1
|
Koutsouleris N, Fusar-Poli P. From Heterogeneity to Precision: Redefining Diagnosis, Prognosis, and Treatment of Mental Disorders. Biol Psychiatry 2024; 96:508-510. [PMID: 39232589 DOI: 10.1016/j.biopsych.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 09/06/2024]
Affiliation(s)
- Nikolaos Koutsouleris
- Section for Precision Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Centre, Ludwig-Maximilians-University, Munich, Germany; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Max Planck Institute of Psychiatry, Munich, Germany.
| | - Paolo Fusar-Poli
- Section for Precision Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Centre, Ludwig-Maximilians-University, Munich, Germany; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Department of Brain and Behavioural Sciences, University of Pavia, Italy
| |
Collapse
|
2
|
Walhovd KB, Krogsrud SK, Amlien IK, Sørensen Ø, Wang Y, Bråthen ACS, Overbye K, Kransberg J, Mowinckel AM, Magnussen F, Herud M, Håberg AK, Fjell AM, Vidal-Pineiro D. Fetal influence on the human brain through the lifespan. eLife 2024; 12:RP86812. [PMID: 38602745 PMCID: PMC11008813 DOI: 10.7554/elife.86812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
Human fetal development has been associated with brain health at later stages. It is unknown whether growth in utero, as indexed by birth weight (BW), relates consistently to lifespan brain characteristics and changes, and to what extent these influences are of a genetic or environmental nature. Here we show remarkably stable and lifelong positive associations between BW and cortical surface area and volume across and within developmental, aging and lifespan longitudinal samples (N = 5794, 4-82 y of age, w/386 monozygotic twins, followed for up to 8.3 y w/12,088 brain MRIs). In contrast, no consistent effect of BW on brain changes was observed. Partly environmental effects were indicated by analysis of twin BW discordance. In conclusion, the influence of prenatal growth on cortical topography is stable and reliable through the lifespan. This early-life factor appears to influence the brain by association of brain reserve, rather than brain maintenance. Thus, fetal influences appear omnipresent in the spacetime of the human brain throughout the human lifespan. Optimizing fetal growth may increase brain reserve for life, also in aging.
Collapse
Affiliation(s)
- Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of OsloOsloNorway
- Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University HospitalOsloNorway
| | - Stine K Krogsrud
- Center for Lifespan Changes in Brain and Cognition, University of OsloOsloNorway
| | - Inge K Amlien
- Center for Lifespan Changes in Brain and Cognition, University of OsloOsloNorway
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition, University of OsloOsloNorway
| | - Yunpeng Wang
- Center for Lifespan Changes in Brain and Cognition, University of OsloOsloNorway
| | | | - Knut Overbye
- Center for Lifespan Changes in Brain and Cognition, University of OsloOsloNorway
| | - Jonas Kransberg
- Center for Lifespan Changes in Brain and Cognition, University of OsloOsloNorway
| | | | - Fredrik Magnussen
- Center for Lifespan Changes in Brain and Cognition, University of OsloOsloNorway
| | - Martine Herud
- Center for Lifespan Changes in Brain and Cognition, University of OsloOsloNorway
| | - Asta K Håberg
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyOsloNorway
| | - Anders Martin Fjell
- Center for Lifespan Changes in Brain and Cognition, University of OsloOsloNorway
- Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University HospitalOsloNorway
| | - Didac Vidal-Pineiro
- Center for Lifespan Changes in Brain and Cognition, University of OsloOsloNorway
| |
Collapse
|
3
|
Malanchini M, Rimfeld K, Gidziela A, Cheesman R, Allegrini AG, Shakeshaft N, Schofield K, Packer A, Ogden R, McMillan A, Ritchie SJ, Dale PS, Eley TC, von Stumm S, Plomin R. Pathfinder: a gamified measure to integrate general cognitive ability into the biological, medical, and behavioural sciences. Mol Psychiatry 2021; 26:7823-7837. [PMID: 34599278 PMCID: PMC8872983 DOI: 10.1038/s41380-021-01300-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 02/03/2023]
Abstract
Genome-wide association (GWA) studies have uncovered DNA variants associated with individual differences in general cognitive ability (g), but these are far from capturing heritability estimates obtained from twin studies. A major barrier to finding more of this 'missing heritability' is assessment--the use of diverse measures across GWA studies as well as time and the cost of assessment. In a series of four studies, we created a 15-min (40-item), online, gamified measure of g that is highly reliable (alpha = 0.78; two-week test-retest reliability = 0.88), psychometrically valid and scalable; we called this new measure Pathfinder. In a fifth study, we administered this measure to 4,751 young adults from the Twins Early Development Study. This novel g measure, which also yields reliable verbal and nonverbal scores, correlated substantially with standard measures of g collected at previous ages (r ranging from 0.42 at age 7 to 0.57 at age 16). Pathfinder showed substantial twin heritability (0.57, 95% CIs = 0.43, 0.68) and SNP heritability (0.37, 95% CIs = 0.04, 0.70). A polygenic score computed from GWA studies of five cognitive and educational traits accounted for 12% of the variation in g, the strongest DNA-based prediction of g to date. Widespread use of this engaging new measure will advance research not only in genomics but throughout the biological, medical, and behavioural sciences.
Collapse
Affiliation(s)
- Margherita Malanchini
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Kaili Rimfeld
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Agnieszka Gidziela
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Rosa Cheesman
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Andrea G Allegrini
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Nicholas Shakeshaft
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- QuodIt Ltd, London, UK
| | - Kerry Schofield
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- QuodIt Ltd, London, UK
| | - Amy Packer
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Rachel Ogden
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Andrew McMillan
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Stuart J Ritchie
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Philip S Dale
- Department of Speech and Hearing Science, University of New Mexico, Albuquerque, NM, USA
| | - Thalia C Eley
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | | | - Robert Plomin
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
4
|
Guma E, Bordignon PDC, Devenyi GA, Gallino D, Anastassiadis C, Cvetkovska V, Barry AD, Snook E, Germann J, Greenwood CMT, Misic B, Bagot RC, Chakravarty MM. Early or Late Gestational Exposure to Maternal Immune Activation Alters Neurodevelopmental Trajectories in Mice: An Integrated Neuroimaging, Behavioral, and Transcriptional Study. Biol Psychiatry 2021; 90:328-341. [PMID: 34053674 DOI: 10.1016/j.biopsych.2021.03.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Exposure to maternal immune activation (MIA) in utero is a risk factor for neurodevelopmental disorders later in life. The impact of the gestational timing of MIA exposure on downstream development remains unclear. METHODS We characterized neurodevelopmental trajectories of mice exposed to the viral mimetic poly I:C (polyinosinic:polycytidylic acid) either on gestational day 9 (early) or on day 17 (late) using longitudinal structural magnetic resonance imaging from weaning to adulthood. Using multivariate methods, we related neuroimaging and behavioral variables for the time of greatest alteration (adolescence/early adulthood) and identified regions for further investigation using RNA sequencing. RESULTS Early MIA exposure was associated with accelerated brain volume increases in adolescence/early adulthood that normalized in later adulthood in the striatum, hippocampus, and cingulate cortex. Similarly, alterations in anxiety-like, stereotypic, and sensorimotor gating behaviors observed in adolescence normalized in adulthood. MIA exposure in late gestation had less impact on anatomical and behavioral profiles. Multivariate maps associated anxiety-like, social, and sensorimotor gating deficits with volume of the dorsal and ventral hippocampus and anterior cingulate cortex, among others. The most transcriptional changes were observed in the dorsal hippocampus, with genes enriched for fibroblast growth factor regulation, autistic behaviors, inflammatory pathways, and microRNA regulation. CONCLUSIONS Leveraging an integrated hypothesis- and data-driven approach linking brain-behavior alterations to the transcriptome, we found that MIA timing differentially affects offspring development. Exposure in late gestation leads to subthreshold deficits, whereas exposure in early gestation perturbs brain development mechanisms implicated in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Elisa Guma
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| | - Pedro do Couto Bordignon
- Department of Psychology, McGill University, Montreal, Quebec, Canada; Ludmer Center for Neuroinformatics and Mental Health, Montreal, Quebec, Canada
| | - Gabriel A Devenyi
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Daniel Gallino
- Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Chloe Anastassiadis
- Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Institute of Medical Science & Collaborative Program in Neuroscience, University of Toronto, Toronto, Ontario, Canada
| | | | - Amadou D Barry
- Departments of Human Genetics and Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada; Ludmer Center for Neuroinformatics and Mental Health, Montreal, Quebec, Canada
| | - Emily Snook
- Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jurgen Germann
- Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; University Health Network, Toronto, Ontario, Canada
| | - Celia M T Greenwood
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada; Departments of Human Genetics and Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada; Ludmer Center for Neuroinformatics and Mental Health, Montreal, Quebec, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Rosemary C Bagot
- Department of Psychology, McGill University, Montreal, Quebec, Canada; Ludmer Center for Neuroinformatics and Mental Health, Montreal, Quebec, Canada
| | - M Mallar Chakravarty
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Computational Brain Imaging Lab, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Kell DB. A protet-based, protonic charge transfer model of energy coupling in oxidative and photosynthetic phosphorylation. Adv Microb Physiol 2021; 78:1-177. [PMID: 34147184 DOI: 10.1016/bs.ampbs.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Textbooks of biochemistry will explain that the otherwise endergonic reactions of ATP synthesis can be driven by the exergonic reactions of respiratory electron transport, and that these two half-reactions are catalyzed by protein complexes embedded in the same, closed membrane. These views are correct. The textbooks also state that, according to the chemiosmotic coupling hypothesis, a (or the) kinetically and thermodynamically competent intermediate linking the two half-reactions is the electrochemical difference of protons that is in equilibrium with that between the two bulk phases that the coupling membrane serves to separate. This gradient consists of a membrane potential term Δψ and a pH gradient term ΔpH, and is known colloquially as the protonmotive force or pmf. Artificial imposition of a pmf can drive phosphorylation, but only if the pmf exceeds some 150-170mV; to achieve in vivo rates the imposed pmf must reach 200mV. The key question then is 'does the pmf generated by electron transport exceed 200mV, or even 170mV?' The possibly surprising answer, from a great many kinds of experiment and sources of evidence, including direct measurements with microelectrodes, indicates it that it does not. Observable pH changes driven by electron transport are real, and they control various processes; however, compensating ion movements restrict the Δψ component to low values. A protet-based model, that I outline here, can account for all the necessary observations, including all of those inconsistent with chemiosmotic coupling, and provides for a variety of testable hypotheses by which it might be refined.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative, Biology, University of Liverpool, Liverpool, United Kingdom; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
6
|
Bakker BN, Schumacher G, Gothreau C, Arceneaux K. Conservatives and liberals have similar physiological responses to threats. Nat Hum Behav 2020; 4:613-621. [PMID: 32042109 PMCID: PMC7306406 DOI: 10.1038/s41562-020-0823-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/07/2020] [Indexed: 11/29/2022]
Abstract
About a decade ago, a study documented that conservatives have stronger physiological responses to threatening stimuli than liberals. This work launched an approach aimed at uncovering the biological roots of ideology. Despite wide-ranging scientific and popular impact, independent laboratories have not replicated the study. We conducted a pre-registered direct replication (n = 202) and conceptual replications in the United States (n = 352) and the Netherlands (n = 81). Our analyses do not support the conclusions of the original study, nor do we find evidence for broader claims regarding the effect of disgust and the existence of a physiological trait. Rather than studying unconscious responses as the real predispositions, alignment between conscious and unconscious responses promises deeper insights into the emotional roots of ideology.
Collapse
Affiliation(s)
- Bert N Bakker
- Amsterdam School of Communication Research, University of Amsterdam, Amsterdam, the Netherlands.
| | - Gijs Schumacher
- Department of Political Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Claire Gothreau
- Center for American Women and Politics, Rutgers University, New Brunswick, NJ, USA
| | - Kevin Arceneaux
- Department of Political Science, Temple University, Philadelphia, PA, USA
| |
Collapse
|