1
|
Norris RHC, Bizley JK. Ferret contributions to the business of sensory neurobiology. Curr Opin Neurobiol 2024; 89:102929. [PMID: 39488005 DOI: 10.1016/j.conb.2024.102929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 11/04/2024]
Abstract
In this brief review, we will highlight the ferret Mustela putorius furo as an increasingly utilized animal model for sensory systems and cognitive neuroscience research. In particular, the human like hearing range of the ferret, coupled with their amenability to training, make them an especially useful model for auditory and multisensory neuroscience. These factors, combined with the increasing availability of virally mediated circuit dissection methods, mean they occupy a unique niche as a versatile and valuable research model.
Collapse
Affiliation(s)
- Rebecca H C Norris
- University College London, UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK
| | - Jennifer K Bizley
- University College London, UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK.
| |
Collapse
|
2
|
Joshi N, Ng WY, Thakkar K, Duque D, Yin P, Fritz J, Elhilali M, Shamma S. Temporal coherence shapes cortical responses to speech mixtures in a ferret cocktail party. Commun Biol 2024; 7:1392. [PMID: 39455846 PMCID: PMC11511904 DOI: 10.1038/s42003-024-07096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Perceptual segregation of complex sounds such as speech and music simultaneously emanating from multiple sources is a remarkable ability that is common in humans and other animals alike. Unlike animal physiological experiments with simplified sounds or human investigations with spatially broad imaging techniques, this study combines insights from animal single-unit recordings with segregation of speech-like sound mixtures. Ferrets are trained to attend to a female voice and detect a target word, both in presence and absence of a concurrent equally salient male voice. Recordings are made in primary and secondary auditory cortical fields, and in frontal cortex. During task performance, representation of the female words becomes enhanced relative to the male in all, but especially in higher cortical regions. Analysis of the temporal and spectral response characteristics during task performance reveals how speech segregation gradually emerges in the auditory cortex. A computational model evaluated on the same voice mixtures replicates and extends these results to different attentional targets (attention to female or male voices). These findings underscore the role of the principle of temporal coherence whereby attention to a target voice binds together all neural responses coherently modulated with the target, thus ultimately forming and extracting a common auditory stream.
Collapse
Affiliation(s)
- Neha Joshi
- Electrical and Computer Engineering Department, University of Maryland, College Park, MD, USA
| | - Wing Yiu Ng
- Electrical and Computer Engineering Department, University of Maryland, College Park, MD, USA
| | - Karan Thakkar
- Electrical and Computer Engineering Department, The Johns Hopkins University, Baltimore, MD, USA
| | - Daniel Duque
- Institute of Neuroscience of Castilla Y León, University of Salamanca, Salamanca, Spain
| | - Pingbo Yin
- Institute for Systems Research, University of Maryland, College Park, MD, USA
| | | | - Mounya Elhilali
- Electrical and Computer Engineering Department, The Johns Hopkins University, Baltimore, MD, USA
| | - Shihab Shamma
- Electrical and Computer Engineering Department, University of Maryland, College Park, MD, USA.
- Institute for Systems Research, University of Maryland, College Park, MD, USA.
- Départment d'étude Cognitives, École Normale Supérieure-PSL, Paris, France.
| |
Collapse
|
3
|
Joshi N, Ng Y, Thakkar K, Duque D, Yin P, Fritz J, Elhilali M, Shamma S. Temporal Coherence Shapes Cortical Responses to Speech Mixtures in a Ferret Cocktail Party. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595171. [PMID: 38915590 PMCID: PMC11195067 DOI: 10.1101/2024.05.21.595171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Segregation of complex sounds such as speech, music and animal vocalizations as they simultaneously emanate from multiple sources (referred to as the "cocktail party problem") is a remarkable ability that is common in humans and animals alike. The neural underpinnings of this process have been extensively studied behaviorally and physiologically in non-human animals primarily with simplified sounds (tones and noise sequences). In humans, segregation experiments utilizing more complex speech mixtures are common; but physiological experiments have relied on EEG/MEG/ECoG recordings that sample activity from thousands of neurons, often obscuring the detailed processes that give rise to the observed segregation. The present study combines the insights from animal single-unit physiology with segregation of speech-like mixtures. Ferrets were trained to attend to a female voice and detect a target word, both in presence or absence of a concurrent, equally salient male voice. Single neuron recordings were obtained from primary and secondary ferret auditory cortical fields, as well as frontal cortex. During task performance, representation of the female words became more enhanced relative to those of the (distractor) male in all cortical regions, especially in the higher auditory cortical field. Analysis of the temporal and spectral response characteristics during task performance reveals how speech segregation gradually emerges in the auditory cortex. A computational model evaluated on the same voice mixtures replicates and extends these results to different attentional targets (attention to female or male voices). These findings are consistent with the temporal coherence theory whereby attention to a target voice anchors neural activity in cortical networks hence binding together channels that are coherently temporally-modulated with the target, and ultimately forming a common auditory stream.
Collapse
Affiliation(s)
- Neha Joshi
- Electrical and Computer Engineering Department, University of Maryland College Park, MD
| | - Yu Ng
- Electrical and Computer Engineering Department, University of Maryland College Park, MD
| | - Karran Thakkar
- Electrical and Computer Engineering Department, The Johns Hopkins University, MD
| | - Daniel Duque
- Institute of Neuroscience of Castilla Y León, University of Salamanca
| | - Pingbo Yin
- Institute for Systems Research, University of Maryland College Park, MD
| | | | - Mounya Elhilali
- Electrical and Computer Engineering Department, The Johns Hopkins University, MD
| | - Shihab Shamma
- Electrical and Computer Engineering Department, University of Maryland College Park, MD
- Institute for Systems Research, University of Maryland College Park, MD
- Départment d'étude cognitives, école normale supérieure, PSL, Paris
| |
Collapse
|
4
|
Joris PX, Verschooten E, Mc Laughlin M, Versteegh C, van der Heijden M. Frequency selectivity in monkey auditory nerve studied with suprathreshold multicomponent stimuli. Hear Res 2024; 443:108964. [PMID: 38277882 DOI: 10.1016/j.heares.2024.108964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
Data from non-human primates can help extend observations from non-primate species to humans. Here we report measurements on the auditory nerve of macaque monkeys in the context of a controversial topic important to human hearing. A range of techniques have been used to examine the claim, which is not generally accepted, that human frequency tuning is sharper than traditionally thought, and sharper than in commonly used animal models. Data from single auditory-nerve fibers occupy a pivotal position to examine this claim, but are not available for humans. A previous study reported sharper tuning in auditory-nerve fibers of macaque relative to the cat. A limitation of these and other single-fiber data is that frequency selectivity was measured with tonal threshold-tuning curves, which do not directly assess spectral filtering and whose shape is sharpened by cochlear nonlinearity. Our aim was to measure spectral filtering with wideband suprathreshold stimuli in the macaque auditory nerve. We obtained responses of single nerve fibers of anesthetized macaque monkeys and cats to a suprathreshold, wideband, multicomponent stimulus designed to allow characterization of spectral filtering at any cochlear locus. Quantitatively the differences between the two species are smaller than in previous studies, but consistent with these studies the filters obtained show a trend of sharper tuning in macaque, relative to the cat, for fibers in the basal half of the cochlea. We also examined differences in group delay measured on the phase data near the characteristic frequency versus in the low-frequency tail. The phase data are consistent with the interpretation of sharper frequency tuning in monkey in the basal half of the cochlea. We conclude that use of suprathreshold, wide-band stimuli supports the interpretation of sharper frequency selectivity in macaque nerve fibers relative to the cat, although the difference is less marked than apparent from the assessment with tonal threshold-based data.
Collapse
Affiliation(s)
- P X Joris
- Lab of Auditory Neurophysiology, KU Leuven, O&N2 KU Leuven, Herestraat 49 bus 1021, Leuven B-3000, Belgium.
| | - E Verschooten
- Lab of Auditory Neurophysiology, KU Leuven, O&N2 KU Leuven, Herestraat 49 bus 1021, Leuven B-3000, Belgium
| | - M Mc Laughlin
- Lab of Auditory Neurophysiology, KU Leuven, O&N2 KU Leuven, Herestraat 49 bus 1021, Leuven B-3000, Belgium
| | - Cpc Versteegh
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | |
Collapse
|
5
|
Li YH, Joris PX. Case reopened: A temporal basis for harmonic pitch templates in the early auditory system?a). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:3986-4003. [PMID: 38149819 DOI: 10.1121/10.0023969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
A fundamental assumption of rate-place models of pitch is the existence of harmonic templates in the central nervous system (CNS). Shamma and Klein [(2000). J. Acoust. Soc. Am. 107, 2631-2644] hypothesized that these templates have a temporal basis. Coincidences in the temporal fine-structure of neural spike trains, even in response to nonharmonic, stochastic stimuli, would be sufficient for the development of harmonic templates. The physiological plausibility of this hypothesis is tested. Responses to pure tones, low-pass noise, and broadband noise from auditory nerve fibers and brainstem "high-sync" neurons are studied. Responses to tones simulate the output of fibers with infinitely sharp filters: for these responses, harmonic structure in a coincidence matrix comparing pairs of spike trains is indeed found. However, harmonic template structure is not observed in coincidences across responses to broadband noise, which are obtained from nerve fibers or neurons with enhanced synchronization. Using a computer model based on that of Shamma and Klein, it is shown that harmonic templates only emerge when consecutive processing steps (cochlear filtering, lateral inhibition, and temporal enhancement) are implemented in extreme, physiologically implausible form. It is concluded that current physiological knowledge does not support the hypothesis of Shamma and Klein (2000).
Collapse
Affiliation(s)
- Yi-Hsuan Li
- Laboratory of Auditory Neurophysiology, Medical School, Campus Gasthuisberg, University of Leuven, B-3000 Leuven, Belgium
| | - Philip X Joris
- Laboratory of Auditory Neurophysiology, Medical School, Campus Gasthuisberg, University of Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
6
|
Berger JI, Gander PE, Kikuchi Y, Petkov CI, Kumar S, Kovach C, Oya H, Kawasaki H, Howard MA, Griffiths TD. Distribution of multiunit pitch responses recorded intracranially from human auditory cortex. Cereb Cortex 2023:7180374. [PMID: 37246155 DOI: 10.1093/cercor/bhad186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/30/2023] Open
Abstract
The perception of pitch is a fundamental percept, which is mediated by the auditory system, requiring the abstraction of stimulus properties related to the spectro-temporal structure of sound. Despite its importance, there is still debate as to the precise areas responsible for its encoding, which may be due to species differences or differences in the recording measures and choices of stimuli used in previous studies. Moreover, it was unknown whether the human brain contains pitch neurons and how distributed such neurons might be. Here, we present the first study to measure multiunit neural activity in response to pitch stimuli in the auditory cortex of intracranially implanted humans. The stimulus sets were regular-interval noise with a pitch strength that is related to the temporal regularity and a pitch value determined by the repetition rate and harmonic complexes. Specifically, we demonstrate reliable responses to these different pitch-inducing paradigms that are distributed throughout Heschl's gyrus, rather than being localized to a particular region, and this finding was evident regardless of the stimulus presented. These data provide a bridge across animal and human studies and aid our understanding of the processing of a critical percept associated with acoustic stimuli.
Collapse
Affiliation(s)
- Joel I Berger
- Department of Neurosurgery, 1800 JPP, 200 Hawkins Drive, University of Iowa, Iowa City, IA 52242, United States
| | - Phillip E Gander
- Department of Neurosurgery, 1800 JPP, 200 Hawkins Drive, University of Iowa, Iowa City, IA 52242, United States
| | - Yukiko Kikuchi
- Biosciences Institute, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Christopher I Petkov
- Department of Neurosurgery, 1800 JPP, 200 Hawkins Drive, University of Iowa, Iowa City, IA 52242, United States
- Biosciences Institute, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Sukhbinder Kumar
- Department of Neurosurgery, 1800 JPP, 200 Hawkins Drive, University of Iowa, Iowa City, IA 52242, United States
| | - Christopher Kovach
- Department of Neurosurgery, 1800 JPP, 200 Hawkins Drive, University of Iowa, Iowa City, IA 52242, United States
| | - Hiroyuki Oya
- Department of Neurosurgery, 1800 JPP, 200 Hawkins Drive, University of Iowa, Iowa City, IA 52242, United States
| | - Hiroto Kawasaki
- Department of Neurosurgery, 1800 JPP, 200 Hawkins Drive, University of Iowa, Iowa City, IA 52242, United States
| | - Matthew A Howard
- Department of Neurosurgery, 1800 JPP, 200 Hawkins Drive, University of Iowa, Iowa City, IA 52242, United States
| | | |
Collapse
|
7
|
Oxenham AJ. Questions and controversies surrounding the perception and neural coding of pitch. Front Neurosci 2023; 16:1074752. [PMID: 36699531 PMCID: PMC9868815 DOI: 10.3389/fnins.2022.1074752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Pitch is a fundamental aspect of auditory perception that plays an important role in our ability to understand speech, appreciate music, and attend to one sound while ignoring others. The questions surrounding how pitch is represented in the auditory system, and how our percept relates to the underlying acoustic waveform, have been a topic of inquiry and debate for well over a century. New findings and technological innovations have led to challenges of some long-standing assumptions and have raised new questions. This article reviews some recent developments in the study of pitch coding and perception and focuses on the topic of how pitch information is extracted from peripheral representations based on frequency-to-place mapping (tonotopy), stimulus-driven auditory-nerve spike timing (phase locking), or a combination of both. Although a definitive resolution has proved elusive, the answers to these questions have potentially important implications for mitigating the effects of hearing loss via devices such as cochlear implants.
Collapse
Affiliation(s)
- Andrew J. Oxenham
- Center for Applied and Translational Sensory Science, University of Minnesota Twin Cities, Minneapolis, MN, United States
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, United States
| |
Collapse
|
8
|
Richardson ML, Guérit F, Gransier R, Wouters J, Carlyon RP, Middlebrooks JC. Temporal Pitch Sensitivity in an Animal Model: Psychophysics and Scalp Recordings : Temporal Pitch Sensitivity in Cat. J Assoc Res Otolaryngol 2022; 23:491-512. [PMID: 35668206 PMCID: PMC9437162 DOI: 10.1007/s10162-022-00849-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/11/2022] [Indexed: 01/28/2023] Open
Abstract
Cochlear implant (CI) users show limited sensitivity to the temporal pitch conveyed by electric stimulation, contributing to impaired perception of music and of speech in noise. Neurophysiological studies in cats suggest that this limitation is due, in part, to poor transmission of the temporal fine structure (TFS) by the brainstem pathways that are activated by electrical cochlear stimulation. It remains unknown, however, how that neural limit might influence perception in the same animal model. For that reason, we developed non-invasive psychophysical and electrophysiological measures of temporal (i.e., non-spectral) pitch processing in the cat. Normal-hearing (NH) cats were presented with acoustic pulse trains consisting of band-limited harmonic complexes that simulated CI stimulation of the basal cochlea while removing cochlear place-of-excitation cues. In the psychophysical procedure, trained cats detected changes from a base pulse rate to a higher pulse rate. In the scalp-recording procedure, the cortical-evoked acoustic change complex (ACC) and brainstem-generated frequency following response (FFR) were recorded simultaneously in sedated cats for pulse trains that alternated between the base and higher rates. The range of perceptual sensitivity to temporal pitch broadly resembled that of humans but was shifted to somewhat higher rates. The ACC largely paralleled these perceptual patterns, validating its use as an objective measure of temporal pitch sensitivity. The phase-locked FFR, in contrast, showed strong brainstem encoding for all tested pulse rates. These measures demonstrate the cat's perceptual sensitivity to pitch in the absence of cochlear-place cues and may be valuable for evaluating neural mechanisms of temporal pitch perception in the feline animal model of stimulation by a CI or novel auditory prostheses.
Collapse
Affiliation(s)
- Matthew L Richardson
- Department of Otolaryngology, Center for Hearing Research, University of California at Irvine, Irvine, CA, USA.
| | - François Guérit
- Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Robin Gransier
- Department of Neurosciences, ExpORL, KU Leuven, Leuven, Belgium
| | - Jan Wouters
- Department of Neurosciences, ExpORL, KU Leuven, Leuven, Belgium
| | - Robert P Carlyon
- Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - John C Middlebrooks
- Department of Otolaryngology, Center for Hearing Research, University of California at Irvine, Irvine, CA, USA
- Departments of Neurobiology & Behavior, Biomedical Engineering, Cognitive Sciences, University of California at Irvine, Irvine, CA, USA
| |
Collapse
|
9
|
Abstract
Hearing in noise is a core problem in audition, and a challenge for hearing-impaired listeners, yet the underlying mechanisms are poorly understood. We explored whether harmonic frequency relations, a signature property of many communication sounds, aid hearing in noise for normal hearing listeners. We measured detection thresholds in noise for tones and speech synthesized to have harmonic or inharmonic spectra. Harmonic signals were consistently easier to detect than otherwise identical inharmonic signals. Harmonicity also improved discrimination of sounds in noise. The largest benefits were observed for two-note up-down "pitch" discrimination and melodic contour discrimination, both of which could be performed equally well with harmonic and inharmonic tones in quiet, but which showed large harmonic advantages in noise. The results show that harmonicity facilitates hearing in noise, plausibly by providing a noise-robust pitch cue that aids detection and discrimination.
Collapse
|
10
|
Larsen HL, Pertoldi C, Madsen N, Randi E, Stronen AV, Root-Gutteridge H, Pagh S. Bioacoustic Detection of Wolves: Identifying Subspecies and Individuals by Howls. Animals (Basel) 2022; 12:ani12050631. [PMID: 35268200 PMCID: PMC8909475 DOI: 10.3390/ani12050631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary This study evaluates the use of acoustic devices as a method to monitor wolves by analyzing different variables extracted from wolf howls. By analyzing the wolf howls, we focused on identifying individual wolves, subspecies. We analyzed 170 howls from 16 individuals from the three subspecies: Arctic wolves (Canis lupus arctos), Eurasian wolves (C.l. lupus), and Northwestern wolves (C.l. occidentalis). We assessed the potential for individual recognition and recognition of three subspecies: Arctic, Eurasian, and Northwestern wolves. Abstract Wolves (Canis lupus) are generally monitored by visual observations, camera traps, and DNA traces. In this study, we evaluated acoustic monitoring of wolf howls as a method for monitoring wolves, which may permit detection of wolves across longer distances than that permitted by camera traps. We analyzed acoustic data of wolves’ howls collected from both wild and captive ones. The analysis focused on individual and subspecies recognition. Furthermore, we aimed to determine the usefulness of acoustic monitoring in the field given the limited data for Eurasian wolves. We analyzed 170 howls from 16 individual wolves from 3 subspecies: Arctic (Canis lupus arctos), Eurasian (C. l. lupus), and Northwestern wolves (C. l. occidentalis). Variables from the fundamental frequency (f0) (lowest frequency band of a sound signal) were extracted and used in discriminant analysis, classification matrix, and pairwise post-hoc Hotelling test. The results indicated that Arctic and Eurasian wolves had subspecies identifiable calls, while Northwestern wolves did not, though this sample size was small. Identification on an individual level was successful for all subspecies. Individuals were correctly classified with 80%–100% accuracy, using discriminant function analysis. Our findings suggest acoustic monitoring could be a valuable and cost-effective tool that complements camera traps, by improving long-distance detection of wolves.
Collapse
Affiliation(s)
- Hanne Lyngholm Larsen
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark; (C.P.); (N.M.); (E.R.); (A.V.S.); (S.P.)
- Correspondence:
| | - Cino Pertoldi
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark; (C.P.); (N.M.); (E.R.); (A.V.S.); (S.P.)
| | - Niels Madsen
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark; (C.P.); (N.M.); (E.R.); (A.V.S.); (S.P.)
| | - Ettore Randi
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark; (C.P.); (N.M.); (E.R.); (A.V.S.); (S.P.)
| | - Astrid Vik Stronen
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark; (C.P.); (N.M.); (E.R.); (A.V.S.); (S.P.)
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Holly Root-Gutteridge
- Animal Behaviour, Cognition and Welfare Group, University of Lincoln, Lincoln LN6 7TS, UK;
- School of Animal Rural and Environmental Sciences, Nottingham Trent University, Southwell NG25 0QF, UK
| | - Sussie Pagh
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark; (C.P.); (N.M.); (E.R.); (A.V.S.); (S.P.)
| |
Collapse
|
11
|
Wagner JD, Gelman A, Hancock KE, Chung Y, Delgutte B. Rabbits use both spectral and temporal cues to discriminate the fundamental frequency of harmonic complexes with missing fundamentals. J Neurophysiol 2022; 127:290-312. [PMID: 34879207 PMCID: PMC8759963 DOI: 10.1152/jn.00366.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The pitch of harmonic complex tones (HCTs) common in speech, music, and animal vocalizations plays a key role in the perceptual organization of sound. Unraveling the neural mechanisms of pitch perception requires animal models, but little is known about complex pitch perception by animals, and some species appear to use different pitch mechanisms than humans. Here, we tested rabbits' ability to discriminate the fundamental frequency (F0) of HCTs with missing fundamentals, using a behavioral paradigm inspired by foraging behavior in which rabbits learned to harness a spatial gradient in F0 to find the location of a virtual target within a room for a food reward. Rabbits were initially trained to discriminate HCTs with F0s in the range 400-800 Hz and with harmonics covering a wide frequency range (800-16,000 Hz) and then tested with stimuli differing in spectral composition to test the role of harmonic resolvability (experiment 1) or in F0 range (experiment 2) or in both F0 and spectral content (experiment 3). Together, these experiments show that rabbits can discriminate HCTs over a wide F0 range (200-1,600 Hz) encompassing the range of conspecific vocalizations and can use either the spectral pattern of harmonics resolved by the cochlea for higher F0s or temporal envelope cues resulting from interaction between unresolved harmonics for lower F0s. The qualitative similarity of these results to human performance supports the use of rabbits as an animal model for studies of pitch mechanisms, providing species differences in cochlear frequency selectivity and F0 range of vocalizations are taken into account.NEW & NOTEWORTHY Understanding the neural mechanisms of pitch perception requires experiments in animal models, but little is known about pitch perception by animals. Here we show that rabbits, a popular animal in auditory neuroscience, can discriminate complex sounds differing in pitch using either spectral cues or temporal cues. The results suggest that the role of spectral cues in pitch perception by animals may have been underestimated by predominantly testing low frequencies in the range of human voice.
Collapse
Affiliation(s)
- Joseph D. Wagner
- 1Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts,3Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Alice Gelman
- 1Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts
| | - Kenneth E. Hancock
- 1Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts,2Department of Otolaryngology, Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts
| | - Yoojin Chung
- 1Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts,2Department of Otolaryngology, Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts
| | - Bertrand Delgutte
- 1Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, Massachusetts,2Department of Otolaryngology, Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Saddler MR, Gonzalez R, McDermott JH. Deep neural network models reveal interplay of peripheral coding and stimulus statistics in pitch perception. Nat Commun 2021; 12:7278. [PMID: 34907158 PMCID: PMC8671597 DOI: 10.1038/s41467-021-27366-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 11/12/2021] [Indexed: 11/15/2022] Open
Abstract
Perception is thought to be shaped by the environments for which organisms are optimized. These influences are difficult to test in biological organisms but may be revealed by machine perceptual systems optimized under different conditions. We investigated environmental and physiological influences on pitch perception, whose properties are commonly linked to peripheral neural coding limits. We first trained artificial neural networks to estimate fundamental frequency from biologically faithful cochlear representations of natural sounds. The best-performing networks replicated many characteristics of human pitch judgments. To probe the origins of these characteristics, we then optimized networks given altered cochleae or sound statistics. Human-like behavior emerged only when cochleae had high temporal fidelity and when models were optimized for naturalistic sounds. The results suggest pitch perception is critically shaped by the constraints of natural environments in addition to those of the cochlea, illustrating the use of artificial neural networks to reveal underpinnings of behavior.
Collapse
Affiliation(s)
- Mark R Saddler
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA.
- Center for Brains, Minds and Machines, MIT, Cambridge, MA, USA.
| | - Ray Gonzalez
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Center for Brains, Minds and Machines, MIT, Cambridge, MA, USA
| | - Josh H McDermott
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA.
- Center for Brains, Minds and Machines, MIT, Cambridge, MA, USA.
- Program in Speech and Hearing Biosciences and Technology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
13
|
Landemard A, Bimbard C, Demené C, Shamma S, Norman-Haignere S, Boubenec Y. Distinct higher-order representations of natural sounds in human and ferret auditory cortex. eLife 2021; 10:e65566. [PMID: 34792467 PMCID: PMC8601661 DOI: 10.7554/elife.65566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 10/22/2021] [Indexed: 11/29/2022] Open
Abstract
Little is known about how neural representations of natural sounds differ across species. For example, speech and music play a unique role in human hearing, yet it is unclear how auditory representations of speech and music differ between humans and other animals. Using functional ultrasound imaging, we measured responses in ferrets to a set of natural and spectrotemporally matched synthetic sounds previously tested in humans. Ferrets showed similar lower-level frequency and modulation tuning to that observed in humans. But while humans showed substantially larger responses to natural vs. synthetic speech and music in non-primary regions, ferret responses to natural and synthetic sounds were closely matched throughout primary and non-primary auditory cortex, even when tested with ferret vocalizations. This finding reveals that auditory representations in humans and ferrets diverge sharply at late stages of cortical processing, potentially driven by higher-order processing demands in speech and music.
Collapse
Affiliation(s)
- Agnès Landemard
- Laboratoire des Systèmes Perceptifs, Département d’Études Cognitives, École Normale Supérieure PSL Research University, CNRSParisFrance
| | - Célian Bimbard
- Laboratoire des Systèmes Perceptifs, Département d’Études Cognitives, École Normale Supérieure PSL Research University, CNRSParisFrance
- University College LondonLondonUnited Kingdom
| | - Charlie Demené
- Physics for Medicine Paris, Inserm, ESPCI Paris, PSL Research University, CNRSParisFrance
| | - Shihab Shamma
- Laboratoire des Systèmes Perceptifs, Département d’Études Cognitives, École Normale Supérieure PSL Research University, CNRSParisFrance
- Institute for Systems Research, Department of Electrical and Computer Engineering, University of MarylandCollege ParkUnited States
| | - Sam Norman-Haignere
- Laboratoire des Systèmes Perceptifs, Département d’Études Cognitives, École Normale Supérieure PSL Research University, CNRSParisFrance
- HHMI Postdoctoral Fellow of the Life Sciences Research FoundationBaltimoreUnited States
- Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Yves Boubenec
- Laboratoire des Systèmes Perceptifs, Département d’Études Cognitives, École Normale Supérieure PSL Research University, CNRSParisFrance
| |
Collapse
|
14
|
Lau BK, Oxenham AJ, Werner LA. Infant Pitch and Timbre Discrimination in the Presence of Variation in the Other Dimension. J Assoc Res Otolaryngol 2021; 22:693-702. [PMID: 34519951 DOI: 10.1007/s10162-021-00807-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/02/2021] [Indexed: 11/25/2022] Open
Abstract
Adult listeners perceive pitch with fine precision, with many adults capable of discriminating less than a 1 % change in fundamental frequency (F0). Although there is variability across individuals, this precise pitch perception is an ability ascribed to cortical functions that are also important for speech and music perception. Infants display neural immaturity in the auditory cortex, suggesting that pitch discrimination may improve throughout infancy. In two experiments, we tested the limits of F0 (pitch) and spectral centroid (timbre) perception in 66 infants and 31 adults. Contrary to expectations, we found that infants at both 3 and 7 months were able to reliably detect small changes in F0 in the presence of random variations in spectral content, and vice versa, to the extent that their performance matched that of adults with musical training and exceeded that of adults without musical training. The results indicate high fidelity of F0 and spectral-envelope coding in infants, implying that fully mature cortical processing is not necessary for accurate discrimination of these features. The surprising difference in performance between infants and musically untrained adults may reflect a developmental trajectory for learning natural statistical covariations between pitch and timbre that improves coding efficiency but results in degraded performance in adults without musical training when expectations for such covariations are violated.
Collapse
Affiliation(s)
- Bonnie K Lau
- Institute for Language and Brain Sciences, University of Washington, 1715 NE Columbia Rd, Box 357988, Seattle, WA, 98195, USA.
- Department of Otolaryngology - Head and Neck Surgery, University of Washington, 1701 NE Columbia Rd, Box 357923, Seattle, WA, 98195, USA.
| | - Andrew J Oxenham
- Department of Psychology, University of Minnesota, 75 East River Parkway, Minneapolis, MN, 55455, USA
| | - Lynne A Werner
- Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd Street, Box 354875, Seattle, WA, 98105, USA
| |
Collapse
|
15
|
Homma NY, Bajo VM. Lemniscal Corticothalamic Feedback in Auditory Scene Analysis. Front Neurosci 2021; 15:723893. [PMID: 34489635 PMCID: PMC8417129 DOI: 10.3389/fnins.2021.723893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Sound information is transmitted from the ear to central auditory stations of the brain via several nuclei. In addition to these ascending pathways there exist descending projections that can influence the information processing at each of these nuclei. A major descending pathway in the auditory system is the feedback projection from layer VI of the primary auditory cortex (A1) to the ventral division of medial geniculate body (MGBv) in the thalamus. The corticothalamic axons have small glutamatergic terminals that can modulate thalamic processing and thalamocortical information transmission. Corticothalamic neurons also provide input to GABAergic neurons of the thalamic reticular nucleus (TRN) that receives collaterals from the ascending thalamic axons. The balance of corticothalamic and TRN inputs has been shown to refine frequency tuning, firing patterns, and gating of MGBv neurons. Therefore, the thalamus is not merely a relay stage in the chain of auditory nuclei but does participate in complex aspects of sound processing that include top-down modulations. In this review, we aim (i) to examine how lemniscal corticothalamic feedback modulates responses in MGBv neurons, and (ii) to explore how the feedback contributes to auditory scene analysis, particularly on frequency and harmonic perception. Finally, we will discuss potential implications of the role of corticothalamic feedback in music and speech perception, where precise spectral and temporal processing is essential.
Collapse
Affiliation(s)
- Natsumi Y. Homma
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, United States
- Coleman Memorial Laboratory, Department of Otolaryngology – Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Victoria M. Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
de Cheveigné A. Harmonic Cancellation-A Fundamental of Auditory Scene Analysis. Trends Hear 2021; 25:23312165211041422. [PMID: 34698574 PMCID: PMC8552394 DOI: 10.1177/23312165211041422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/23/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
This paper reviews the hypothesis of harmonic cancellation according to which an interfering sound is suppressed or canceled on the basis of its harmonicity (or periodicity in the time domain) for the purpose of Auditory Scene Analysis. It defines the concept, discusses theoretical arguments in its favor, and reviews experimental results that support it, or not. If correct, the hypothesis may draw on time-domain processing of temporally accurate neural representations within the brainstem, as required also by the classic equalization-cancellation model of binaural unmasking. The hypothesis predicts that a target sound corrupted by interference will be easier to hear if the interference is harmonic than inharmonic, all else being equal. This prediction is borne out in a number of behavioral studies, but not all. The paper reviews those results, with the aim to understand the inconsistencies and come up with a reliable conclusion for, or against, the hypothesis of harmonic cancellation within the auditory system.
Collapse
Affiliation(s)
- Alain de Cheveigné
- Laboratoire des systèmes perceptifs, CNRS, Paris, France
- Département d’études cognitives, École normale supérieure, PSL
University, Paris, France
- UCL Ear Institute, London, UK
| |
Collapse
|
17
|
McPherson MJ, McDermott JH. Time-dependent discrimination advantages for harmonic sounds suggest efficient coding for memory. Proc Natl Acad Sci U S A 2020; 117:32169-32180. [PMID: 33262275 PMCID: PMC7749397 DOI: 10.1073/pnas.2008956117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Perceptual systems have finite memory resources and must store incoming signals in compressed formats. To explore whether representations of a sound's pitch might derive from this need for compression, we compared discrimination of harmonic and inharmonic sounds across delays. In contrast to inharmonic spectra, harmonic spectra can be summarized, and thus compressed, using their fundamental frequency (f0). Participants heard two sounds and judged which was higher. Despite being comparable for sounds presented back-to-back, discrimination was better for harmonic than inharmonic stimuli when sounds were separated in time, implicating memory representations unique to harmonic sounds. Patterns of individual differences (correlations between thresholds in different conditions) indicated that listeners use different representations depending on the time delay between sounds, directly comparing the spectra of temporally adjacent sounds, but transitioning to comparing f0s across delays. The need to store sound in memory appears to determine reliance on f0-based pitch and may explain its importance in music, in which listeners must extract relationships between notes separated in time.
Collapse
Affiliation(s)
- Malinda J McPherson
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139;
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Boston, MA 02115
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Josh H McDermott
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139;
- Program in Speech and Hearing Bioscience and Technology, Harvard University, Boston, MA 02115
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Center for Brains, Minds and Machines, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
18
|
Whiteford KL, Kreft HA, Oxenham AJ. The role of cochlear place coding in the perception of frequency modulation. eLife 2020; 9:58468. [PMID: 32996463 PMCID: PMC7556860 DOI: 10.7554/elife.58468] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Natural sounds convey information via frequency and amplitude modulations (FM and AM). Humans are acutely sensitive to the slow rates of FM that are crucial for speech and music. This sensitivity has long been thought to rely on precise stimulus-driven auditory-nerve spike timing (time code), whereas a coarser code, based on variations in the cochlear place of stimulation (place code), represents faster FM rates. We tested this theory in listeners with normal and impaired hearing, spanning a wide range of place-coding fidelity. Contrary to predictions, sensitivity to both slow and fast FM correlated with place-coding fidelity. We also used incoherent AM on two carriers to simulate place coding of FM and observed poorer sensitivity at high carrier frequencies and fast rates, two properties of FM detection previously ascribed to the limits of time coding. The results suggest a unitary place-based neural code for FM across all rates and carrier frequencies.
Collapse
Affiliation(s)
- Kelly L Whiteford
- Department of Psychology, University of Minnesota, Minneapolis, United States
| | - Heather A Kreft
- Department of Psychology, University of Minnesota, Minneapolis, United States
| | - Andrew J Oxenham
- Department of Psychology, University of Minnesota, Minneapolis, United States
| |
Collapse
|
19
|
Perceptual fusion of musical notes by native Amazonians suggests universal representations of musical intervals. Nat Commun 2020; 11:2786. [PMID: 32493923 PMCID: PMC7270137 DOI: 10.1038/s41467-020-16448-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/23/2020] [Indexed: 01/31/2023] Open
Abstract
Music perception is plausibly constrained by universal perceptual mechanisms adapted to natural sounds. Such constraints could arise from our dependence on harmonic frequency spectra for segregating concurrent sounds, but evidence has been circumstantial. We measured the extent to which concurrent musical notes are misperceived as a single sound, testing Westerners as well as native Amazonians with limited exposure to Western music. Both groups were more likely to mistake note combinations related by simple integer ratios as single sounds (‘fusion’). Thus, even with little exposure to Western harmony, acoustic constraints on sound segregation appear to induce perceptual structure on note combinations. However, fusion did not predict aesthetic judgments of intervals in Westerners, or in Amazonians, who were indifferent to consonance/dissonance. The results suggest universal perceptual mechanisms that could help explain cross-cultural regularities in musical systems, but indicate that these mechanisms interact with culture-specific influences to produce musical phenomena such as consonance. Music varies across cultures, but some features are widespread, consistent with biological constraints. Here, the authors report that both Western and native Amazonian listeners perceptually fuse concurrent notes related by simple-integer ratios, suggestive of one such biological constraint.
Collapse
|
20
|
Mehta AH, Lu H, Oxenham AJ. The Perception of Multiple Simultaneous Pitches as a Function of Number of Spectral Channels and Spectral Spread in a Noise-Excited Envelope Vocoder. J Assoc Res Otolaryngol 2020; 21:61-72. [PMID: 32048077 DOI: 10.1007/s10162-019-00738-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/30/2019] [Indexed: 01/06/2023] Open
Abstract
Cochlear implant (CI) listeners typically perform poorly on tasks involving the pitch of complex tones. This limitation in performance is thought to be mainly due to the restricted number of active channels and the broad current spread that leads to channel interactions and subsequent loss of precise spectral information, with temporal information limited primarily to temporal-envelope cues. Little is known about the degree of spectral resolution required to perceive combinations of multiple pitches, or a single pitch in the presence of other interfering tones in the same spectral region. This study used noise-excited envelope vocoders that simulate the limited resolution of CIs to explore the perception of multiple pitches presented simultaneously. The results show that the resolution required for perceiving multiple complex pitches is comparable to that found in a previous study using single complex tones. Although relatively high performance can be achieved with 48 channels, performance remained near chance when even limited spectral spread (with filter slopes as steep as 144 dB/octave) was introduced to the simulations. Overall, these tight constraints suggest that current CI technology will not be able to convey the pitches of combinations of spectrally overlapping complex tones.
Collapse
Affiliation(s)
- Anahita H Mehta
- Department of Psychology, University of Minnesota, N218 Elliott Hall, 75 East River Parkway, Minneapolis, MN, 55455, USA.
| | - Hao Lu
- Department of Psychology, University of Minnesota, N218 Elliott Hall, 75 East River Parkway, Minneapolis, MN, 55455, USA
| | - Andrew J Oxenham
- Department of Psychology, University of Minnesota, N218 Elliott Hall, 75 East River Parkway, Minneapolis, MN, 55455, USA
| |
Collapse
|
21
|
Robust Rate-Place Coding of Resolved Components in Harmonic and Inharmonic Complex Tones in Auditory Midbrain. J Neurosci 2020; 40:2080-2093. [PMID: 31996454 DOI: 10.1523/jneurosci.2337-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 11/21/2022] Open
Abstract
Harmonic complex tones (HCTs) commonly occurring in speech and music evoke a strong pitch at their fundamental frequency (F0), especially when they contain harmonics individually resolved by the cochlea. When all frequency components of an HCT are shifted by the same amount, the pitch of the resulting inharmonic tone (IHCT) can also shift, although the envelope repetition rate is unchanged. A rate-place code, whereby resolved harmonics are represented by local maxima in firing rates along the tonotopic axis, has been characterized in the auditory nerve and primary auditory cortex, but little is known about intermediate processing stages. We recorded single-neuron responses to HCT and IHCT with varying F0 and sound level in the inferior colliculus (IC) of unanesthetized rabbits of both sexes. Many neurons showed peaks in firing rate when a low-numbered harmonic aligned with the neuron's characteristic frequency, demonstrating "rate-place" coding. The IC rate-place code was most prevalent for F0 > 800 Hz, was only moderately dependent on sound level over a 40 dB range, and was not sensitive to stimulus harmonicity. A spectral receptive-field model incorporating broadband inhibition better predicted the neural responses than a purely excitatory model, suggesting an enhancement of the rate-place representation by inhibition. Some IC neurons showed facilitation in response to HCT relative to pure tones, similar to cortical "harmonic template neurons" (Feng and Wang, 2017), but to a lesser degree. Our findings shed light on the transformation of rate-place coding of resolved harmonics along the auditory pathway.SIGNIFICANCE STATEMENT Harmonic complex tones are ubiquitous in speech and music and produce strong pitch percepts when they contain frequency components that are individually resolved by the cochlea. Here, we characterize a "rate-place" code for resolved harmonics in the auditory midbrain that is more robust across sound levels than the peripheral rate-place code and insensitive to the harmonic relationships among frequency components. We use a computational model to show that inhibition may play an important role in shaping the rate-place code. Our study fills a major gap in understanding the transformations in neural representations of resolved harmonics along the auditory pathway.
Collapse
|
22
|
Su Y, Delgutte B. Pitch of harmonic complex tones: rate and temporal coding of envelope repetition rate in inferior colliculus of unanesthetized rabbits. J Neurophysiol 2019; 122:2468-2485. [PMID: 31664871 DOI: 10.1152/jn.00512.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Harmonic complex tones (HCTs) found in speech, music, and animal vocalizations evoke strong pitch percepts at their fundamental frequencies. The strongest pitches are produced by HCTs that contain harmonics resolved by cochlear frequency analysis, but HCTs containing solely unresolved harmonics also evoke a weaker pitch at their envelope repetition rate (ERR). In the auditory periphery, neurons phase lock to the stimulus envelope, but this temporal representation of ERR degrades and gives way to rate codes along the ascending auditory pathway. To assess the role of the inferior colliculus (IC) in such transformations, we recorded IC neuron responses to HCT and sinusoidally modulated broadband noise (SAMN) with varying ERR from unanesthetized rabbits. Different interharmonic phase relationships of HCT were used to manipulate the temporal envelope without changing the power spectrum. Many IC neurons demonstrated band-pass rate tuning to ERR between 60 and 1,600 Hz for HCT and between 40 and 500 Hz for SAMN. The tuning was not related to the pure-tone best frequency of neurons but was dependent on the shape of the stimulus envelope, indicating a temporal rather than spectral origin. A phenomenological model suggests that the tuning may arise from peripheral temporal response patterns via synaptic inhibition. We also characterized temporal coding to ERR. Some IC neurons could phase lock to the stimulus envelope up to 900 Hz for either HCT or SAMN, but phase locking was weaker with SAMN. Together, the rate code and the temporal code represent a wide range of ERR, providing strong cues for the pitch of unresolved harmonics.NEW & NOTEWORTHY Envelope repetition rate (ERR) provides crucial cues for pitch perception of frequency components that are not individually resolved by the cochlea, but the neural representation of ERR for stimuli containing many harmonics is poorly characterized. Here we show that the pitch of stimuli with unresolved harmonics is represented by both a rate code and a temporal code for ERR in auditory midbrain neurons and propose possible underlying neural mechanisms with a computational model.
Collapse
Affiliation(s)
- Yaqing Su
- Eaton-Peabody Labs, Massachusetts Eye and Ear, Boston, Massachusetts.,Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Bertrand Delgutte
- Eaton-Peabody Labs, Massachusetts Eye and Ear, Boston, Massachusetts.,Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
23
|
Norman-Haignere SV, Kanwisher N, McDermott JH, Conway BR. Divergence in the functional organization of human and macaque auditory cortex revealed by fMRI responses to harmonic tones. Nat Neurosci 2019; 22:1057-1060. [PMID: 31182868 PMCID: PMC6592717 DOI: 10.1038/s41593-019-0410-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 04/19/2019] [Indexed: 12/02/2022]
Abstract
We report a difference between humans and macaque monkeys in the functional organization of cortical regions implicated in pitch perception: humans but not macaques showed regions with a strong preference for harmonic sounds compared to noise, measured with both synthetic tones and macaque vocalizations. In contrast, frequency-selective tonotopic maps were similar between the two species. This species difference may be driven by the unique demands of speech and music perception in humans.
Collapse
Affiliation(s)
- Sam V Norman-Haignere
- Zuckerman Institute for Mind, Brain and Behavior, Columbia University, New York, NY, USA. .,Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA. .,HHMI Postdoctoral Fellow of the Life Sciences Research Institute, Chevy Chase, MD, USA. .,Laboratoire des Systèmes Perceptifs, Département d'Études Cognitives, École Normale Supérieure, PSL University, CNRS, Paris, France.
| | - Nancy Kanwisher
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.,McGovern Institute for Brain Research, Cambridge, MA, USA.,Center for Minds, Brains and Machines, Cambridge, MA, USA
| | - Josh H McDermott
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.,McGovern Institute for Brain Research, Cambridge, MA, USA.,Center for Minds, Brains and Machines, Cambridge, MA, USA.,Program in Speech and Hearing Biosciences and Technology, Harvard University, Cambridge, MA, USA
| | - Bevil R Conway
- Laboratory of Sensorimotor Research, NEI, NIH, Bethesda, MD, USA. .,National Institute of Mental Health, NIH, Bethesda, MD, USA. .,National Institute of Neurological Disease and Stroke, NIH, Bethesda, MD, USA.
| |
Collapse
|