by depletion of dMfn. Our findings highlight a critical role for mitochondrial fusion and lipid homeostasis in GSC maintenance, providing insight into the potential impact of mitochondrial and metabolic diseases on the function of stem and/or germ cells.
Collapse
Affiliation(s)
- Rafael Sênos Demarco
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bradley S Uyemura
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Cecilia D'Alterio
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - D Leanne Jones
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA. .,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA. .,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
32
|
Shindo Y, Amodeo AA. Dynamics of Free and Chromatin-Bound Histone H3 during Early Embryogenesis. Curr Biol 2019; 29:359-366.e4. [DOI: 10.1016/j.cub.2018.12.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/29/2018] [Accepted: 12/13/2018] [Indexed: 11/27/2022]
|