1
|
Berghouse M, Perez LJ, Plymale A, Scheibe TD, Parashar R. Advection-dominated transport dynamics of pili and flagella-mediated motile bacteria in porous media. SOFT MATTER 2025; 21:3622-3637. [PMID: 40237159 DOI: 10.1039/d5sm00071h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The transport of motile bacteria in porous media is highly relevant to many fields, ranging from ecology to human health. Still, critical gaps remain in our understanding of the impacts of hydrodynamics and pore structure on bacterial transport. Here, we present direct visualizations of three species of motile bacteria under variable flow rates and porosities. We find that at higher flow rates, motility is less critical to the transport of bacteria, as motion is controlled by hydrodynamic advection, making it difficult for bacteria to move across streamlines. We show that this lack of motion across streamlines results in increased velocity autocorrelation and bacterial spreading in the direction of flow. Furthermore, we find that transport of bacteria with different motility types are impacted by flow rates to different extents. At low flow rates, the transport of bacteria with pili-mediated twitching motility is strongly controlled by advection, whereas bacteria with flagella still display active motility. At higher flow rates, we show that bacteria with peritrichous flagella maintain their motility characteristics to a greater degree than bacteria with pili or monotrichous flagella. We also examine experimental net speeds of bacteria in relation to the simulated flow fields and find that the interactions between hydrodynamics, motility, and porous media geometry lead to oversampling of medium-velocity regions of a pore network by all three species. The study presents new perspectives on how different types of motile bacteria are transported and dispersed in porous media aided by strength of differentially advecting fluid.
Collapse
Affiliation(s)
- Marc Berghouse
- Division of Hydrologic Science, Desert Research Institute, Reno, Nevada 89512, USA.
- Graduate Program of Hydrologic Sciences, University of Nevada, Reno, Reno, Nevada 89557, USA
| | - Lazaro J Perez
- Department of Civil and Construction Engineering, Oregon State University, Corvallis, Oregon 97331, USA.
| | - Andrew Plymale
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA.
| | - Timothy D Scheibe
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA.
| | - Rishi Parashar
- Division of Hydrologic Science, Desert Research Institute, Reno, Nevada 89512, USA.
| |
Collapse
|
2
|
Monteiro E, Cabral AS, Morillo V, Acosta-Avalos D, Lins U, Abreu F. Three-dimensional reconstruction of Magnetofaba australis strain IT-1: Magnetosome chain position with respect to flagella. J Struct Biol 2025:108181. [PMID: 40020884 DOI: 10.1016/j.jsb.2025.108181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/12/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Magnetotactic bacteria (MTB) are a broad and diverse group of Gram-negative prokaryotes that biomineralize magnetosomes, organelles composed of a magnetic nanocrystal of magnetite (Fe3O4) or greigite (Fe3S4) and enveloped by a biological membrane. Magnetosomes are arranged in one or more chains intracellularly, which impart a magnetic moment to the cell. These structures permit a passive orientation of the MTB with the geomagnetic field lines (GML), which, when associated with swimming propelled by flagella, originate a phenomenon called magneto-aerotaxis, an important life strategy in a chemical stratified environment. There is a classical model based on elongated cells as vibrios and rods that tries to explain the magneto-aerotaxis. Still, this model raises questions when applied to other morphologies other than elongated cells. Here, we observe the spatial disposition of magnetosomes, motility behavior, and influence of magneto-aerotaxis in Magnetofaba australis strain IT-1, an MTB that achieves high swimming speeds and has some peculiarity in its motility. The three-dimensional reconstruction showed that Mf. australis strain IT-1's magnetosome chain is misaligned with the swimming axis, which makes it impossible to use the classical model to explain magneto-aerotaxis in this MTB. Despite this, Mf. australis strain IT-1 was capable of swimming aligned to the GML. Also, this work studied the influence of the magnetosome and magneto-aerotaxis between populations of Mf. australis strain IT-1 with and without magnetosomes. Our results indicated that the magnetosome presence not only positively influences the movement in Mf.australis strain IT-1 but also can positively impact population growth in these MTB.
Collapse
Affiliation(s)
- Eduardo Monteiro
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anderson S Cabral
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Viviana Morillo
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ulysses Lins
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Abreu
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Dukovski I, Golden L, Zhang J, Osborne M, Segrè D, Korolev KS. Biophysical metabolic modeling of complex bacterial colony morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584915. [PMID: 39502364 PMCID: PMC11537321 DOI: 10.1101/2024.03.13.584915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Microbial colony growth is shaped by the physics of biomass propagation and nutrient diffusion, and by the metabolic reactions that organisms activate as a function of the surrounding environment. While microbial colonies have been explored using minimal models of growth and motility, full integration of biomass propagation and metabolism is still lacking. Here, building upon our framework for Computation of Microbial Ecosystems in Time and Space (COMETS), we combine dynamic flux balance modeling of metabolism with collective biomass propagation and demographic fluctuations to provide nuanced simulations of E. coli colonies. Simulations produced realistic colony morphology, consistent with our experiments. They characterize the transition between smooth and furcated colonies and the decay of genetic diversity. Furthermore, we demonstrate that under certain conditions, biomass can accumulate along "metabolic rings" that are reminiscent of coffee-stain rings, but have a completely different origin. Our approach is a key step towards predictive microbial ecosystems modeling.
Collapse
Affiliation(s)
- Ilija Dukovski
- Bioinformatics Program, Faculty of Computing and Data Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Center for Advanced Interdisciplinary Research, Ss. Cyril and Methodius University, Skopje, N. Macedonia
| | - Lauren Golden
- Broad Institute, Cambridge, MA, USA
- Department of Physics, Boston University, Boston, MA, USA
| | - Jing Zhang
- Bioinformatics Program, Faculty of Computing and Data Sciences, Boston University, Boston, MA, USA
| | - Melisa Osborne
- Bioinformatics Program, Faculty of Computing and Data Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Daniel Segrè
- Bioinformatics Program, Faculty of Computing and Data Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Physics, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Department of Biology, Boston University, Boston, MA, USA
- Lead contact
| | - Kirill S. Korolev
- Bioinformatics Program, Faculty of Computing and Data Sciences, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
4
|
Qin P, Luan Y, Yang J, Chen X, Wu T, Li Y, Munang'andu HM, Shao G, Chen X. Comparative secretome analysis reveals cross-talk between type III secretion system and flagella assembly in Pseudomonas plecoglossicida. Heliyon 2023; 9:e22669. [PMID: 38144336 PMCID: PMC10746435 DOI: 10.1016/j.heliyon.2023.e22669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/26/2023] Open
Abstract
The Gram-negative bacterium Pseudomonas plecoglossicida has caused visceral granulomas disease in several farmed fish species, including large yellow croaker (Larimichthys crocea), which results in severe economic losses. Type III secretion systems (T3SS) are protein secretion and translocation nanomachines widely employed by many Gram-negative bacterial pathogens for infection and pathogenicity. However, the exact role of T3SS in the pathogenesis of P. plecoglossicida infection is still unclear. In this study, a T3SS translocators deletion strain (△popBD) of P. plecoglossicida was constructed to investigate the function of T3SS. Then comparative secretome analysis of the P. plecoglossicida wild-type (WT) and △popBD mutant strains was conducted by label-free quantitation (LFQ) mass spectrometry. The results show that knockout of T3SS translocators popB and popD has an adverse effect on the effector protein ExoU secretion, flagella assembly, and biofilm formation. Further experimental validations also confirmed that popB-popD deletion could affect the P. plecoglossicida flagella morphology/formation, adherence, mobility, and biofilm formation. These data indicate that a cross-talk exists between the P. plecoglossicida T3SS and the flagella system. Our results, therefore, will facilitate the further under-standing of the pathogenic mechanisms leading to visceral granulomas disease caused by P. plecoglossicida.
Collapse
Affiliation(s)
- Pan Qin
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yingjia Luan
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinmei Yang
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xingfu Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tong Wu
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yousheng Li
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | | | - Guangming Shao
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| |
Collapse
|
5
|
Chen T, Pu M, Subramanian S, Kearns D, Rowe-Magnus D. PlzD modifies Vibrio vulnificus foraging behavior and virulence in response to elevated c-di-GMP. mBio 2023; 14:e0153623. [PMID: 37800901 PMCID: PMC10653909 DOI: 10.1128/mbio.01536-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Many free-swimming bacteria propel themselves through liquid using rotary flagella, and mounting evidence suggests that the inhibition of flagellar rotation initiates biofilm formation, a sessile lifestyle that is a nearly universal surface colonization paradigm in bacteria. In general, motility and biofilm formation are inversely regulated by the intracellular second messenger bis-(3´-5´)-cyclic dimeric guanosine monophosphate (c-di-GMP). Here, we identify a protein, PlzD, bearing a conserved c-di-GMP binding PilZ domain that localizes to the flagellar pole in a c-di-GMP-dependent manner and alters the foraging behavior, biofilm, and virulence characteristics of the opportunistic human pathogen, Vibrio vulnificus. Our data suggest that PlzD interacts with components of the flagellar stator to decrease bacterial swimming speed and changes in swimming direction, and these activities are enhanced when cellular c-di-GMP levels are elevated. These results reveal a physical link between a second messenger (c-di-GMP) and an effector (PlzD) that promotes transition from a motile to a sessile state in V. vulnificus.
Collapse
Affiliation(s)
- Tianyi Chen
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Meng Pu
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sundharraman Subramanian
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Dan Kearns
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Dean Rowe-Magnus
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
- Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, Bloomington, Indiana, USA
| |
Collapse
|
6
|
Manoj KM, Jacob VD, Kavdia M, Tamagawa H, Jaeken L, Soman V. Questioning rotary functionality in the bacterial flagellar system and proposing a murburn model for motility. J Biomol Struct Dyn 2023; 41:15691-15714. [PMID: 36970840 DOI: 10.1080/07391102.2023.2191146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023]
Abstract
Bacterial flagellar system (BFS) was the primary example of a purported 'rotary-motor' functionality in a natural assembly. This mandates the translation of a circular motion of components inside into a linear displacement of the cell body outside, which is supposedly orchestrated with the following features of the BFS: (i) A chemical/electrical differential generates proton motive force (pmf, including a trans-membrane potential, TMP), which is electro-mechanically transduced by inward movement of protons via BFS. (ii) Membrane-bound proteins of BFS serve as stators and the slender filament acts as an external propeller, culminating into a hook-rod that pierces the membrane to connect to a 'broader assembly of deterministically movable rotor'. We had disclaimed the purported pmf/TMP-based respiratory/photosynthetic physiology involving Complex V, which was also perceived as a 'rotary machine' earlier. We pointed out that the murburn redox logic was operative therein. We pursue the following similar perspectives in BFS-context: (i) Low probability for the evolutionary attainment of an ordered/synchronized teaming of about two dozen types of proteins (assembled across five-seven distinct phases) towards the singular agendum of rotary motility. (ii) Vital redox activity (not the gambit of pmf/TMP!) powers the molecular and macroscopic activities of cells, including flagella. (iii) Flagellar movement is noted even in ambiances lacking/countering the directionality mandates sought by pmf/TMP. (iv) Structural features of BFS lack component(s) capable of harnessing/achieving pmf/TMP and functional rotation. A viable murburn model for conversion of molecular/biochemical activity into macroscopic/mechanical outcomes is proposed herein for understanding BFS-assisted motility. HIGHLIGHTSThe motor-like functionalism of bacterial flagellar system (BFS) is analyzedProton/Ion-differential based powering of BFS is unviable in bacteriaUncouplers-sponsored effects were misinterpreted, resulting in a detour in BFS researchThese findings mandate new explanation for nano-bio-mechanical movements in BFSA minimalist murburn model for the bacterial flagella-aided movement is proposedCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Satyamjayatu, The Science & Ethics Foundation, Palakkad District, Kerala, India
| | - Vivian David Jacob
- Satyamjayatu, The Science & Ethics Foundation, Palakkad District, Kerala, India
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Hirohisa Tamagawa
- Department of Mechanical Engineering, Gifu University, Gifu City, Japan
| | - Laurent Jaeken
- Department of Industrial Sciences and Technology, Karel de Grote-Hogeschool, Antwerp University Association, Belgium
| | - Vidhu Soman
- Department of Bioscience & Bioengineering, IIT Bombay (& DSS Imagetech Pvt. Ltd), Mumbai, Maharashtra, India
| |
Collapse
|
7
|
Dubay MM, Acres J, Riekeles M, Nadeau JL. Recent advances in experimental design and data analysis to characterize prokaryotic motility. J Microbiol Methods 2023; 204:106658. [PMID: 36529156 DOI: 10.1016/j.mimet.2022.106658] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Bacterial motility plays a key role in important cell processes such as chemotaxis and biofilm formation, but is challenging to quantify due to the small size of the individual microorganisms and the complex interplay of biological and physical factors that influence motility phenotypes. Swimming, the first type of motility described in bacteria, still remains largely unquantified. Light microscopy has enabled qualitative characterization of swimming patterns seen in different strains, such as run and tumble, run-reverse-flick, run and slow, stop and coil, and push and pull, which has allowed for elucidation of the underlying physics. However, quantifying these behaviors (e.g., identifying run distances and speeds, turn angles and behavior by surfaces or cell-cell interactions) remains a challenging task. A qualitative and quantitative understanding of bacterial motility is needed to bridge the gap between experimentation, omics analysis, and bacterial motility theory. In this review, we discuss the strengths and limitations of how phase contrast microscopy, fluorescence microscopy, and digital holographic microscopy have been used to quantify bacterial motility. Approaches to automated software analysis, including cell recognition, tracking, and track analysis, are also discussed with a view to providing a guide for experimenters to setting up the appropriate imaging and analysis system for their needs.
Collapse
Affiliation(s)
- Megan Marie Dubay
- Department of Physics, Portland State University, 1719 SW 10(th) Ave., Portland, OR 97201, United States of America
| | - Jacqueline Acres
- Department of Physics, Portland State University, 1719 SW 10(th) Ave., Portland, OR 97201, United States of America
| | - Max Riekeles
- Astrobiology Group, Center of Astronomy and Astrophysics, Technical University Berlin, Hardenbergstraße 36A, 10623 Berlin, Germany
| | - Jay L Nadeau
- Department of Physics, Portland State University, 1719 SW 10(th) Ave., Portland, OR 97201, United States of America.
| |
Collapse
|
8
|
Mondino S, San Martin F, Buschiazzo A. 3D cryo-electron microscopic imaging of bacterial flagella: novel structural and mechanistic insights into cell motility. J Biol Chem 2022; 298:102105. [PMID: 35671822 PMCID: PMC9254593 DOI: 10.1016/j.jbc.2022.102105] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 10/26/2022] Open
Abstract
Bacterial flagella are nanomachines that enable cells to move at high speeds. Comprising ≳25 different types of proteins, the flagellum is a large supramolecular assembly organized into three widely conserved substructures: a basal body including the rotary motor, a connecting hook, and a long filament. The whole flagellum from Escherichia coli weighs ∼20 MDa, without considering its filament portion, which is by itself a ∼1.6 GDa structure arranged as a multimer of ∼30,000 flagellin protomers. Breakthroughs regarding flagellar structure and function have been achieved in the last few years, mainly due to the revolutionary improvements in 3D cryo-electron microscopy methods. This review discusses novel structures and mechanistic insights derived from such high-resolution studies, advancing our understanding of each one of the three major flagellar segments. The rotation mechanism of the motor has been unveiled with unprecedented detail, showing a two-cogwheel machine propelled by a Brownian ratchet device. Additionally, by imaging the flagellin-like protomers that make up the hook in its native bent configuration, their unexpected conformational plasticity challenges the paradigm of a two-state conformational rearrangement mechanism for flagellin-fold proteins. Finally, imaging of the filaments of periplasmic flagella, which endow Spirochete bacteria with their singular motility style, uncovered a strikingly asymmetric protein sheath that coats the flagellin core, challenging the view of filaments as simple homopolymeric structures that work as freely whirling whips. Further research will shed more light on the functional details of this amazing nanomachine, but our current understanding has definitely come a long way.
Collapse
Affiliation(s)
- Sonia Mondino
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay; Integrative Microbiology of Zoonotic Agents IMiZA Unit, Joint International Unit, Institut Pasteur/Institut Pasteur de Montevideo, France/Uruguay
| | - Fabiana San Martin
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay; Integrative Microbiology of Zoonotic Agents IMiZA Unit, Joint International Unit, Institut Pasteur/Institut Pasteur de Montevideo, France/Uruguay
| | - Alejandro Buschiazzo
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay; Integrative Microbiology of Zoonotic Agents IMiZA Unit, Joint International Unit, Institut Pasteur/Institut Pasteur de Montevideo, France/Uruguay; Microbiology Department, Institut Pasteur, Paris, France.
| |
Collapse
|
9
|
Avelino-Flores F, Soria-Bustos J, Saldaña-Ahuactzi Z, Martínez-Laguna Y, Yañez-Santos JA, Cedillo-Ramírez ML, Girón JA. The Transcription of Flagella of Enteropathogenic Escherichia coli O127:H6 Is Activated in Response to Environmental and Nutritional Signals. Microorganisms 2022; 10:microorganisms10040792. [PMID: 35456842 PMCID: PMC9032864 DOI: 10.3390/microorganisms10040792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
The flagella of enteropathogenic Escherichia coli (EPEC) O127:H6 E2348/69 mediate adherence to host proteins and epithelial cells. What environmental and nutritional signals trigger or down-regulate flagella expression in EPEC are largely unknown. In this study, we analyzed the influence of pH, oxygen tension, cationic and anionic salts (including bile salt), carbon and nitrogen sources, and catecholamines on the expression of the flagellin gene (fliC) of E2348/69. We found that sodium bicarbonate, which has been shown to induce the expression of type III secretion effectors, down-regulated flagella expression, explaining why E2348/69 shows reduced motility and flagellation when growing in Dulbecco’s Minimal Essential Medium (DMEM). Further, growth under a 5% carbon dioxide atmosphere, in DMEM adjusted to pH 8.2, in M9 minimal medium supplemented with 80 mM glucose or sucrose, and in DMEM containing 150 mM sodium chloride, 0.1% sodium deoxycholate, or 30 µM epinephrine significantly enhanced fliC transcription to different levels in comparison to growth in DMEM alone. When EPEC was grown in the presence of HeLa cells or in supernatants of cultured HeLa cells, high levels (4-fold increase) of fliC transcription were detected in comparison to growth in DMEM alone. Our data suggest that nutritional and host signals that EPEC may encounter in the intestinal niche activate fliC expression in order to favor motility and host colonization.
Collapse
Affiliation(s)
- Fabiola Avelino-Flores
- Centro de Investigación en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (F.A.-F.); (Y.M.-L.)
| | - Jorge Soria-Bustos
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca 42160, Mexico;
| | - Zeus Saldaña-Ahuactzi
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA;
| | - Ygnacio Martínez-Laguna
- Centro de Investigación en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (F.A.-F.); (Y.M.-L.)
| | - Jorge A. Yañez-Santos
- Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - María L. Cedillo-Ramírez
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico;
| | - Jorge A. Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico;
- Correspondence:
| |
Collapse
|
10
|
Rezaei N, Aakhte M, Charsooghi M, Borzouei H, Akhlaghi EA. 3D particle tracking using transport of intensity equation (TIE). OPTICS EXPRESS 2022; 30:2659-2667. [PMID: 35209401 DOI: 10.1364/oe.441265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
This article presents a simple and high-speed approach for tracking colloidal spheres in three dimensions. The method uses the curvature of the wavefront as determined by the transport of intensity equation (TIE) technique. Due to the fact that the TIE is applicable under partially coherent light, our technique is fully compatible with standard bright field microscopes, requiring no demanding environmental stability requirements or restrictions on the noise produced by related laser speckles. The method was validated experimentally to determine the sedimentation and diffusion coefficients of two different sizes of microspheres, 20 and 3 microns. The 3D position of the microspheres was calculated with an accuracy greater than 350 nm. Moreover, we examined the calculated 3D positions to determine the parameters of the microsphere interaction with its surrounding media, such as the sedimentation and diffusion coefficients. The results show that the measured sedimentation and diffusion of the microspheres have a good agreement with predicted values of about 2% and 10%, respectively, demonstrating the robustness of our proposed method.
Collapse
|
11
|
Keim CN, da Silva DM, de Melo RD, Acosta-Avalos D, Farina M, de Barros HL. Swimming behavior of the multicellular magnetotactic prokaryote 'Candidatus Magnetoglobus multicellularis' near solid boundaries and natural magnetic grains. Antonie van Leeuwenhoek 2021; 114:1899-1913. [PMID: 34478018 DOI: 10.1007/s10482-021-01649-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/24/2021] [Indexed: 11/26/2022]
Abstract
The magnetotactic yet uncultured species 'Candidatus Magnetoglobus multicellularis' is a spherical, multicellular ensemble of bacterial cells able to align along magnetic field lines while swimming propelled by flagella. Magnetotaxis is due to intracytoplasmic, membrane-bound magnetic crystals called magnetosomes. The net magnetic moment of magnetosomes interacts with local magnetic fields, imparting the whole microorganism a torque. Previous works investigated 'Ca. M. multicellularis' behavior when free swimming in water; however, they occur in sediments where bumping into solid particles must be routine. In this work, we investigate the swimming trajectories of 'Ca. M. multicellularis' close to solid boundaries using video microscopy. We applied magnetic fields 0.25-8.0 mT parallel to the optical axis of a light microscope, such that microorganisms were driven upwards towards a coverslip. Because their swimming trajectories approach cylindrical helixes, circular profiles would be expected. Nevertheless, at fields 0.25-1.1 mT, most trajectory projections were roughly sinusoidal, and net movements were approximately perpendicular to applied magnetic fields. Closed loops appeared in some trajectory projections at 1.1 mT, which could indicate a transition to the loopy profiles observed at magnetic fields ≥ 2.15 mT. The behavior of 'Ca. M. multicellularis' near natural magnetic grains showed that they were temporarily trapped by the particle's magnetic field but could reverse the direction of movement to flee away. Our results show that interactions of 'Ca. M. multicellularis with solid boundaries and magnetic grains are complex and possibly involve mechano-taxis.
Collapse
Affiliation(s)
- Carolina N Keim
- Instituto de Microbiologia Paulo de Góes, CCS, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Daniel Mendes da Silva
- Instituto de Microbiologia Paulo de Góes, CCS, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Roger Duarte de Melo
- Centro Brasileiro de Pesquisas Físicas - CBPF, Rua Xavier Sigaud 150, Urca, Rio de Janeiro, RJ, 22290-180, Brazil
| | - Daniel Acosta-Avalos
- Centro Brasileiro de Pesquisas Físicas - CBPF, Rua Xavier Sigaud 150, Urca, Rio de Janeiro, RJ, 22290-180, Brazil
| | - Marcos Farina
- Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Henrique Lins de Barros
- Centro Brasileiro de Pesquisas Físicas - CBPF, Rua Xavier Sigaud 150, Urca, Rio de Janeiro, RJ, 22290-180, Brazil
| |
Collapse
|
12
|
Low-Reynolds-number, biflagellated Quincke swimmers with multiple forms of motion. Proc Natl Acad Sci U S A 2021; 118:2022000118. [PMID: 34266946 DOI: 10.1073/pnas.2022000118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In the limit of zero Reynolds number (Re), swimmers propel themselves exploiting a series of nonreciprocal body motions. For an artificial swimmer, a proper selection of the power source is required to drive its motion, in cooperation with its geometric and mechanical properties. Although various external fields (magnetic, acoustic, optical, etc.) have been introduced, electric fields are rarely utilized to actuate such swimmers experimentally in unbounded space. Here we use uniform and static electric fields to demonstrate locomotion of a biflagellated sphere at low Re via Quincke rotation. These Quincke swimmers exhibit three different forms of motion, including a self-oscillatory state due to elastohydrodynamic-electrohydrodynamic interactions. Each form of motion follows a distinct trajectory in space. Our experiments and numerical results demonstrate a method to generate, and potentially control, the locomotion of artificial flagellated swimmers.
Collapse
|
13
|
Abstract
Understanding the motility behavior of bacteria in confining microenvironments, in which they search for available physical space and move in response to stimuli, is important for environmental, food industry, and biomedical applications. We studied the motility of five bacterial species with various sizes and flagellar architectures (Vibrio natriegens, Magnetococcus marinus, Pseudomonas putida, Vibrio fischeri, and Escherichia coli) in microfluidic environments presenting various levels of confinement and geometrical complexity, in the absence of external flow and concentration gradients. When the confinement is moderate, such as in quasi-open spaces with only one limiting wall, and in wide channels, the motility behavior of bacteria with complex flagellar architectures approximately follows the hydrodynamics-based predictions developed for simple monotrichous bacteria. Specifically, V. natriegens and V. fischeri moved parallel to the wall and P. putida and E. coli presented a stable movement parallel to the wall but with incidental wall escape events, while M. marinus exhibited frequent flipping between wall accumulator and wall escaper regimes. Conversely, in tighter confining environments, the motility is governed by the steric interactions between bacteria and the surrounding walls. In mesoscale regions, where the impacts of hydrodynamics and steric interactions overlap, these mechanisms can either push bacteria in the same directions in linear channels, leading to smooth bacterial movement, or they could be oppositional (e.g., in mesoscale-sized meandered channels), leading to chaotic movement and subsequent bacterial trapping. The study provides a methodological template for the design of microfluidic devices for single-cell genomic screening, bacterial entrapment for diagnostics, or biocomputation.
Collapse
|
14
|
Grognot M, Taute KM. More than propellers: how flagella shape bacterial motility behaviors. Curr Opin Microbiol 2021; 61:73-81. [PMID: 33845324 DOI: 10.1016/j.mib.2021.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 02/14/2021] [Indexed: 12/22/2022]
Abstract
Bacteria use a wide variety of flagellar architectures to navigate their environment. While the iconic run-tumble motility strategy of the peritrichously flagellated Escherichia coli has been well studied, recent work has revealed a variety of new motility behaviors that can be achieved with different flagellar architectures, such as single, bundled, or opposing polar flagella. The recent discovery of various flagellar gymnastics such as flicking and flagellar wrapping is increasingly shifting the view from flagella as passive propellers to versatile appendages that can be used in a wide range of conformations. Here, we review recent observations of how flagella shape motility behaviors and summarize the nascent structure-function map linking flagellation and behavior.
Collapse
Affiliation(s)
- Marianne Grognot
- Rowland Institute at Harvard, 100 Edwin H Land Blvd, Cambridge, MA 02142, USA
| | - Katja M Taute
- Rowland Institute at Harvard, 100 Edwin H Land Blvd, Cambridge, MA 02142, USA.
| |
Collapse
|
15
|
Mohammadinejad S, Faivre D, Klumpp S. Stokesian dynamics simulations of a magnetotactic bacterium. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:40. [PMID: 33759003 PMCID: PMC7987682 DOI: 10.1140/epje/s10189-021-00038-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/15/2021] [Indexed: 05/13/2023]
Abstract
The swimming of bacteria provides insight into propulsion and steering under the conditions of low-Reynolds number hydrodynamics. Here we address the magnetically steered swimming of magnetotactic bacteria. We use Stokesian dynamics simulations to study the swimming of single-flagellated magnetotactic bacteria (MTB) in an external magnetic field. Our model MTB consists of a spherical cell body equipped with a magnetic dipole moment and a helical flagellum rotated by a rotary motor. The elasticity of the flagellum as well as magnetic and hydrodynamic interactions is taken into account in this model. We characterized how the swimming velocity is dependent on parameters of the model. We then studied the U-turn motion after a field reversal and found two regimes for weak and strong fields and, correspondingly, two characteristic time scales. In the two regimes, the U-turn time is dominated by the turning of the cell body and its magnetic moment or the turning of the flagellum, respectively. In the regime for weak fields, where turning is dominated by the magnetic relaxation, the U-turn time is approximately in agreement with a theoretical model based on torque balance. In the strong-field regime, strong deformations of the flagellum are observed. We further simulated the swimming of a bacterium with a magnetic moment that is inclined relative to the flagellar axis. This scenario leads to intriguing double helical trajectories that we characterize as functions of the magnetic moment inclination and the magnetic field. For small inclination angles ([Formula: see text]) and typical field strengths, the inclination of the magnetic moment has only a minor effect on the swimming of MTB in an external magnetic field. Large inclination angles result in a strong reduction in the velocity in direction of the magnetic field, consistent with recent observations that bacteria with large inclination angles use a different propulsion mechanism.
Collapse
Affiliation(s)
- Sarah Mohammadinejad
- Institute for the Dynamics of Complex Systems, University of Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany.
- Department Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424, Potsdam, Germany.
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | - Damien Faivre
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424, Potsdam, Germany
- Aix-Marseille Université, CEA, CNRS, BIAM, 13108, Saint-Paul-lez-Durance, France
| | - Stefan Klumpp
- Institute for the Dynamics of Complex Systems, University of Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
- Department Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424, Potsdam, Germany
| |
Collapse
|
16
|
Abstract
All living cells interact dynamically with a constantly changing world. Eukaryotes, in particular, evolved radically new ways to sense and react to their environment. These advances enabled new and more complex forms of cellular behaviour in eukaryotes, including directional movement, active feeding, mating, and responses to predation. But what are the key events and innovations during eukaryogenesis that made all of this possible? Here we describe the ancestral repertoire of eukaryotic excitability and discuss five major cellular innovations that enabled its evolutionary origin. The innovations include a vastly expanded repertoire of ion channels, the emergence of cilia and pseudopodia, endomembranes as intracellular capacitors, a flexible plasma membrane and the relocation of chemiosmotic ATP synthesis to mitochondria, which liberated the plasma membrane for more complex electrical signalling involved in sensing and reacting. We conjecture that together with an increase in cell size, these new forms of excitability greatly amplified the degrees of freedom associated with cellular responses, allowing eukaryotes to vastly outperform prokaryotes in terms of both speed and accuracy. This comprehensive new perspective on the evolution of excitability enriches our view of eukaryogenesis and emphasizes behaviour and sensing as major contributors to the success of eukaryotes. This article is part of the theme issue 'Basal cognition: conceptual tools and the view from the single cell'.
Collapse
Affiliation(s)
- Kirsty Y. Wan
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
17
|
Sepulchro AGV, de Barros HL, de Mota HOL, Berbereia KS, Huamani KPT, Lopes LCDS, Sudbrack V, Acosta-Avalos D. Magnetoreception in multicellular magnetotactic prokaryotes: a new analysis of escape motility trajectories in different magnetic fields. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:609-617. [PMID: 33033886 DOI: 10.1007/s00249-020-01467-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/27/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022]
Abstract
Magnetotactic microorganisms can be found as unicellular prokaryotes, as cocci, vibrions, spirilla and rods, and as multicellular organisms. Multicellular magnetotactic prokaryotes are magnetotactic microorganisms composed by several magnetotactic bacteria organized almost in a spherical helix, and one of the most studied is Candidatus Magnetoglobus multicellularis. Several studies have shown that Ca. M. multicellularis displays forms of behavior not well explained by magnetotaxis. One of these is escape motility, also known as "ping-pong" motion. Studies done in the past associated the "ping-pong" motion to some magnetoreceptive behavior, but those studies were never replicated. In the present manuscript a characterization of escape motility trajectories of Ca. M. multicellularis was done for several magnetic fields, considering that this microorganism swims in cylindrical helical trajectories. It was observed that the escape motility can be separated into three phases: (I) when the microorganism jumps from the drop border, (II) where the microorganism moves almost perpendicular to the magnetic field and (III) when the microorganism returns to the drop border. The total time of the whole escape motility, the time spent in phase II and the displacement distance in phase I decreases when the magnetic field increases. Our results show that the escape motility has several characteristics that depend on the magnetic field and cannot be understood by magnetotaxis, with a magnetoreceptive mechanism being the best explanation.
Collapse
Affiliation(s)
- Ana Gabriela Veiga Sepulchro
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, São Carlos, SP, 13566-590, Brazil
| | - Henrique Lins de Barros
- Centro Brasileiro de Pesquisas Físicas-CBPF, rua Xavier Sigaud 150, Urca, Rio de Janeiro, RJ, 22290-180, Brazil
| | - Henrique Oliveira Leiras de Mota
- Departamento de Física, Centro de Ciências Exatas, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n-Bela Vista, Viçosa, MG, Brazil
| | - Karen Shiroiva Berbereia
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário da UFJF, Rua José Lourenço Kelmer s/n, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| | - Katterine Patricia Taipe Huamani
- Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos (UNMSM), calle Germán Amézaga 375, Cuidad Universitaria, Lima 1, Perú
| | - Lis Carneiro da Silva Lopes
- Departamento de Física, Centro de Ciências Exatas, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n-Bela Vista, Viçosa, MG, Brazil
| | - Vitor Sudbrack
- Instituto de Física Teórica, Universidade Estadual Paulista Julio de Mesquita Filho (IFT/UNESP), Rua Dr Teobaldo Ferraz 271, São Paulo, SP, 01140-070, Brazil
| | - Daniel Acosta-Avalos
- Centro Brasileiro de Pesquisas Físicas-CBPF, rua Xavier Sigaud 150, Urca, Rio de Janeiro, RJ, 22290-180, Brazil.
| |
Collapse
|
18
|
Abstract
Magnetotactic bacteria are aquatic or sediment-dwelling microorganisms able to take advantage of the Earth's magnetic field for directed motility. The source of this amazing trait is magnetosomes, unique organelles used to synthesize single nanometer-sized crystals of magnetic iron minerals that are queued up to build an intracellular compass. Most of these microorganisms cannot be cultivated under controlled conditions, much less genetically engineered, with only few exceptions. However, two of the genetically amenable Magnetospirillum species have emerged as tractable model organisms to study magnetosome formation and magnetotaxis. Recently, much has been revealed about the process of magnetosome biogenesis and dedicated structures for magnetosome dynamics and positioning, which suggest an unexpected cellular intricacy of these organisms. In this minireview, we summarize new insights and place the molecular mechanisms of magnetosome formation in the context of the complex cell biology of Magnetospirillum spp. First, we provide an overview on magnetosome vesicle synthesis and magnetite biomineralization, followed by a discussion of the perceptions of dynamic organelle positioning and its biological implications, which highlight that magnetotactic bacteria have evolved sophisticated mechanisms to construct, incorporate, and inherit a unique navigational device. Finally, we discuss the impact of magnetotaxis on motility and its interconnection with chemotaxis, showing that magnetotactic bacteria are outstandingly adapted to lifestyle and habitat.
Collapse
|
19
|
Bacterial flagellar motor as a multimodal biosensor. Methods 2020; 193:5-15. [PMID: 32640316 DOI: 10.1016/j.ymeth.2020.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/04/2020] [Accepted: 06/22/2020] [Indexed: 01/05/2023] Open
Abstract
Bacterial Flagellar Motor is one of nature's rare rotary molecular machines. It enables bacterial swimming and it is the key part of the bacterial chemotactic network, one of the best studied chemical signalling networks in biology, which enables bacteria to direct its movement in accordance with the chemical environment. The network can sense down to nanomolar concentrations of specific chemicals on the time scale of seconds. Motor's rotational speed is linearly proportional to the electrochemical gradients of either proton or sodium driving ions, while its direction is regulated by the chemotactic network. Recently, it has been discovered that motor is also a mechanosensor. Given these properties, we discuss the motor's potential to serve as a multifunctional biosensor and a tool for characterising and studying the external environment, the bacterial physiology itself and single molecular motor biophysics.
Collapse
|
20
|
Bente K, Mohammadinejad S, Charsooghi MA, Bachmann F, Codutti A, Lefèvre CT, Klumpp S, Faivre D. High-speed motility originates from cooperatively pushing and pulling flagella bundles in bilophotrichous bacteria. eLife 2020; 9:47551. [PMID: 31989923 PMCID: PMC7010408 DOI: 10.7554/elife.47551] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Bacteria propel and change direction by rotating long, helical filaments, called flagella. The number of flagella, their arrangement on the cell body and their sense of rotation hypothetically determine the locomotion characteristics of a species. The movement of the most rapid microorganisms has in particular remained unexplored because of additional experimental limitations. We show that magnetotactic cocci with two flagella bundles on one pole swim faster than 500 µm·s−1 along a double helical path, making them one of the fastest natural microswimmers. We additionally reveal that the cells reorient in less than 5 ms, an order of magnitude faster than reported so far for any other bacteria. Using hydrodynamic modeling, we demonstrate that a mode where a pushing and a pulling bundle cooperate is the only possibility to enable both helical tracks and fast reorientations. The advantage of sheathed flagella bundles is the high rigidity, making high swimming speeds possible.
Collapse
Affiliation(s)
- Klaas Bente
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Sarah Mohammadinejad
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences, Zanjan, Islamic Republic of Iran.,Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany
| | - Mohammad Avalin Charsooghi
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Physics, Institute for Advanced Studies in Basic Sciences, Zanjan, Islamic Republic of Iran
| | - Felix Bachmann
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Agnese Codutti
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | | | - Stefan Klumpp
- Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany
| | - Damien Faivre
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Aix-Marseille Université, CEA, CNRS, BIAM, F-13108, Saint-Paul-lez-Durance, France
| |
Collapse
|