1
|
Jun DJ, Schumacher MM, Jo Y, Faulkner RA, Yang Y, Tsien J, Qin T, DeBose-Boyd RA. Allosteric regulation of UBIAD1 trafficking from ER to Golgi revealed by chemical genetic screening. Proc Natl Acad Sci U S A 2025; 122:e2426532122. [PMID: 40372435 DOI: 10.1073/pnas.2426532122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/11/2025] [Indexed: 05/16/2025] Open
Abstract
Schnyder corneal dystrophy (SCD) is a rare autosomal dominant condition characterized by the opacification of the cornea owing to the abnormal deposition of cholesterol. SCD-associated mutations have been identified in the gene encoding UbiA prenyltransferase domain-containing protein-1 (UBIAD1), which uses geranylgeranyl pyrophosphate (GGpp) to synthesize the vitamin K2 subtype menaquinone-4 (MK-4). Beyond its enzymatic role, UBIAD1 serves as a key regulator of the endoplasmic reticulum (ER)-localized enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), the rate-limiting enzyme in the mevalonate pathway that produces cholesterol and nonsterol isoprenoids such as GGpp and MK-4. Sterol-induced binding to UBIAD1 inhibits the sterol-accelerated ER-associated degradation (ERAD) of HMGCR to maintain the synthesis of nonsterol isoprenoids under conditions of cholesterol repletion. GGpp dissociates the HMGCR-UBIAD1 complex, triggering maximal ERAD of HMGCR and ER-to-Golgi translocation of UBIAD1. However, SCD-associated UBIAD1 resists this GGpp-induced dissociation and remains sequestered in the ER. ER retention of UBIAD1 leads to inhibition of HMGCR ERAD, promoting increased synthesis and accumulation of cholesterol. Here, chemical genetic screening was utilized to identify molecules that restored Golgi localization of SCD-associated UBIAD1 (N102S) and thereby relieve inhibition of HMGCR ERAD. We found that the chemotherapeutic tyrosine kinase inhibitor Apatinib stimulated ER-to-Golgi transport of both N102S and wild type UBIAD1. This effect required GGpp but was independent of Apatinib's tyrosine kinase inhibition. Apatinib-mediated Golgi transport of UBIAD1 enhanced the ERAD of HMGCR. Photoaffinity labeling studies indicated that Apatinib binds directly to UBIAD1, suggesting that the drug allosterically activates GGpp-induced transport of UBIAD1 from the ER to the Golgi.
Collapse
Affiliation(s)
- Dong-Jae Jun
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Marc M Schumacher
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Youngah Jo
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Rebecca A Faulkner
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Yangyang Yang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Jet Tsien
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Tian Qin
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Russell A DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| |
Collapse
|
2
|
Mong MA. Vitamin K and the Visual System-A Narrative Review. Nutrients 2023; 15:nu15081948. [PMID: 37111170 PMCID: PMC10143727 DOI: 10.3390/nu15081948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Vitamin K occupies a unique and often obscured place among its fellow fat-soluble vitamins. Evidence is mounting, however, that vitamin K (VK) may play an important role in the visual system apart from the hepatic carboxylation of hemostatic-related proteins. However, to our knowledge, no review covering the topic has appeared in the medical literature. Recent studies have confirmed that matrix Gla protein (MGP), a vitamin K-dependent protein (VKDP), is essential for the regulation of intraocular pressure in mice. The PREDIMED (Prevención con Dieta Mediterránea) study, a randomized trial involving 5860 adults at risk for cardiovascular disease, demonstrated a 29% reduction in the risk of cataract surgery in participants with the highest tertile of dietary vitamin K1 (PK) intake compared with those with the lowest tertile. However, the specific requirements of the eye and visual system (EVS) for VK, and what might constitute an optimized VK status, is currently unknown and largely unexplored. It is, therefore, the intention of this narrative review to provide an introduction concerning VK and the visual system, review ocular VK biology, and provide some historical context for recent discoveries. Potential opportunities and gaps in current research efforts will be touched upon in the hope of raising awareness and encouraging continued VK-related investigations in this important and highly specialized sensory system.
Collapse
Affiliation(s)
- Michael A Mong
- Department of Ophthalmology, Veteran Affairs North Texas Health Care Medical Center, Dallas, TX 75216, USA
| |
Collapse
|
3
|
Abstract
3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) is an endoplasmic reticulum (ER)-localized integral membrane protein that catalyzes the rate-limiting step in the synthesis of cholesterol and many nonsterol isoprenoids including geranylgeranyl pyrophosphate (GGpp). HMGCR is subjected to strict feedback control through multiple mechanisms to ensure cells constantly produce essential nonsterol isoprenoids, but do not overaccumulate cholesterol. Here, we focus on the mechanism of feedback control of HMGCR that involves its sterol-induced ubiquitination and ER-associated degradation (ERAD) that is augmented by GGpp. We will also discuss the how GGpp-regulated intracellular trafficking of the vitamin K2 synthetic enzyme UbiA prenyltransferase domain-containing protein-1 (UBIAD1) inhibits HMGCR ERAD to balance the synthesis of sterol and nonsterol isoprenoids. Finally, we will summarize various mouse models, the characterization of which establish that sterol-accelerated, UBIAD1-modulated ERAD plays a major role in regulation of HMGCR and cholesterol metabolism in vivo.
Collapse
Affiliation(s)
- Youngah Jo
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, Texas 75390-9046, USA
| | - Russell A DeBose-Boyd
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, Texas 75390-9046, USA
| |
Collapse
|
4
|
Zheng H, Tu R, Chen C, Hu Z. UBIAD1 protects against oxygen-glucose deprivation/reoxygenation injury via nNOS/NO pathway. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:1332-1344. [PMID: 36411684 PMCID: PMC10930366 DOI: 10.11817/j.issn.1672-7347.2022.220162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVES Cerebral infarction is a subtype of stroke with high incidence and disability rate. Ischemia reperfusion injury (IRI) is the key point of cerebral infarction treatment. UbiA prenyltransferase domain containing 1 (UBIAD1) is a kind of enzyme with various biological functions including electron transport in mitochondrial respiratory chain, lipid metabolism, and oxidative stress which are related to IRI. The purpose of this study aims to determine the neuroprotective effects and the underlying mechanisms of UBIAD1 in cerebral IRI. METHODS We employed oxygen-glucose deprivation/reoxygenation (OGD/R) model in mouse neuroblastoma Neuro2a (N2a) cells to mimic cerebral IRI. Lentivirus vector over-expressed UBIAD1 was transfacted into N2a cells to maintain high and stable expression of UBIAD1. In the first part of the experiment, N2a cells were divided into 5 groups: A non-OGD (N2a cells without exposure to OGD) group, groups of reoxygenation 0, 4, 12 and 24 h after 4 h of OGD, respectively. In the second part of the experiment, N2a cells were divided into 6 groups: A Con (normal cell)+non-OGD group, an EV (cell transfected with empty vector)+non-OGD group, an OE (over-expressed UBIAD1)+non-OGD group, a Con+OGD/R group, an EV+OGD/R group, and an OE+OGD/R group. In the third part, the N2a cells were divided into 8 groups: A Con+non-OGD group, an OE+non-OGD group, a Con+non-OGD+nNOS inhibitior 7-nitroindazole (7-NI) group, an OE+non-OGD+7-NI group, a Con+OGD/R group, an OE+OGD/R group, a Con+OGD/R+7-NI group, and an OE+OGD/R+7-NI group. The morphological changes of Golgi apparatus were observed under the confocal laser scanning microscope. The mRNA and protein levels of UBIAD1, secretory pathway Ca2+-ATPase isoform 1 (SPCA1), and NOS were determined by real-time PCR and Western blotting, respectively. Cell apoptosis rate was detected with flow cytometry; cell viability was detected with MTT assay, and NO release was determined with Griess assay. RESULTS Compared with the non-OGD group, the expression levels of UBIAD1 mRNA and protein in N2a cells in the groups of 0, 4, 12 and 24 h reoxygenation after OGD 4 h decreased significantly (P<0.05 or P<0.01), and the longer the reoxygenation time, the more significant the reduction of UBIAD1 expression. Compared with the Con+OGD/R group and the EV+OGD/R group, mRNA and protein levels of UBIAD1 and SPCA1 were increased (P<0.05 or P<0.01), the apoptosis rate was decreased (all P<0.01), and the cell viability was increased (all P<0.01) in the OE+OGD/R group. The Golgi fragmentation was less in the OE+OGD/R group than that in the Con+ OGD/R group and the EV+OGD/R group. The mRNA and protein levels of endothelial NOS (eNOS) and neuronal NOS (nNOS) were decreased (P<0.05 or P<0.01), and the level of NO was decreased (all P<0.01) in the groups over-expressed UBIAD1 (OE+non-OGD group vs Con+non-OGD group, OE+OGD/R group vs Con+OGD/R group). The level of NO and apoptosis rate of N2a cells were decreased (all P<0.01) in the the groups pretreated with 7-NI (Con+OGD/R+7-NI group vs Con+OGD/R group, OE+OGD/R+7-NI group vs OE+OGD/R group). CONCLUSIONS UBIAD1 may exerts protective effects on OGD/R induced N2a cells by ameliorating Golgi apparatus dysfunction via the nNOS/NO pathway.
Collapse
Affiliation(s)
- Haiping Zheng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Ranran Tu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Chunli Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
5
|
Faulkner R, Jo Y. Synthesis, function, and regulation of sterol and nonsterol isoprenoids. Front Mol Biosci 2022; 9:1006822. [PMID: 36275615 PMCID: PMC9579336 DOI: 10.3389/fmolb.2022.1006822] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Cholesterol, the bulk end-product of the mevalonate pathway, is a key component of cellular membranes and lipoproteins that transport lipids throughout the body. It is also a precursor of steroid hormones, vitamin D, and bile acids. In addition to cholesterol, the mevalonate pathway yields a variety of nonsterol isoprenoids that are essential to cell survival. Flux through the mevalonate pathway is tightly controlled to ensure cells continuously synthesize nonsterol isoprenoids but avoid overproducing cholesterol and other sterols. Endoplasmic reticulum (ER)-localized 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase (HMGCR), the rate limiting enzyme in the mevalonate pathway, is the focus of a complex feedback regulatory system governed by sterol and nonsterol isoprenoids. This review highlights transcriptional and post-translational regulation of HMGCR. Transcriptional regulation of HMGCR is mediated by the Scap-SREBP pathway. Post-translational control is initiated by the intracellular accumulation of sterols, which causes HMGCR to become ubiquitinated and subjected to proteasome-mediated ER-associated degradation (ERAD). Sterols also cause a subfraction of HMGCR molecules to bind the vitamin K2 synthetic enzyme, UbiA prenyltransferase domain-containing protein-1 (UBIAD1). This binding inhibits ERAD of HMGCR, which allows cells to continuously synthesize nonsterol isoprenoids such as geranylgeranyl pyrophosphate (GGPP), even when sterols are abundant. Recent studies reveal that UBIAD1 is a GGPP sensor, dissociating from HMGCR when GGPP thresholds are met to allow maximal ERAD. Animal studies using genetically manipulated mice disclose the physiological significance of the HMGCR regulatory system and we describe how dysregulation of these pathways contributes to disease.
Collapse
|
6
|
Chen H, Qi X, Faulkner RA, Schumacher MM, Donnelly LM, DeBose-Boyd RA, Li X. Regulated degradation of HMG CoA reductase requires conformational changes in sterol-sensing domain. Nat Commun 2022; 13:4273. [PMID: 35879350 PMCID: PMC9314443 DOI: 10.1038/s41467-022-32025-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/12/2022] [Indexed: 01/20/2023] Open
Abstract
3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) is the rate-limiting enzyme in cholesterol synthesis and target of cholesterol-lowering statin drugs. Accumulation of sterols in endoplasmic reticulum (ER) membranes accelerates degradation of HMGCR, slowing the synthesis of cholesterol. Degradation of HMGCR is inhibited by its binding to UBIAD1 (UbiA prenyltransferase domain-containing protein-1). This inhibition contributes to statin-induced accumulation of HMGCR, which limits their cholesterol-lowering effects. Here, we report cryo-electron microscopy structures of the HMGCR-UBIAD1 complex, which is maintained by interactions between transmembrane helix (TM) 7 of HMGCR and TMs 2-4 of UBIAD1. Disrupting this interface by mutagenesis prevents complex formation, enhancing HMGCR degradation. TMs 2-6 of HMGCR contain a 170-amino acid sterol sensing domain (SSD), which exists in two conformations-one of which is essential for degradation. Thus, our data supports a model that rearrangement of the TMs in the SSD permits recruitment of proteins that initate HMGCR degradation, a key reaction in the regulatory system that governs cholesterol synthesis.
Collapse
Affiliation(s)
- Hongwen Chen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaofeng Qi
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rebecca A Faulkner
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marc M Schumacher
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Linda M Donnelly
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Russell A DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
7
|
Elsabrouty R, Jo Y, Hwang S, Jun DJ, DeBose-Boyd RA. Type 1 polyisoprenoid diphosphate phosphatase modulates geranylgeranyl-mediated control of HMG CoA reductase and UBIAD1. eLife 2021; 10:64688. [PMID: 34842525 PMCID: PMC8641950 DOI: 10.7554/elife.64688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/28/2021] [Indexed: 11/18/2022] Open
Abstract
UbiA prenyltransferase domain-containing protein-1 (UBIAD1) utilizes geranylgeranyl pyrophosphate (GGpp) to synthesize the vitamin K2 subtype menaquinone-4. The prenyltransferase has emerged as a key regulator of sterol-accelerated, endoplasmic reticulum (ER)-associated degradation (ERAD) of HMG CoA reductase, the rate-limiting enzyme in synthesis of cholesterol and nonsterol isoprenoids including GGpp. Sterols induce binding of UBIAD1 to reductase, inhibiting its ERAD. Geranylgeraniol (GGOH), the alcohol derivative of GGpp, disrupts this binding and thereby stimulates ERAD of reductase and translocation of UBIAD1 to Golgi. We now show that overexpression of Type 1 polyisoprenoid diphosphate phosphatase (PDP1), which dephosphorylates GGpp and other isoprenyl pyrophosphates to corresponding isoprenols, abolishes protein geranylgeranylation as well as GGOH-induced ERAD of reductase and Golgi transport of UBIAD1. Conversely, these reactions are enhanced in the absence of PDP1. Our findings indicate PDP1-mediated hydrolysis of GGpp significantly contributes to a feedback mechanism that maintains optimal intracellular levels of the nonsterol isoprenoid.
Collapse
Affiliation(s)
- Rania Elsabrouty
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Youngah Jo
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Seonghwan Hwang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Dong-Jae Jun
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Russell A DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| |
Collapse
|
8
|
Chen X, Furukawa N, Jin DY, Liu Y, Stafford DW, Williams CM, Suhara Y, Tie JK. Naturally occurring UBIAD1 mutations differentially affect menaquinone biosynthesis and vitamin K-dependent carboxylation. FEBS J 2021; 289:2613-2627. [PMID: 34813684 PMCID: PMC9064899 DOI: 10.1111/febs.16291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/15/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022]
Abstract
UbiA prenyltransferase domain-containing protein-1 (UBIAD1) is responsible for the biosynthesis of menaquinone-4 (MK-4), a cofactor for extrahepatic carboxylation of vitamin K-dependent (VKD) proteins. Genetic variations of UBIAD1 are mainly associated with Schnyder corneal dystrophy (SCD), a disease characterized by abnormal accumulation of cholesterol in the cornea. Results from in vitro studies demonstrate that SCD-associated UBIAD1 mutations are defective in MK-4 biosynthesis. However, SCD patients do not exhibit typical phenotypes associated with defects of MK-4 or VKD carboxylation. Here, we coupled UBIAD1's biosynthetic activity of MK-4 with VKD carboxylation in HEK293 cells that stably express a chimeric VKD reporter protein. The endogenous Ubiad1 gene in these cells was knocked out by CRISPR-Cas9-mediated genome editing. The effect of UBIAD1 mutations on MK-4 biosynthesis and VKD carboxylation was evaluated in Ubiad1-deficient reporter cells by determining the production of MK-4 or by measuring the efficiency of reporter-protein carboxylation. Our results show that the hot-spot mutation N102S has a moderate impact on MK-4 biosynthesis (retained ˜ 82% activity) but does not affect VKD carboxylation. However, the G186R mutation significantly affected both MK-4 biosynthesis and VKD carboxylation. Other mutations exhibit varying degrees of effects on MK-4 biosynthesis and VKD carboxylation. These results are consistent with in vivo results obtained from gene knock-in mice and SCD patients. Our findings suggest that UBIAD1's MK-4 biosynthetic activity does not directly correlate with the phenotypes of SCD patients. The established cell-based assays in this study provide a powerful tool for the functional studies of UBIAD1 in a cellular milieu.
Collapse
Affiliation(s)
- Xuejie Chen
- Department of Biology, University of North Carolina at Chapel Hill, NC, USA
| | - Natsuko Furukawa
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Da-Yun Jin
- Department of Biology, University of North Carolina at Chapel Hill, NC, USA
| | - Yizhou Liu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Darrel W Stafford
- Department of Biology, University of North Carolina at Chapel Hill, NC, USA
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Yoshitomo Suhara
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Jian-Ke Tie
- Department of Biology, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
9
|
Xie J, Li L. Functional study of SCCD pathogenic gene UBIAD1 (Review). Mol Med Rep 2021; 24:706. [PMID: 34368857 PMCID: PMC8365407 DOI: 10.3892/mmr.2021.12345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/29/2021] [Indexed: 12/22/2022] Open
Abstract
Schnyder's crystalline corneal dystrophy (SCCD) is a rare autosomal dominant genetic disorder that is characterized by progressive corneal opacity, owing to aberrant accumulation of cholesterol and phospholipids in the cornea. A number of SCCD affected families have been reported in the world since 1924, when it was first described. In 2007, the molecular basis of SCCD was demonstrated to be associated with a tumor suppressor, UbiA prenyltransferase domain-containing 1 (UBIAD1), which was isolated from the bladder mucosa and demonstrated to be involved in vitamin K2 and CoQ10 biosynthesis. This sterol triggers the binding of UBIAD1 to 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR) at endoplasmic reticulum (ER) membranes, which is regulated by an intracellular geranylgeranyl diphosphate (GGpp) molecule. The inability of SCCD-associated UBIAD1 to bind GGpp results in the consistent binding of UBIAD1 to HMGCR at ER membranes. This binding leads to HMGCRs being redundant. Therefore, they cannot be degraded through ER-associated degradation to synthesize abundant cholesterol in tissue cells. Excess corneal cholesterol accumulation thus leads to SCCD disease. After decades, the efforts of numerous ophthalmologists and scientists have helped clarify the molecular basis and pathogenesis of SCCD, which has guided the effective diagnosis and treatment of this genetic disorder. However, more studies need to be conducted to understand the pathogenesis of SCCD disease from a genetic basis by studying the defective gene, UBIAD1. Results would guide effective diagnosis and treatment of the inherited eye disease.
Collapse
Affiliation(s)
- Jumin Xie
- Medical School of Renal Disease Occurrence and Intervention, Hubei Polytechnic University, Huangshi, Hubei 435003, P.R. China
| | - Lingxing Li
- Department of Cardiovascular Medicine, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| |
Collapse
|
10
|
Schumacher MM, DeBose-Boyd RA. Posttranslational Regulation of HMG CoA Reductase, the Rate-Limiting Enzyme in Synthesis of Cholesterol. Annu Rev Biochem 2021; 90:659-679. [PMID: 34153214 DOI: 10.1146/annurev-biochem-081820-101010] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The polytopic, endoplasmic reticulum (ER) membrane protein 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase produces mevalonate, the key intermediate in the synthesis of cholesterol and many nonsterol isoprenoids including geranylgeranyl pyrophosphate (GGpp). Transcriptional, translational, and posttranslational feedback mechanisms converge on this reductase to ensure cells maintain a sufficient supply of essential nonsterol isoprenoids but avoid overaccumulation of cholesterol and other sterols. The focus of this review is mechanisms for the posttranslational regulation of HMG CoA reductase, which include sterol-accelerated ubiquitination and ER-associated degradation (ERAD) that is augmented by GGpp. We discuss how GGpp-induced ER-to-Golgi trafficking of the vitamin K2 synthetic enzyme UbiA prenyltransferase domain-containing protein-1 (UBIAD1) modulates HMG CoA reductase ERAD to balance the synthesis of sterol and nonsterol isoprenoids. We also summarize the characterization of genetically manipulated mice, which established that sterol-accelerated, UBIAD1-modulated ERAD plays a major role in regulation of HMG CoA reductase and cholesterol metabolism in vivo.
Collapse
Affiliation(s)
- Marc M Schumacher
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA;
| | - Russell A DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA;
| |
Collapse
|
11
|
Pi Z, Liu J, Xiao H, Hu Z. L-3-n-butylphthalide promotes restoration after an experimental animal model of intracerebral hemorrhage. Int J Med Sci 2021; 18:2607-2614. [PMID: 34104092 PMCID: PMC8176182 DOI: 10.7150/ijms.60342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/21/2021] [Indexed: 01/12/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating type of stroke with high morbidity and mortality, and the effective therapies for ICH remain to be explored. L-3-n-butylphthalide (NBP) is widely used in the treatment of ischemic stroke. However, few studies evaluated the therapeutic effects of NBP on ICH. Therefore, the present study aims to evaluate the effects of NBP on ICH and its potential mechanism. The rats were randomly divided into sham-operated group, saline-treated (ICH + saline) group, and NBP-treated (ICH + NBP) group. The ICH model of SD rats induced by IV collagenase was established. The modified Garcia JH score was used to detect the neurological deficit in rats. Western Blot and immunohistochemistry analysis was applied to test the levels of UBIAD1 and caspase-3 expressions in the perihematomal region. The rates of apoptotic cells were detected by TUNEL staining. The results showed that NBP up-regulated the expression of UBIAD1, reduced the apoptotic cells in the perihematomal region, and improved the neurological deficit. Taken together, our study added some new evidence to the application of NBP in ICH treatment.
Collapse
Affiliation(s)
- Zhendong Pi
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianyang Liu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Han Xiao
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
van den Boomen DJH, Volkmar N, Lehner PJ. Ubiquitin-mediated regulation of sterol homeostasis. Curr Opin Cell Biol 2020; 65:103-111. [PMID: 32580085 DOI: 10.1016/j.ceb.2020.04.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/03/2020] [Accepted: 04/26/2020] [Indexed: 11/19/2022]
Abstract
Cholesterol is an essential component of mammalian membranes, and its homeostasis is strictly regulated, with imbalances causing atherosclerosis, Niemann Pick disease, and familial hypercholesterolemia. Cellular cholesterol supply is mediated by LDL-cholesterol import and de novo cholesterol biosynthesis, and both pathways are adjusted to cellular demand by the cholesterol-sensitive SREBP2 transcription factor. Cholesterol homeostasis is modulated by a wide variety of metabolic pathways and the ubiquitination machinery, in particular E3 ubiquitin ligases. In this article, we review recent progress in understanding the role of E3 ubiquitin ligases in the metabolic control of cellular sterol homeostasis.
Collapse
Affiliation(s)
- Dick J H van den Boomen
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Norbert Volkmar
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Paul J Lehner
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
13
|
Soh YQ, Kocaba V, Weiss JS, Jurkunas UV, Kinoshita S, Aldave AJ, Mehta JS. Corneal dystrophies. Nat Rev Dis Primers 2020; 6:46. [PMID: 32528047 DOI: 10.1038/s41572-020-0178-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2020] [Indexed: 12/21/2022]
Abstract
Corneal dystrophies are broadly defined as inherited disorders that affect any layer of the cornea and are usually progressive, bilateral conditions that do not have systemic effects. The 2015 International Classification of Corneal Dystrophies classifies corneal dystrophies into four classes: epithelial and subepithelial dystrophies, epithelial-stromal TGFBI dystrophies, stromal dystrophies and endothelial dystrophies. Whereas some corneal dystrophies may result in few or mild symptoms and morbidity throughout a patient's lifetime, others may progress and eventually result in substantial visual and ocular disturbances that require medical or surgical intervention. Corneal transplantation, either with full-thickness or partial-thickness donor tissue, may be indicated for patients with advanced corneal dystrophies. Although corneal transplantation techniques have improved considerably over the past two decades, these surgeries are still associated with postoperative risks of disease recurrence, graft failure and other complications that may result in blindness. In addition, a global shortage of cadaveric corneal graft tissue critically limits accessibility to corneal transplantation in some parts of the world. Ongoing advances in gene therapy, regenerative therapy and cell augmentation therapy may eventually result in the development of alternative, novel treatments for corneal dystrophies, which may substantially improve the quality of life of patients with these disorders.
Collapse
Affiliation(s)
- Yu Qiang Soh
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore.,Singapore National Eye Centre, Singapore, Singapore.,Ophthalmology Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, Singapore.,Department of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Viridiana Kocaba
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore.,Netherlands Institute for Innovative Ocular Surgery, Rotterdam, Netherlands
| | - Jayne S Weiss
- Department of Ophthalmology, Pathology and Pharmacology, Louisiana State University, School of Medicine, New Orleans, USA
| | - Ula V Jurkunas
- Cornea and Refractive Surgery Service, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Schepens Eye Research Institute, Boston, Massachusetts, USA.,Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Anthony J Aldave
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore. .,Singapore National Eye Centre, Singapore, Singapore. .,Ophthalmology Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, Singapore. .,Department of Clinical Sciences, Duke-NUS Graduate Medical School, Singapore, Singapore.
| |
Collapse
|
14
|
Jun DJ, Schumacher MM, Hwang S, Kinch LN, Grishin NV, DeBose-Boyd RA. Schnyder corneal dystrophy-associated UBIAD1 is defective in MK-4 synthesis and resists autophagy-mediated degradation. J Lipid Res 2020; 61:746-757. [PMID: 32188638 PMCID: PMC7193952 DOI: 10.1194/jlr.ra119000551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/21/2020] [Indexed: 12/15/2022] Open
Abstract
The autosomal dominant disorder Schnyder corneal dystrophy (SCD) is caused by mutations in UbiA prenyltransferase domain-containing protein-1 (UBIAD1), which uses geranylgeranyl pyrophosphate (GGpp) to synthesize the vitamin K2 subtype menaquinone-4 (MK-4). SCD is characterized by opacification of the cornea, owing to aberrant build-up of cholesterol in the tissue. We previously discovered that sterols stimulate association of UBIAD1 with ER-localized HMG-CoA reductase, which catalyzes a rate-limiting step in the synthesis of cholesterol and nonsterol isoprenoids, including GGpp. Binding to UBIAD1 inhibits sterol-accelerated ER-associated degradation (ERAD) of reductase and permits continued synthesis of GGpp in cholesterol-replete cells. GGpp disrupts UBIAD1-reductase binding and thereby allows for maximal ERAD of reductase as well as ER-to-Golgi translocation of UBIAD1. SCD-associated UBIAD1 is refractory to GGpp-mediated dissociation from reductase and remains sequestered in the ER to inhibit ERAD. Here, we report development of a biochemical assay for UBIAD1-mediated synthesis of MK-4 in isolated membranes and intact cells. Using this assay, we compared enzymatic activity of WT UBIAD1 with that of SCD-associated variants. Our studies revealed that SCD-associated UBIAD1 exhibited reduced MK-4 synthetic activity, which may result from its reduced affinity for GGpp. Sequestration in the ER protects SCD-associated UBIAD1 from autophagy and allows intracellular accumulation of the mutant protein, which amplifies the inhibitory effect on reductase ERAD. These findings have important implications not only for the understanding of SCD etiology but also for the efficacy of cholesterol-lowering statin therapy, which becomes limited, in part, because of UBIAD1-mediated inhibition of reductase ERAD.
Collapse
Affiliation(s)
- Dong-Jae Jun
- Departments of Molecular Genetics,University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Marc M Schumacher
- Departments of Molecular Genetics,University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Seonghwan Hwang
- Departments of Molecular Genetics,University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Lisa N Kinch
- Biophysics,University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Nick V Grishin
- Biophysics,University of Texas Southwestern Medical Center, Dallas, TX 75390-9046; Howard Hughes Medical Institute,University of Texas Southwestern Medical Center, Dallas, TX 75390-9046
| | - Russell A DeBose-Boyd
- Departments of Molecular Genetics,University of Texas Southwestern Medical Center, Dallas, TX 75390-9046. mailto:
| |
Collapse
|
15
|
Jo Y, Kim SS, Garland K, Fuentes I, DiCarlo LM, Ellis JL, Fu X, Booth SL, Evers BM, DeBose-Boyd RA. Enhanced ER-associated degradation of HMG CoA reductase causes embryonic lethality associated with Ubiad1 deficiency. eLife 2020; 9:54841. [PMID: 32118581 PMCID: PMC7069719 DOI: 10.7554/elife.54841] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/02/2020] [Indexed: 12/15/2022] Open
Abstract
UbiA prenyltransferase domain-containing protein-1 (UBIAD1) synthesizes the vitamin K subtype menaquinone-4 (MK-4). Previous studies in cultured cells (Schumacher et al., 2015) revealed that UBIAD1 also inhibits endoplasmic reticulum (ER)-associated degradation (ERAD) of ubiquitinated HMG CoA reductase (HMGCR), the rate-limiting enzyme of the mevalonate pathway that produces cholesterol and essential nonsterol isoprenoids. Gene knockout studies were previously attempted to explore the function of UBIAD1 in mice; however, homozygous germ-line elimination of the Ubiad1 gene caused embryonic lethality. We now report that homozygous deletion of Ubiad1 is produced in knockin mice expressing ubiquitination/ERAD-resistant HMGCR. Thus, embryonic lethality of Ubiad1 deficiency results from depletion of mevalonate-derived products owing to enhanced ERAD of HMGCR rather than from reduced synthesis of MK-4. These findings provide genetic evidence for the significance of UBIAD1 in regulation of cholesterol synthesis and offer the opportunity in future studies for the discovery of new physiological roles of MK-4.
Collapse
Affiliation(s)
- Youngah Jo
- Department of Molecular Genetics, University of Texas Southwestern Medical, Dallas, United States
| | - Steven S Kim
- Department of Molecular Genetics, University of Texas Southwestern Medical, Dallas, United States
| | - Kristina Garland
- Department of Molecular Genetics, University of Texas Southwestern Medical, Dallas, United States
| | - Iris Fuentes
- Department of Molecular Genetics, University of Texas Southwestern Medical, Dallas, United States
| | - Lisa M DiCarlo
- Department of Molecular Genetics, University of Texas Southwestern Medical, Dallas, United States
| | - Jessie L Ellis
- Center at Dallas and Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Somerville, United States
| | - Xueyan Fu
- Center at Dallas and Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Somerville, United States
| | - Sarah L Booth
- Center at Dallas and Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Somerville, United States
| | - Bret M Evers
- Department of Pathology, University of Texas Southwestern Medical, Dallas, United States
| | - Russell A DeBose-Boyd
- Department of Molecular Genetics, University of Texas Southwestern Medical, Dallas, United States
| |
Collapse
|
16
|
Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol 2019; 21:225-245. [DOI: 10.1038/s41580-019-0190-7] [Citation(s) in RCA: 450] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
|
17
|
Chen L, Chen XW, Huang X, Song BL, Wang Y, Wang Y. Regulation of glucose and lipid metabolism in health and disease. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1420-1458. [PMID: 31686320 DOI: 10.1007/s11427-019-1563-3] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023]
Abstract
Glucose and fatty acids are the major sources of energy for human body. Cholesterol, the most abundant sterol in mammals, is a key component of cell membranes although it does not generate ATP. The metabolisms of glucose, fatty acids and cholesterol are often intertwined and regulated. For example, glucose can be converted to fatty acids and cholesterol through de novo lipid biosynthesis pathways. Excessive lipids are secreted in lipoproteins or stored in lipid droplets. The metabolites of glucose and lipids are dynamically transported intercellularly and intracellularly, and then converted to other molecules in specific compartments. The disorders of glucose and lipid metabolism result in severe diseases including cardiovascular disease, diabetes and fatty liver. This review summarizes the major metabolic aspects of glucose and lipid, and their regulations in the context of physiology and diseases.
Collapse
Affiliation(s)
- Ligong Chen
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China.
| | - Xiao-Wei Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yiguo Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
18
|
Jiang SY, Tang JJ, Xiao X, Qi W, Wu S, Jiang C, Hong J, Xu J, Song BL, Luo J. Schnyder corneal dystrophy-associated UBIAD1 mutations cause corneal cholesterol accumulation by stabilizing HMG-CoA reductase. PLoS Genet 2019; 15:e1008289. [PMID: 31323021 PMCID: PMC6668851 DOI: 10.1371/journal.pgen.1008289] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/31/2019] [Accepted: 07/04/2019] [Indexed: 11/29/2022] Open
Abstract
Schnyder corneal dystrophy (SCD) is a rare genetic eye disease characterized by corneal opacification resulted from deposition of excess free cholesterol. UbiA prenyltransferase domain-containing protein-1 (UBIAD1) is an enzyme catalyzing biosynthesis of coenzyme Q10 and vitamin K2. More than 20 UBIAD1 mutations have been found to associate with human SCD. How these mutants contribute to SCD development is not fully understood. Here, we identified HMGCR as a binding partner of UBIAD1 using mass spectrometry. In contrast to the Golgi localization of wild-type UBIAD1, SCD-associated mutants mainly resided in the endoplasmic reticulum (ER) and competed with Insig-1 for HMGCR binding, thereby preventing HMGCR from degradation and increasing cholesterol biosynthesis. The heterozygous Ubiad1 G184R knock-in (Ubiad1G184R/+) mice expressed elevated levels of HMGCR protein in various tissues. The aged Ubiad1G184R/+ mice exhibited corneal opacification and free cholesterol accumulation, phenocopying clinical manifestations of SCD patients. In summary, these results demonstrate that SCD-associated mutations of UBIAD1 impair its ER-to-Golgi transportation and enhance its interaction with HMGCR. The stabilization of HMGCR by UBIAD1 increases cholesterol biosynthesis and eventually causes cholesterol accumulation in the cornea. Schnyder corneal dystrophy (SCD) is a rare genetic eye disease caused by deposition of free cholesterol in the cornea. It is closely correlated with mutations in the UbiA prenyltransferase domain-containing protein-1 (UBIAD1) gene, which encodes an enzyme catalyzing biosynthesis of coenzyme Q10 and vitamin K2. The underlying mechanism by which UBIAD1 mutations result in SCD development is unclear. Here, we report that SCD-associated mutations trap UBIAD1 in the ER and block Insig-1 mediated HMGCR degradation. We also generated a heterozygous mouse model (Ubiad1G184R/+) that mimics human SCD. We conclude that SCD-associated UBIAD1 mutations decrease HMGCR degradation and subsequently increase cholesterol biosynthesis in the cornea.
Collapse
Affiliation(s)
- Shi-You Jiang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jing-Jie Tang
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xu Xiao
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Qi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Suqian Wu
- Department of Ophthalmology and Visual Science, Eye Institute, Eye and ENT Hospital, Shanghai Medical College of Fudan University, NHC Key Laboratory of myopia (Fudan University), Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Chao Jiang
- Department of Ophthalmology and Visual Science, Eye Institute, Eye and ENT Hospital, Shanghai Medical College of Fudan University, NHC Key Laboratory of myopia (Fudan University), Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jiaxu Hong
- Department of Ophthalmology and Visual Science, Eye Institute, Eye and ENT Hospital, Shanghai Medical College of Fudan University, NHC Key Laboratory of myopia (Fudan University), Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jianjiang Xu
- Department of Ophthalmology and Visual Science, Eye Institute, Eye and ENT Hospital, Shanghai Medical College of Fudan University, NHC Key Laboratory of myopia (Fudan University), Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
- * E-mail: (JX); (BLS); (JL)
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
- Shenzhen Institute of Wuhan University, Shenzhen, China
- * E-mail: (JX); (BLS); (JL)
| | - Jie Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (JX); (BLS); (JL)
| |
Collapse
|