1
|
Sohan MSR, Hossain MF, Hossain S, Omori Y, Amin MT, Hasan ME, Tokumoto T. Biochemical characterization of zebrafish Paqr5b. Biochem Biophys Rep 2025; 42:101994. [PMID: 40236297 PMCID: PMC11999305 DOI: 10.1016/j.bbrep.2025.101994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 04/17/2025] Open
Abstract
Previously, we established a gene knock-out strain of paqr5b in zebrafish and showed that the gene is essential for the formation of neurons in the zebrafish olfactory rosette. The results suggested that Paqr5b might play a role as a receptor for neurosteroids and contribute to the differentiation of olfactory neurons. In this study, we attempted to express the recombinant zebrafish Paqr5b protein and analyze its affinity for steroids. Full-length zebrafish Paqr5b (zPaqr5b) was expressed in Pichia pastris according to the method established for goldfish and human Paqr7. Solubilized zPaqr5b was purified by two column chromatography steps, nickel-nitrilotriacetic acid (Ni-NTA) column and gel column (Sephacryl S-300). The protein fraction showed a binding affinity of Kd = 4.6 nM and Bmax = 0.72 nM for progesterone. The result showed that zPaqr5b was successfully fractionated as the active form. The specificity of zPaqr5b against steroids was then analyzed by steroid binding assay. The zPaqr5b showed specific binding to progesterone as well as to the neurosteroid, allopregnanolone (ALLO). In addition, zPaqr5b showed high affinity for 17α,20β-dehydroxyprogesterone (DHP), a pheromone used to induce sexual behavior. In contrast, it was observed that other steroids, estradiol, testosterone and cortisol, showed no affinity, even when present at high doses. These results suggest that zPaqr5b is responsible for a receptor of progestogenic neurosteroids in the differentiation of neurons in the olfactory rosette (OR) and for a receptor for pheromones in developed neuronal cells in the OR.
Collapse
Affiliation(s)
- Md Sohanur Rahman Sohan
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Md Forhad Hossain
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Shakhawat Hossain
- Biological Science Course, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Yuki Omori
- Biological Science Course, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Mohammad Tohidul Amin
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Md Ekramul Hasan
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Toshinobu Tokumoto
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
- Biological Science Course, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| |
Collapse
|
2
|
Amin MT, Acharjee M, Sarwar Jyoti MM, Rezanujjaman M, Hassan MM, Hossain MF, Ahamed S, Kodani S, Tokumoto T. Discovery of specific activity of 2-hydroxypentanoic acid acting on the mPR alpha (Paqr7) from the marine algae Padina. Biochem Biophys Res Commun 2025; 751:151433. [PMID: 39922053 DOI: 10.1016/j.bbrc.2025.151433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/21/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
Membrane progesterone receptors (mPRs) are members of the progestin and adipoQ (PAQR) receptor family that are stimulated by endogenous steroids to initiate rapid intracellular signaling through a nongenomic pathway. Previously, water-soluble compounds with mPRα binding activity from the marine algae Padina arborescens were fractionated by HPLC. Nuclear magnetic resonance spectroscopy revealed that the major component of the HPLC fraction was 2-hydroxypentanoic acid (2-HPA). In this study, the physiological activity of 2-HPA and its analogues was investigated using in vitro goldfish and in vivo zebrafish oocyte maturation and ovulation assays. Only 2-HPA showed inhibitory activity on oocyte maturation and ovulation of fish oocytes. The inhibitory activity of 2-HPA was compared between S- and R-type 2-HPA. The results showed that both types had the same level of activity. Furthermore, the interaction of 2-HPA with mPRα was analyzed by binding assay. 2-HPAs showed a substantial competitive binding affinity for the human membrane progesterone receptor α (hmPRα) in the graphene quantum dots (GQDs)-hmPRα binding assay. In contrast, synthetic structural analogues of 2-HPA showed no competitive binding activity. These results indicate that 2-HPA is a novel mPRα antagonist, and its chemical structure is highly restricted to show its activity.
Collapse
Affiliation(s)
- Mohammad Tohidul Amin
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Mrityunjoy Acharjee
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Md Maisum Sarwar Jyoti
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Md Rezanujjaman
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Mohammad Maksudul Hassan
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Md Forhad Hossain
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Saokat Ahamed
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Shinya Kodani
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Toshinobu Tokumoto
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
3
|
Mustary UH, Maeno A, Rahaman MM, Ali MH, Tokumoto T. Membrane progesterone receptor γ (paqr5b) is essential for the formation of neurons in the zebrafish olfactory rosette. Sci Rep 2024; 14:24354. [PMID: 39420013 PMCID: PMC11487149 DOI: 10.1038/s41598-024-74674-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Paqr5b is a gene encoding membrane progesterone receptor γ (mPRγ), which is one of five mPR subtypes. Paqr5b belongs to the progestin and adipoQ receptor (PAQR) family, which consists of 11 genes. To elucidate the physiological functions of the mPR subtypes, we established gene knockout (KO) zebrafish strains by genetically editing seven paqr genes and analyzed their phenotypes. The null-mutant strain of paqr5b (paqr5b-/-) that we established in this study showed low fecundity, reduced chorion elevation and a high percentage of abnormal embryos. Embryos showed curvature of the spine and an abnormal head morphology. Individuals with abnormal head morphology continued to develop a phenotype of markedly abnormal palatine bone. The length of the brain of paqr5b-/- zebrafish was short, and the position of the cerebellum moved to the front and overlapped with that of the midbrain. Micro-CT scans revealed that the olfactory rosettes (ORs) were so shrunken that they were difficult to identify and connected with the olfactory bulbs (OBs) by thread-like structures. Immunohistochemical staining of OR with an anti-Paqr5b antibody revealed that Paqr5b was extensively expressed in neurons in the OR in wild-type zebrafish, whereas signals were not detected in paqr5b-/- zebrafish. In histological sections, the neurons disappeared, and the lamellar layer of the OR became thinner. These results indicate that Paqr5b is required for the formation of neurons in the OR. This is the first report demonstrating a distinct role for the mPR gene.
Collapse
Affiliation(s)
- Umme Habiba Mustary
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Akiteru Maeno
- Cell Architecture Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Md Mostafizur Rahaman
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Md Hasan Ali
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Toshinobu Tokumoto
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
4
|
Hossain F, Hossain S, Jyoti MS, Omori Y, Tokumoto T. Establishment of a steroid binding assay for goldfish membrane progesterone receptor (mPR) by coupling with graphene quantum dots (GQDs). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1331-1339. [PMID: 38329580 DOI: 10.1007/s10695-024-01315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
A homogeneous assay was developed to evaluate ligands that target the membrane progesterone receptor alpha (mPRα) of goldfish. This was achieved by employing graphene quantum dots (GQDs), a type of semiconductor nanoparticle conjugated to the goldfish mPRα. When progesterone-BSA-fluorescein isothiocyanate (P4-BSA-FITC) was combined with the other agents, fluorescence was observed through Förster resonance energy transfer (FRET). However, this fluorescence was quenched by binding between the ligand and receptor. This established method demonstrated the ligand selectivity of the mPRα protein. Then, the methylotrophic yeast Pichia pastoris was used to express the goldfish mPRα (GmPRα) protein. The recombinant purified GmPRα protein was coupled with graphene quantum dots (GQDs) to generate GQD-conjugated goldfish mPRα (GQD-GmPRα). Fluorescence at a wavelength of 520 nm was observed through FRET upon the combination of P4-BSA-FITC and subsequent activation by ultraviolet (UV) light. Adding free P4 to the reaction mixture resulted in a decrease in fluorescence intensity at a wavelength of 520 nm. The fluorescence was reduced by the administration of GmPRα ligands but not by steroids that do not interact with GmPRα. The findings indicated that the interaction between the ligand and receptor led to the formation of a complex involving GQD-GmPRα and P4-BSA-FITC. The interaction between the compounds and GQD-GmPRα was additionally validated by a binding experiment that employed the radiolabeled natural ligand [3H]-17α,20β-dihydroxy-4-pregnen-3-one. We established a ligand-binding assay for the fish membrane progesterone receptor that is applicable for screening compounds.
Collapse
Affiliation(s)
- Forhad Hossain
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, 422-8529, Japan
| | - Shakhawat Hossain
- Biological Science Course, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-Ku, Shizuoka, 422-8529, Japan
| | - Maisum Sarwar Jyoti
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, 422-8529, Japan
| | - Yuki Omori
- Biological Science Course, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-Ku, Shizuoka, 422-8529, Japan
| | - Toshinobu Tokumoto
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, 422-8529, Japan.
- Biological Science Course, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-Ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
5
|
Chen G, Tang Q, Yu S, Shen Y, Sun J, Peng J, Yin Y, Feng G, Lu X, Mei G, Zhang Y, Wan Q, Zhang L, Chen L. Developmental growth plate cartilage formation suppressed by artificial light at night via inhibiting BMAL1-driven collagen hydroxylation. Cell Death Differ 2023; 30:1503-1516. [PMID: 37029304 PMCID: PMC10244380 DOI: 10.1038/s41418-023-01152-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/20/2023] [Accepted: 03/15/2023] [Indexed: 04/09/2023] Open
Abstract
Exposure to artificial light at night (LAN) can induce obesity, depressive disorder and osteoporosis, but the pernicious effects of excessive LAN exposure on tissue structure are poorly understood. Here, we demonstrated that artificial LAN can impair developmental growth plate cartilage extracellular matrix (ECM) formation and cause endoplasmic reticulum (ER) dilation, which in turn compromises bone formation. Excessive LAN exposure induces downregulation of the core circadian clock protein BMAL1, which leads to collagen accumulation in the ER. Further investigations suggest that BMAL1 is the direct transcriptional activator of prolyl 4-hydroxylase subunit alpha 1 (P4ha1) in chondrocytes, which orchestrates collagen prolyl hydroxylation and secretion. BMAL1 downregulation induced by LAN markedly inhibits proline hydroxylation and transport of collagen from ER to golgi, thereby inducing ER stress in chondrocytes. Restoration of BMAL1/P4HA1 signaling can effectively rescue the dysregulation of cartilage formation within the developmental growth plate induced by artificial LAN exposure. In summary, our investigations suggested that LAN is a significant risk factor in bone growth and development, and a proposed novel strategy targeting enhancement of BMAL1-mediated collagen hydroxylation could be a potential therapeutic approach to facilitate bone growth.
Collapse
Affiliation(s)
- Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Shaoling Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yufeng Shen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jiwei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jinfeng Peng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ying Yin
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Guangxia Feng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Xiaofeng Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Gang Mei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yifan Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
6
|
Wang Z, Chen G. Insights about circadian clock in glioma: From molecular pathways to therapeutic drugs. CNS Neurosci Ther 2022; 28:1930-1941. [PMID: 36066207 PMCID: PMC9627379 DOI: 10.1111/cns.13966] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 02/06/2023] Open
Abstract
Glioma is characterized as the most aggressive brain tumor that occurred in the central nervous system. The circadian rhythm is an essential cyclic change system generated by the endogenous circadian clock. Current studies found that the circadian clock affects glioma pathophysiology. It is still controversial whether the circadian rhythm disruption is a cause or an effect of tumorigenesis. This review discussed the association between cell cycle and circadian clock and provided a prominent molecular theoretical basis for tumor therapy. We illustrated the external factors affecting the circadian clock including thermodynamics, hypoxia, post-translation, and microRNA, while the internal characteristics concerning the circadian clock in glioma involve stemness, metabolism, radiotherapy sensitivity, and chemotherapy sensitivity. We also summarized the molecular pathways and the therapeutic drugs involved in the glioma circadian rhythm. There are still many questions in this field waiting for further investigation. The results of glioma chronotherapy in sensitizing radiation therapy and chemotherapy have shown great therapeutic potential in improving clinical outcomes. These findings will help us further understand the characteristics of glioma pathophysiology.
Collapse
Affiliation(s)
- Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina,Institute of Stroke ResearchSoochow UniversitySuzhouChina
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina,Institute of Stroke ResearchSoochow UniversitySuzhouChina
| |
Collapse
|
7
|
de Almeida Miranda D, Araripe J, de Morais Magalhães NG, de Siqueira LS, de Abreu CC, Pereira PDC, Henrique EP, da Silva Chira PAC, de Melo MAD, do Rêgo PS, Diniz DG, Sherry DF, Diniz CWP, Guerreiro-Diniz C. Shorebirds' Longer Migratory Distances Are Associated With Larger ADCYAP1 Microsatellites and Greater Morphological Complexity of Hippocampal Astrocytes. Front Psychol 2022; 12:784372. [PMID: 35185684 PMCID: PMC8855117 DOI: 10.3389/fpsyg.2021.784372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
For the epic journey of autumn migration, long-distance migratory birds use innate and learned information and follow strict schedules imposed by genetic and epigenetic mechanisms, the details of which remain largely unknown. In addition, bird migration requires integrated action of different multisensory systems for learning and memory, and the hippocampus appears to be the integration center for this task. In previous studies we found that contrasting long-distance migratory flights differentially affected the morphological complexity of two types of hippocampus astrocytes. Recently, a significant association was found between the latitude of the reproductive site and the size of the ADCYAP1 allele in long distance migratory birds. We tested for correlations between astrocyte morphological complexity, migratory distances, and size of the ADCYAP1 allele in three long-distance migrant species of shorebird and one non-migrant. Significant differences among species were found in the number and morphological complexity of the astrocytes, as well as in the size of the microsatellites of the ADCYAP1 gene. We found significant associations between the size of the ADCYAP1 microsatellites, the migratory distances, and the degree of morphological complexity of the astrocytes. We suggest that associations between astrocyte number and morphological complexity, ADCYAP1 microsatellite size, and migratory behavior may be part of the adaptive response to the migratory process of shorebirds.
Collapse
Affiliation(s)
- Diego de Almeida Miranda
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil.,Laboratório de Genética e Conservação, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Bragança, Brazil
| | - Juliana Araripe
- Laboratório de Genética e Conservação, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Bragança, Brazil
| | - Nara G de Morais Magalhães
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Lucas Silva de Siqueira
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Cintya Castro de Abreu
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Patrick Douglas Corrêa Pereira
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Ediely Pereira Henrique
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Pedro Arthur Campos da Silva Chira
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Mauro A D de Melo
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Péricles Sena do Rêgo
- Laboratório de Genética e Conservação, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Bragança, Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Belém, Brazil.,Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Brazil
| | - David Francis Sherry
- Department of Psychology, Advanced Facility for Avian Research, University of Western Ontario, London, ON, Canada
| | - Cristovam W P Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Belém, Brazil
| | - Cristovam Guerreiro-Diniz
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| |
Collapse
|
8
|
Jyoti MMS, Rana MR, Ali MH, Tokumoto T. Establishment of a steroid binding assay for membrane progesterone receptor alpha (PAQR7) by using graphene quantum dots (GQDs). Biochem Biophys Res Commun 2022; 592:1-6. [PMID: 35007844 DOI: 10.1016/j.bbrc.2022.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 01/03/2022] [Indexed: 12/17/2022]
Abstract
Currently, semiconductor nanoparticles known as quantum dots (QDs) have attracted interest in various application fields such as those requiring sensing properties, binding assays, and cellular imaging and are the very important in the acceleration of drug discovery due to their unique photophysical properties. Here, we applied graphene quantum dots (GQDs) for the binding assay of membrane progesterone receptor alpha (mPRα), one of the probable membrane receptors that have potential in drug discovery applications. By coupling the amino groups of mPRα with GQDs, we prepared fluorogenic GQD-conjugated mPRα (GQD-mPRα). When mixed with a progesterone-BSA-fluorescein isothiocyanate conjugate (P4-BSA-FITC) to check the ligand receptor binding activity of GQD-mPRα, fluorescence at 520 nm appeared. The fluorescence at 520 nm was reduced by the addition of free progesterone into the reaction mixture. GQD-coupled BSA (GQD-BSA) did not show a reduction in fluorescence at 520 nm. The results demonstrated the formation of a complex of GQD-mPRα and P4-BSA-FITC with ligand receptor binding. We established a ligand binding assay for membrane steroid receptors that is applicable for high-throughput assays.
Collapse
Affiliation(s)
- Md Maisum Sarwar Jyoti
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Md Rubel Rana
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Md Hasan Ali
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Toshinobu Tokumoto
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
9
|
Bumgarner JR, Nelson RJ. Light at Night and Disrupted Circadian Rhythms Alter Physiology and Behavior. Integr Comp Biol 2021; 61:1160-1169. [PMID: 33787878 DOI: 10.1093/icb/icab017] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Life on earth has evolved during the past several billion years under relatively bright days and dark nights. Virtually, all organisms on the planet display an internal representation of the solar days in the form of circadian rhythms driven by biological clocks. Nearly every aspect of physiology and behavior is mediated by these internal clocks. The widespread adoption of electric lights during the past century has exposed animals, including humans, to significant light at night for the first time in our evolutionary history. Importantly, endogenous circadian clocks depend on light for synchronization with the external daily environment. Thus, light at night can derange temporal adaptations. Indeed, disruption of natural light-dark cycles results in several physiological and behavioral changes. In this review, we highlight recent evidence demonstrating how light at night exposure can have serious implications for adaptive physiology and behavior, including immune, endocrine, and metabolic function, as well as reproductive, foraging, and migratory behavior. Lastly, strategies to mitigate the consequences of light at night on behavior and physiology will be considered.
Collapse
Affiliation(s)
- Jacob R Bumgarner
- Department of Neuroscience Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505 USA
| | - Randy J Nelson
- Department of Neuroscience Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505 USA
| |
Collapse
|
10
|
Sepp T, Webb E, Simpson RK, Giraudeau M, McGraw KJ, Hutton P. Light at night reduces digestive efficiency of developing birds: an experiment with king quail. Naturwissenschaften 2021; 108:4. [PMID: 33399962 DOI: 10.1007/s00114-020-01715-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 11/25/2022]
Abstract
Artificial light at night (ALAN) exposes animals to a novel environmental stimulus, one that is generally thought to be maladaptive. ALAN-related health problems have received little attention in non-model species, and we generally know little about the nutritional-physiological impacts of ALAN, especially in young animals. Here, we use a novel application of the acid steatocrit method to experimentally assess changes in digestive efficiency of growing king quail (Excalfactoria chinensis) in response to ALAN. Two weeks after hatching, quail were split into two groups (n = 20-21 per group): overnight-light-treated vs. overnight-dark-treated. When the chicks were 3 weeks old, the experimental group was exposed to weak blue light (ca. 0.3 lux) throughout the entire night for 6 consecutive weeks, until all the chicks had achieved sexual maturation. Fecal samples for assessing digestive efficiency were collected every week. We found that digestive efficiency of quail was reduced by ALAN at two time points from weeks 4 to 9 after hatching (quail reach adulthood by week 9). The negative effect of ALAN on digestion coincided with the period of fastest skeletal growth, which suggests that ALAN may reduce digestive efficiency when energetic demands of growth are at their highest. Interestingly, growth rate was not influenced by ALAN. This suggests that either the negative physiological impacts of ALAN may be concealed when food is provided ad libitum, the observed changes in digestive efficiency were too small to affect growth or condition, or that ALAN-exposed birds had reduced energy expenditure. Our results illustrate that the health impacts of ALAN on wild animals should not be restricted to traditional markers like body mass or growth rate, but instead on a wide array of integrated physiological traits.
Collapse
Affiliation(s)
- Tuul Sepp
- Department of Zoology, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia. .,School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| | - Emily Webb
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Richard K Simpson
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.,Department of Biological Sciences, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Mathieu Giraudeau
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.,CREEC, MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 6450134394, Montpellier Cedex 5, France
| | - Kevin J McGraw
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Pierce Hutton
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
11
|
Chustecka M, Blügental N, Majewski PM, Adamska I. 24 hour patterning in gene expression of pineal neurosteroid biosynthesis in young chickens ( Gallus gallus domesticus L.). Chronobiol Int 2020; 38:46-60. [PMID: 32990093 DOI: 10.1080/07420528.2020.1823404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The pineal gland, one of the three equivalent avian biological clock structures, is also the site of intensive neurosteroid synthesis (7α-hydroxypregnenolone and allopregnanolone). Pineal neurosteroid biosynthesis involves six enzymes: cytochrome P450 side-chain cleavage - Cyp11a1 encoded, cytochrome P4507α - Cyp7b1, 3β-hydroxysteroid dehydrogenase - Hsd3b2, 5α-reductase - Srd5a1, 3α-hydroxysteroid dehydrogenase - Akr1d1, and 5β-reductase - Srd5a3. Regulation of neurosteroid biosynthesis is not fully understood; although it is known that the E4BP4 transcription factor induces activation of biosynthetic cholesterol genes, which are the targets for SREBP (element-binding protein transcription factor). SREBP principal activity in the pineal gland is suppression and inhibition of the Period2 canonical clock gene, suggesting our hypothesis that genes encoding enzymes involved in neurosteroidogenesis are under circadian clock control and are the Clock Control Genes (CCGs). Therefore, through investigation of daily changes in Cyp11a1, Cyp7b1, Hsd3b2, Akr1d1, Srd5a1, and Srd5a3, pineal genes were tested in vivo and in vitro, in cultured pinealocytes. Experiments were carried out on pineal glands taken from 16-day-old chickens in vivo or using in vitro cultures of pinealocytes collected from 16-day-old animals. Both the birds in the in vivo experiments and the pinealocytes were kept under controlled light conditions (LD 12:12) or in constant darkness (DD). Subsequently, materials were prepared for RT-qPCR analysis. Results revealed that three of the six tested genes: Cyp11a1, Cyp7b1, and Srd5a3 demonstrated significant 24-hour variation in in vivo and in vitro. Findings of this study confirm that these genes could be under clock control and satisfy many of the requirements to be identified as CCGs.
Collapse
Affiliation(s)
- Magdalena Chustecka
- Department of Animal Physiology, Faculty of Biology, University of Warsaw , Warsaw, Poland
| | - Natalia Blügental
- Department of Animal Physiology, Faculty of Biology, University of Warsaw , Warsaw, Poland
| | - Pawel Marek Majewski
- Department of Animal Physiology, Faculty of Biology, University of Warsaw , Warsaw, Poland
| | - Iwona Adamska
- Department of Animal Physiology, Faculty of Biology, University of Warsaw , Warsaw, Poland
| |
Collapse
|
12
|
Jing JN, Wu ZT, Li ML, Wang YK, Tan X, Wang WZ. Constant Light Exerted Detrimental Cardiovascular Effects Through Sympathetic Hyperactivity in Normal and Heart Failure Rats. Front Neurosci 2020; 14:248. [PMID: 32292327 PMCID: PMC7124186 DOI: 10.3389/fnins.2020.00248] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
It has been documented that constant light exposure exerts complicated cardiovascular effects. However, a mounting collection of conflicting results did not make it any easier for researchers and physicians to consider the role of light on cardiovascular function. This study was designed to investigate how constant light exposure (24 h light/day) influences the cardiac function in normal and heart-failure (HF) rats. In normal rats, two groups of SD rats were accustomed in 12 h light/12 h dark (LD) or 24 h light (constant light, CL) for 4 weeks. In HF rats which was induced by myocardial infarction (MI) was let recover in LD for 4 weeks. Interestingly, compared with rats in LD environment (ejection fraction, EF%: 93.64 ± 2.02 in LD, 14.62 ± 1.53 in HF-LD), constant light (2 weeks) weakened the cardiac function in normal and HF rats (EF%: 79.42 ± 2.91 in CL, 11.50 ± 1.08 in HF-CL). The levels of renal sympathetic nerve activity and c-fos expression in the rostral ventrolateral medulla (RVLM), a key region controlling sympathetic outflow, were significantly increased in normal and HF rats after constant light (RSNA, Max%: 8.64 ± 0.48 in LD, 20.02 ± 1.24 in CL, 20.10 ± 1.16 in HF-LD, 26.82 ± 1.69 in HF-CL). In conclusion, it is suggested that constant light exposure exerts detrimental cardiovascular effects, which may be associated with the RVLM-related sympathetic hyperactivity.
Collapse
Affiliation(s)
- Jia-Ni Jing
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of People's Liberation Army (PLA), Naval Medical University, Shanghai, China
- Department of Physiology, Naval Medical University, Shanghai, China
| | - Zhao-Tang Wu
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of People's Liberation Army (PLA), Naval Medical University, Shanghai, China
| | - Miao-Ling Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Medical Research, Southwest Medical University, Luzhou, China
| | - Yang-Kai Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of People's Liberation Army (PLA), Naval Medical University, Shanghai, China
| | - Xing Tan
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of People's Liberation Army (PLA), Naval Medical University, Shanghai, China
| | - Wei-Zhong Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of People's Liberation Army (PLA), Naval Medical University, Shanghai, China
- Department of Physiology, Naval Medical University, Shanghai, China
| |
Collapse
|
13
|
Tsutsui K, Haraguchi S. Neuroprotective actions of cerebellar and pineal allopregnanolone on Purkinje cells. FASEB Bioadv 2020; 2:149-159. [PMID: 32161904 PMCID: PMC7059624 DOI: 10.1096/fba.2019-00055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/12/2019] [Accepted: 01/08/2020] [Indexed: 11/23/2022] Open
Abstract
The brain produces steroids de novo from cholesterol, so‐called “neurosteroids.” The Purkinje cell, a cerebellar neuron, was discovered as a major site of the biosynthesis of neurosteroids including sex steroids, such as progesterone, from cholesterol in the brain. Allopregnanolone, a progesterone metabolite, is also synthesized in the cerebellum and acts on the Purkinje cell to prevent cell death of this neuron. Recently, the pineal gland was discovered as an important site of the biosynthesis of neurosteroids. Allopregnanolone, a major pineal neurosteroid, acts on the Purkinje cell for the survival of this neuron by suppressing the expression of caspase‐3, a crucial mediator of apoptosis. This review summarizes the discovery of cerebellar and pineal allopregnanolone and its neuroprotective action on Purkinje cells.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences Department of Biology Waseda University Center for Medical Life Science of Waseda University Tokyo Japan
| | - Shogo Haraguchi
- Laboratory of Integrative Brain Sciences Department of Biology Waseda University Center for Medical Life Science of Waseda University Tokyo Japan.,Department of Biochemistry Showa University School of Medicine Tokyo Japan
| |
Collapse
|
14
|
Haraguchi S, Tsutsui K. Pineal Neurosteroids: Biosynthesis and Physiological Functions. Front Endocrinol (Lausanne) 2020; 11:549. [PMID: 32849313 PMCID: PMC7431617 DOI: 10.3389/fendo.2020.00549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/06/2020] [Indexed: 11/17/2022] Open
Abstract
Similar to the adrenal glands, gonads, and placenta, vertebrate brains also produce various steroids, which are known as "neurosteroids." Neurosteroids are mainly synthesized in the hippocampus, hypothalamus, and cerebellum; however, it has recently been discovered that in birds, the pineal gland, a photosensitive region in the brain, produces more neurosteroids than other brain regions. A series of experiments using molecular and biochemical techniques have found that the pineal gland produces various neurosteroids, including sex steroids, de novo from cholesterol. For instance, allopregnanolone and 7α-hydroxypregnenolone are actively produced in the pineal gland, unlike in other brain regions. Pineal 7α-hydroxypregnenolone, an up-regulator of locomotion, enhances locomotor activity in response to light stimuli in birds. Additionally, pineal allopregnanolone acts on Purkinje cells in the cerebellum and prevents neuronal apoptosis within the developing cerebellum in juvenile birds. Furthermore, exposure to light during nighttime hours can cause loss of diurnal variations of pineal allopregnanolone synthesis during early posthatch life, eventually leading to cerebellar Purkinje cell death in juvenile birds. In light of these new findings, this review summarizes the biosynthesis and physiological functions of pineal neurosteroids. Given that the circadian rhythms of individuals in modern societies are constantly interrupted by artificial light exposure, these findings in birds, which are excellent model diurnal animals, may have direct implications for addressing problems regarding the mental health and brain development of humans.
Collapse
Affiliation(s)
- Shogo Haraguchi
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
- *Correspondence: Shogo Haraguchi
| | - Kazuyoshi Tsutsui
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
15
|
Leung ST, McKinney RA, Watt AJ. The impact of light during the night. eLife 2019; 8:52364. [PMID: 31714876 PMCID: PMC6850772 DOI: 10.7554/elife.52364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022] Open
Abstract
Exposing chicks to one hour of light during the night disrupts the release of a hormone that is needed by cells in the developing brain to survive.
Collapse
Affiliation(s)
| | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Alanna J Watt
- Department of Biology, McGill University, Montreal, Canada
| |
Collapse
|
16
|
Haraguchi S, Kamata M, Tokita T, Tashiro KI, Sato M, Nozaki M, Okamoto-Katsuyama M, Shimizu I, Han G, Chowdhury VS, Lei XF, Miyazaki T, Kim-Kaneyama JR, Nakamachi T, Matsuda K, Ohtaki H, Tokumoto T, Tachibana T, Miyazaki A, Tsutsui K. Light-at-night exposure affects brain development through pineal allopregnanolone-dependent mechanisms. eLife 2019; 8:45306. [PMID: 31566568 PMCID: PMC6850767 DOI: 10.7554/elife.45306] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 09/29/2019] [Indexed: 12/27/2022] Open
Abstract
The molecular mechanisms by which environmental light conditions affect cerebellar development are incompletely understood. We showed that circadian disruption by light-at-night induced Purkinje cell death through pineal allopregnanolone (ALLO) activity during early life in chicks. Light-at-night caused the loss of diurnal variation of pineal ALLO synthesis during early life and led to cerebellar Purkinje cell death, which was suppressed by a daily injection of ALLO. The loss of diurnal variation of pineal ALLO synthesis induced not only reduction in pituitary adenylate cyclase-activating polypeptide (PACAP), a neuroprotective hormone, but also transcriptional repression of the cerebellar Adcyap1 gene that produces PACAP, with subsequent Purkinje cell death. Taken together, pineal ALLO mediated the effect of light on early cerebellar development in chicks.
Collapse
Affiliation(s)
- Shogo Haraguchi
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Tokyo, Japan.,Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - Masaki Kamata
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Tokyo, Japan
| | - Takuma Tokita
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Tokyo, Japan
| | - Kei-Ichiro Tashiro
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Tokyo, Japan
| | - Miku Sato
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Tokyo, Japan
| | - Mitsuki Nozaki
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Tokyo, Japan
| | - Mayumi Okamoto-Katsuyama
- Department of Applied Chemistry, School of Science and Engineering, Waseda University, Tokyo, Japan
| | - Isao Shimizu
- Department of Applied Chemistry, School of Science and Engineering, Waseda University, Tokyo, Japan
| | - Guofeng Han
- Laboratory of Stress Physiology and Metabolism, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
| | - Vishwajit Sur Chowdhury
- Laboratory of Stress Physiology and Metabolism, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
| | - Xiao-Feng Lei
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - Takuro Miyazaki
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - Joo-Ri Kim-Kaneyama
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - Tomoya Nakamachi
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Kouhei Matsuda
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Hirokazu Ohtaki
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Toshinobu Tokumoto
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Tetsuya Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama, Japan
| | - Akira Miyazaki
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Tokyo, Japan
| |
Collapse
|