1
|
Surendran K, Pradeep S, Pillai PP. Comparative transcriptome and metabolite profiling reveal diverse pattern of CYP-TS gene expression during corosolic acid biosynthesis in Lagerstroemia speciosa (L.) Pers. PLANT CELL REPORTS 2024; 43:122. [PMID: 38642121 DOI: 10.1007/s00299-024-03203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/19/2024] [Indexed: 04/22/2024]
Abstract
KEY MESSAGE Extensive leaf transcriptome profiling and differential gene expression analysis of field grown and elicited shoot cultures of L. speciosa suggest that differential synthesis of CRA is mediated primarily by CYP and TS genes, showing functional diversity. Lagerstroemia speciosa L. is a tree species with medicinal and horticultural attributes. The pentacyclic triterpene, Corosolic acid (CRA) obtained from this species is widely used for the management of diabetes mellitus in traditional medicine. The high mercantile value of the compound and limited availability of innate resources entail exploration of alternative sources for CRA production. Metabolic pathway engineering for enhanced bioproduction of plant secondary metabolites is an attractive proposition for which, candidate genes in the pathway need to be identified and characterized. Therefore, in the present investigation, we focused on the identification of cytochrome P450 (CYP450) and oxidosqualene cyclases (OSC) genes and their differential expression during biosynthesis of CRA. The pattern of differential expression of these genes in the shoot cultures of L. speciosa, elicited with different epigenetic modifiers (azacytidine (AzaC), sodium butyrate (NaBu) and anacardic acid (AA)), was studied in comparison with field grown plant. Further, in vitro cultures with varying (low to high) concentrations of CRA were systematically assessed for the expression of CYP-TS and associated genes involved in CRA biosynthesis by transcriptome sequencing. The sequenced samples were de novo assembled into 180,290 transcripts of which, 92,983 transcripts were further annotated by UniProt. The results are collectively given in co-occurrence heat maps to identify the differentially expressed genes. The combined transcript and metabolite profiles along with RT-qPCR analysis resulted in the identification of CYP-TS genes with high sequence variation. Further, instances of concordant/discordant relation between CRA biosynthesis and CYP-TS gene expression were observed, indicating functional diversity in genes.
Collapse
Affiliation(s)
- Karuna Surendran
- Department of Genomic Science, Central University of Kerala, Kasaragod, 671320, India
| | - Siya Pradeep
- Department of Genomic Science, Central University of Kerala, Kasaragod, 671320, India
| | | |
Collapse
|
2
|
Yellow polyketide pigment suppresses premature hatching in social amoeba. Proc Natl Acad Sci U S A 2022; 119:e2116122119. [PMID: 36252029 PMCID: PMC9618038 DOI: 10.1073/pnas.2116122119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Low-molecular-weight natural products from microbes are indispensable in the development of potent drugs. However, their biological roles within an ecological context often remain elusive. Here, we shed light on natural products from eukaryotic microorganisms that have the ability to transition from single cells to multicellular organisms: the social amoebae. These eukaryotes harbor a large number of polyketide biosynthetic genes in their genomes, yet virtually none of the corresponding products can be isolated or characterized. Using complementary molecular biology approaches, including CRISPR-Cas9, we generated polyketide synthase (pks5) inactivation and overproduction strains of the social amoeba Dictyostelium discoideum. Differential, untargeted metabolomics of wild-type versus mutant fruiting bodies allowed us to pinpoint candidate metabolites derived from the amoebal PKS5. Extrachromosomal expression of the respective gene led to the identification of a yellow polyunsaturated fatty acid. Analysis of the temporospatial production pattern of this compound in conjunction with detailed bioactivity studies revealed the polyketide to be a spore germination suppressor.
Collapse
|
3
|
Xu H, Rinkel J, Chen X, Köllner TG, Chen F, Dickschat JS. Mechanistic divergence between (4 S,7 R)-germacra-(1(10) E,5 E)-dien-11-ol synthases from Dictyostelium purpureum and Streptomyces coelicolor. Org Biomol Chem 2021; 19:370-374. [PMID: 33337456 DOI: 10.1039/d0ob02361b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The main product of DpTPS9 from the social amoeba Dictyostelium purpureum was identified as (4S,7R)-germacra-(1(10)E,5E)-dien-11-ol that is also known as an intermediate of bacterial geosmin synthase, but the experimentally verified cyclisation mechanisms differ. Together with the low sequence identity this points to convergent evolution. The functionality of selected residues in DpTPS9 was investigated via site-directed mutagenesis experiments.
Collapse
Affiliation(s)
- Houchao Xu
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | - Jan Rinkel
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | - Xinlu Chen
- Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37996-4561, USA
| | - Tobias G Köllner
- Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37996-4561, USA
| | - Jeroen S Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| |
Collapse
|
4
|
Xu S, Kreitzer C, McGale E, Lackus ND, Guo H, Köllner TG, Schuman MC, Baldwin IT, Zhou W. Allelic differences of clustered terpene synthases contribute to correlated intraspecific variation of floral and herbivory-induced volatiles in a wild tobacco. THE NEW PHYTOLOGIST 2020; 228:1083-1096. [PMID: 32535930 DOI: 10.1111/nph.16739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/29/2020] [Indexed: 05/21/2023]
Abstract
Plant volatile emissions can recruit predators of herbivores for indirect defense and attract pollinators to aid in pollination. Although volatiles involved in defense and pollinator attraction are primarily emitted from leaves and flowers, respectively, they will co-evolve if their underlying genetic basis is intrinsically linked, due either to pleiotropy or to genetic linkage. However, direct evidence of co-evolving defense and floral traits is scarce. We characterized intraspecific variation of herbivory-induced plant volatiles (HIPVs), the key components of indirect defense against herbivores, and floral volatiles in wild tobacco Nicotiana attenuata. We found that variation of (E)-β-ocimene and (E)-α-bergamotene contributed to the correlated changes in HIPVs and floral volatiles among N. attenuata natural accessions. Intraspecific variations of (E)-β-ocimene and (E)-α-bergamotene emissions resulted from allelic variation of two genetically co-localized terpene synthase genes, NaTPS25 and NaTPS38, respectively. Analyzing haplotypes of NaTPS25 and NaTPS38 revealed that allelic variations of NaTPS25 and NaTPS38 resulted in correlated changes of (E)-β-ocimene and (E)-α-bergamotene emission in HIPVs and floral volatiles in N. attenuata. Together, these results provide evidence that pleiotropy and genetic linkage result in correlated changes in defenses and floral signals in natural populations, and the evolution of plant volatiles is probably under diffuse selection.
Collapse
Affiliation(s)
- Shuqing Xu
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, Münster, 48149, Germany
| | - Christoph Kreitzer
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Erica McGale
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Nathalie D Lackus
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Han Guo
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
- Department of Geography & Department of Chemistry, University of Zurich, Zurich, 8057, Switzerland
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Wenwu Zhou
- Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
5
|
Evolution of isoprenyl diphosphate synthase-like terpene synthases in fungi. Sci Rep 2020; 10:14944. [PMID: 32913319 PMCID: PMC7484799 DOI: 10.1038/s41598-020-71219-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/27/2020] [Indexed: 01/21/2023] Open
Abstract
Terpene synthases (TPSs) and trans-isoprenyl diphosphate synthases (IDSs) are among the core enzymes for creating the enormous diversity of terpenoids. Despite having no sequence homology, TPSs and IDSs share a conserved “α terpenoid synthase fold” and a trinuclear metal cluster for catalysis, implying a common ancestry with TPSs hypothesized to evolve from IDSs anciently. Here we report on the identification and functional characterization of novel IDS-like TPSs (ILTPSs) in fungi that evolved from IDS relatively recently, indicating recurrent evolution of TPSs from IDSs. Through large-scale bioinformatic analyses of fungal IDSs, putative ILTPSs that belong to the geranylgeranyl diphosphate synthase (GGDPS) family of IDSs were identified in three species of Melampsora. Among the GGDPS family of the two Melampsora species experimentally characterized, one enzyme was verified to be bona fide GGDPS and all others were demonstrated to function as TPSs. Melampsora ILTPSs displayed kinetic parameters similar to those of classic TPSs. Key residues underlying the determination of GGDPS versus ILTPS activity and functional divergence of ILTPSs were identified. Phylogenetic analysis implies a recent origination of these ILTPSs from a GGDPS progenitor in fungi, after the split of Melampsora from other genera within the class of Pucciniomycetes. For the poplar leaf rust fungus Melampsora larici-populina, the transcripts of its ILTPS genes were detected in infected poplar leaves, suggesting possible involvement of these recently evolved ILTPS genes in the infection process. This study reveals the recurrent evolution of TPSs from IDSs since their ancient occurrence and points to the possibility of a wide distribution of ILTPS genes in three domains of life.
Collapse
|
6
|
Sasaki H, Kubohara Y, Ishigaki H, Takahashi K, Eguchi H, Sugawara A, Oshima Y, Kikuchi H. Two New Terpenes Isolated from Dictyostelium Cellular Slime Molds. Molecules 2020; 25:molecules25122895. [PMID: 32585998 PMCID: PMC7356884 DOI: 10.3390/molecules25122895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/22/2022] Open
Abstract
We report a protoilludane-type sesquiterpene, mucoroidiol, and a geranylated bicyclogermacranol, firmibasiol, isolated from Dictyostelium cellular slime molds. The methanol extracts of the fruiting bodies of cellular slime molds were separated by chromatographic methods to give these compounds. Their structures have been established by several spectral means. Mucoroidiol and firmibasiol are the first examples of more modified and oxidized terpenoids isolated from cellular slime molds. Mucoroidiol showed moderate osteoclast-differentiation inhibitory activity despite demonstrating very weak cell-proliferation inhibitory activity. Therefore, cellular slime molds produce considerably diverse secondary metabolites, and they are promising sources of new natural product chemistry.
Collapse
Affiliation(s)
- Hitomi Sasaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan; (H.S.); (H.E.); (A.S.); (Y.O.)
| | - Yuzuru Kubohara
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hiraga-gakuendai, Inzai, Chiba 270-1695, Japan;
| | - Hirotaka Ishigaki
- Department of Medical Technology, Faculty of Health Science, Gunma Paz University, Takasaki 370-0006, Japan; (H.I.); (K.T.)
| | - Katsunori Takahashi
- Department of Medical Technology, Faculty of Health Science, Gunma Paz University, Takasaki 370-0006, Japan; (H.I.); (K.T.)
| | - Hiromi Eguchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan; (H.S.); (H.E.); (A.S.); (Y.O.)
| | - Akihiro Sugawara
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan; (H.S.); (H.E.); (A.S.); (Y.O.)
| | - Yoshiteru Oshima
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan; (H.S.); (H.E.); (A.S.); (Y.O.)
| | - Haruhisa Kikuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan; (H.S.); (H.E.); (A.S.); (Y.O.)
- Correspondence: ; Tel.: +81-22-795-6824
| |
Collapse
|
7
|
Chen X, Köllner TG, Xiong W, Wei G, Chen F. Emission and biosynthesis of volatile terpenoids from the plasmodial slime mold Physarum polycephalum. Beilstein J Org Chem 2019; 15:2872-2880. [PMID: 31839833 PMCID: PMC6902781 DOI: 10.3762/bjoc.15.281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/15/2019] [Indexed: 12/30/2022] Open
Abstract
Terpene synthases (TPSs) are pivotal enzymes for the production of diverse terpenes, including monoterpenes, sesquiterpenes, and diterpenes. In our recent studies, dictyostelid social amoebae, also known as cellular slime molds, were found to contain TPS genes for making volatile terpenes. For comparison, here we investigated Physarum polycephalum, a plasmodial slime mold also known as acellular amoeba. Plasmodia of P. polycephalum grown on agar plates were found to release a mixture of volatile terpenoids consisting of four major sesquiterpenes (α-muurolene, (E)-β-caryophyllene, two unidentified sesquiterpenoids) and the monoterpene linalool. There were no qualitative differences in terpenoid composition at two stages of young plasmodia. To understand terpene biosynthesis, we analyzed the transcriptome and genome sequences of P. polycephalum and identified four TPS genes designated PpolyTPS1-PpolyTPS4. They share 28-73% of sequence identities. Full-length cDNAs for the four TPS genes were cloned and expressed in Escherichia coli to produce recombinant proteins, which were tested for sesquiterpene synthase and monoterpene synthase activities. While neither PpolyTPS2 nor PpolyTPS3 was active, PpolyTPS1 and PpolyTPS4 were able to produce sesquiterpenes and monoterpenes from the respective substrates farnesyl diphosphate and geranyl diphosphate. By comparing the volatile profile of P. polycephalum plasmodia and the in vitro products of PpolyTPS1 and PpolyTPS4, it was concluded that most sesquiterpenoids emitted from P. polycephalum were attributed to PpolyTPS4. Phylogenetic analysis placed the four PpolyTPSs genes into two groups: PpolyTPS1 and PpolyTPS4 being one group that was clustered with the TPSs from the dictyostelid social amoeba and PpolyTPS2 and PpolyTPS3 being the other group that showed closer relatedness to bacterial TPSs. The biological role of the volatile terpenoids produced by the plasmodia of P. polycephalum is discussed.
Collapse
Affiliation(s)
- Xinlu Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | - Wangdan Xiong
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Guo Wei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
8
|
Rinkel J, Köllner TG, Chen F, Dickschat JS. Characterisation of three terpene synthases for β-barbatene, β-araneosene and nephthenol from social amoebae. Chem Commun (Camb) 2019; 55:13255-13258. [DOI: 10.1039/c9cc07681f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Three terpene synthases from social amoebae with new functions were discovered and their mechanisms were explored.
Collapse
Affiliation(s)
- Jan Rinkel
- Kekulé-Institut für Organische Chemie und Biochemie
- Rheinische Friedrich-Wilhelms-Universität Bonn
- Gerhard-Domagk-Straße 1
- 53121 Bonn
- Germany
| | - Tobias G. Köllner
- Max Planck Institute for Chemical Ecology
- Hans-Knöll-Straße 8
- 07745 Jena
- Germany
| | - Feng Chen
- Department of Plant Sciences
- University of Tennessee
- 2431 Joe Johnson Drive
- Knoxville
- USA
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie
- Rheinische Friedrich-Wilhelms-Universität Bonn
- Gerhard-Domagk-Straße 1
- 53121 Bonn
- Germany
| |
Collapse
|
9
|
Karunanithi PS, Zerbe P. Terpene Synthases as Metabolic Gatekeepers in the Evolution of Plant Terpenoid Chemical Diversity. FRONTIERS IN PLANT SCIENCE 2019; 10:1166. [PMID: 31632418 PMCID: PMC6779861 DOI: 10.3389/fpls.2019.01166] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/26/2019] [Indexed: 05/18/2023]
Abstract
Terpenoids comprise tens of thousands of small molecule natural products that are widely distributed across all domains of life. Plants produce by far the largest array of terpenoids with various roles in development and chemical ecology. Driven by selective pressure to adapt to their specific ecological niche, individual species form only a fraction of the myriad plant terpenoids, typically representing unique metabolite blends. Terpene synthase (TPS) enzymes are the gatekeepers in generating terpenoid diversity by catalyzing complex carbocation-driven cyclization, rearrangement, and elimination reactions that enable the transformation of a few acyclic prenyl diphosphate substrates into a vast chemical library of hydrocarbon and, for a few enzymes, oxygenated terpene scaffolds. The seven currently defined clades (a-h) forming the plant TPS family evolved from ancestral triterpene synthase- and prenyl transferase-type enzymes through repeated events of gene duplication and subsequent loss, gain, or fusion of protein domains and further functional diversification. Lineage-specific expansion of these TPS clades led to variable family sizes that may range from a single TPS gene to families of more than 100 members that may further function as part of modular metabolic networks to maximize the number of possible products. Accompanying gene family expansion, the TPS family shows a profound functional plasticity, where minor active site alterations can dramatically impact product outcome, thus enabling the emergence of new functions with minimal investment in evolving new enzymes. This article reviews current knowledge on the functional diversity and molecular evolution of the plant TPS family that underlies the chemical diversity of bioactive terpenoids across the plant kingdom.
Collapse
Affiliation(s)
- Prema S Karunanithi
- Department of Plant Biology, University of California Davis, Davis, CA, United States
| | - Philipp Zerbe
- Department of Plant Biology, University of California Davis, Davis, CA, United States
| |
Collapse
|