1
|
Greer EL, Lee SS, Prahlad V. Chromatin and epigenetics in aging biology. Genetics 2025; 230:iyaf055. [PMID: 40202900 DOI: 10.1093/genetics/iyaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 02/03/2025] [Indexed: 04/11/2025] Open
Abstract
This book chapter will focus on modifications to chromatin itself, how chromatin modifications are regulated, and how these modifications are deciphered by the cell to impact aging. In this chapter, we will review how chromatin modifications change with age, examine how chromatin-modifying enzymes have been shown to regulate aging and healthspan, discuss how some of these epigenetic changes are triggered and how they can regulate the lifespan of the individual and its naïve descendants, and speculate on future directions for the field.
Collapse
Affiliation(s)
- Eric Lieberman Greer
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Veena Prahlad
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
2
|
Bellver‐Sanchis A, Ribalta‐Vilella M, Irisarri A, Gehlot P, Choudhary BS, Jana A, Vyas VK, Banerjee DR, Pallàs M, Guerrero A, Griñán‐Ferré C. G9a an Epigenetic Therapeutic Strategy for Neurodegenerative Conditions: From Target Discovery to Clinical Trials. Med Res Rev 2025; 45:985-1015. [PMID: 39763018 PMCID: PMC11976383 DOI: 10.1002/med.22096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 04/09/2025]
Abstract
This review provides a comprehensive overview of the role of G9a/EHMT2, focusing on its structure and exploring the impact of its pharmacological and/or gene inhibition in various neurological diseases. In addition, we delve into the advancements in the design and synthesis of G9a/EHMT2 inhibitors, which hold promise not only as a treatment for neurodegeneration diseases but also for other conditions, such as cancer and malaria. Besides, we presented the discovery of dual therapeutic approaches based on G9a inhibition and different epigenetic enzymes like histone deacetylases, DNA methyltransferases, and other lysine methyltransferases. Hence, findings offer valuable insights into developing novel and promising therapeutic strategies targeting G9a/EHMT2 for managing these neurological conditions.
Collapse
Affiliation(s)
- Aina Bellver‐Sanchis
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Marta Ribalta‐Vilella
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Alba Irisarri
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Pinky Gehlot
- Department of Pharmaceutical ChemistryInstitute of PharmacyNirma UniversityAhmedabadIndia
| | - Bhanwar Singh Choudhary
- Department of PharmacyCentral University of RajasthanAjmerIndia
- Drug Discovery and Development Centre (H3D)University of Cape TownRondeboschSouth Africa
| | - Abhisek Jana
- Department of ChemistryNational Institute of Technology DurgapurDurgapurIndia
| | - Vivek Kumar Vyas
- Department of Pharmaceutical ChemistryInstitute of PharmacyNirma UniversityAhmedabadIndia
| | - Deb Ranjan Banerjee
- Department of ChemistryNational Institute of Technology DurgapurDurgapurIndia
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
- Instituto de Salud Carlos III, Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Ana Guerrero
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
| | - Christian Griñán‐Ferré
- Department of Pharmacology and Therapeutic ChemistryInstitut de Neurociències‐Universitat de BarcelonaBarcelonaSpain
- Instituto de Salud Carlos III, Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| |
Collapse
|
3
|
Rao D, Li D, Li L, Xue J, Tu S, Shen EZ. Argonaute CSR-1A promotes H3K9me3 maintenance to protect somatic development in offspring. Nucleic Acids Res 2025; 53:gkaf127. [PMID: 40036504 PMCID: PMC11878544 DOI: 10.1093/nar/gkaf127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 01/14/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025] Open
Abstract
Parental stress can be encoded into altered epigenetic information to influence their offspring. Concurrently, it is vital for the preservation of a parent's epigenetic information, despite environmental challenges, to ensure accurate inheritance by the next generation. Nevertheless, the complexities of this process and the specific molecular mechanisms involved are not yet fully understood. Here we report that Argonaute CSR-1A potentiates the recovery of histone H3 lysine 9 trimethylation (H3K9me3) in spermatocyte to secure the developmental competence of male offspring. CSR-1A employs its repetitive RG motif to engage with putative histone 3 lysine 9 (H3K9) methyltransferases SET-25 and -32, and helps to restore repressive H3K9me3 chromatin marks following heat-stress, protecting the late development of somatic cells in the progeny. Finally, among the genes regulated by CSR-1A, we identified dim-1, at which decreased H3K9me3 persists in the progeny, and RNAi of dim-1 mitigates the somatic defects associated with csr-1a loss under stress. Thus, CSR-1A coordinates a paternal epigenetic program that shields development from the influences of the paternal environment. We speculate that, driven by both natural environmental stressors and the unique characteristics of spermatogenic chromatin, the emergence of multiple RG motif-featured and spermatogenesis-specific CSR-1A and small RNA serves as a protective strategy to safeguard against variability in the orchestration of inherited developmental programs from the paternal lineage.
Collapse
Affiliation(s)
- Di Rao
- Fudan University, Shanghai, China
- Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Dengfeng Li
- Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lili Li
- Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Junchao Xue
- Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Shikui Tu
- Department of Computer Science and Engineering, Center for Cognitive Machines and Computational Health (CMaCH), Shanghai Jiao Tong University, Shanghai, China
| | - En-Zhi Shen
- Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Wang Y, Wu J, Wang D. 6-PPD quinone causes lipid accumulation across multiple generations differentially affected by metabolic sensors and components of COMPASS complex in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125539. [PMID: 39689833 DOI: 10.1016/j.envpol.2024.125539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/06/2024] [Accepted: 12/14/2024] [Indexed: 12/19/2024]
Abstract
The toxicity of 6-PPD quinone (6-PPDQ) has been frequently detected. However, the possible transgenerational effects of 6-PPDQ remain largely unclear. Due to short life cycle and high sensitivity to environmental exposure, Caenorhabditis elegans is useful for study of transgenerational toxicology. In C. elegans, we observed the transgenerational increase in lipid accumulation after parental generation (P0-G) exposure to 6-PPDQ at 0.1-10 μg/L. Accompanied with this, transgenerational increase in expressions of genes governing fatty acid synthesis and monounsaturated fatty acyl-CoAs synthesis and decrease in genes governing fatty acid β-oxidation were induced by 6-PPDQ exposure. Moreover, 6-PPDQ exposure at P0-G caused transgenerational activation of mdt-15 and sbp-1 encoding lipid metabolic sensors. Meanwhile, exposure to 6-PPDQ induced transgenerational activation of set-2 and inhibition in rbr-2, two genes encoding components of COMPASS complex. The 6-PPDQ induced transgenerational lipid accumulation could be strengthened by RNAi of set-2 and suppressed by RNAi of rbr-2. Additionally, 6-PPDQ induced transgenerational neurotoxicity could be increased by RNAi of mdt-15, sbp-1, and rbr-2, and inhibited by RNAi of set-2. Therefore, our results demonstrated the possibility in resulting in transgenerational lipid accumulation by exposure to 6-PPDQ.
Collapse
Affiliation(s)
- Yuxing Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Jingwei Wu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China.
| |
Collapse
|
5
|
Filipowicz A, Allard P. Caenorhabditis Elegans as a Model for Environmental Epigenetics. Curr Environ Health Rep 2025; 12:6. [PMID: 39828873 PMCID: PMC11743352 DOI: 10.1007/s40572-025-00472-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
PURPOSE OF REVIEW The burgeoning field of environmental epigenetics has revealed the malleability of the epigenome and uncovered numerous instances of its sensitivity to environmental influences; however, pinpointing specific mechanisms that tie together environmental triggers, epigenetic pathways, and organismal responses has proven difficult. This article describes how Caenorhabditis elegans can fill this gap, serving as a useful model for the discovery of molecular epigenetic mechanisms that are conserved in humans. RECENT FINDINGS Recent results show that environmental stressors such as methylmercury, arsenite, starvation, heat, bacterial infection, and mitochondrial inhibitors can all have profound effects on the epigenome, with some insults showing epigenetic and organismal effects for multiple generations. In some cases, the pathways connecting the stressor to epigenetic pathways and organismal responses have been elucidated. For example, a small RNA from the bacterial pathogen Pseudomonas aeruginosa induces transgenerational learned avoidance by activating the RNA interference PIWI-interacting RNA pathways across generations to downregulate, via Cer1 retrotransposon particles and histone methylation, maco-1, a gene that functions in sensory neurons to regulate chemotaxis. Mitochondrial inhibitors seem to have a profound effect on both the DNA methylation mark 6mA and histone methylation, and may act within mitochondrial DNA (mtDNA) to regulate mitochondrial stress response genes. Transgenerational transcriptional responses to alcohol have also been worked out at the single-nucleus resolution in C. elegans, demonstrating its utility when combined with modern sequencing technologies. These recent studies highlight how C. elegans can serve as a bridge between biochemical in vitro experiments and the more associative findings of epidemiological studies in humans to unveil possible mechanisms of environmental influence on the epigenome. The nematode is particularly well-suited to transgenerational experiments thanks to its rapid generation time and ability to self-fertilize. These studies have revealed connections between the various epigenetic mechanisms, and so studies in C. elegans that take advantage of recent advancements in sequencing technologies, including single-cell techniques, to gain unprecedented resolution of the whole epigenome across development and generations will be critical.
Collapse
Affiliation(s)
- Adam Filipowicz
- Institute for Society and Genetics, University of California, Boyer Hall, Room 332, 611 Charles E Young Dr E., UCLA, Los Angeles, CA, 90095, USA
- Environmental and Molecular Toxicology Program, University of California, Los Angeles, USA
| | - Patrick Allard
- Institute for Society and Genetics, University of California, Boyer Hall, Room 332, 611 Charles E Young Dr E., UCLA, Los Angeles, CA, 90095, USA.
- Environmental and Molecular Toxicology Program, University of California, Los Angeles, USA.
| |
Collapse
|
6
|
Webster AK, Phillips PC. Epigenetics and individuality: from concepts to causality across timescales. Nat Rev Genet 2025:10.1038/s41576-024-00804-z. [PMID: 39789149 DOI: 10.1038/s41576-024-00804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2024] [Indexed: 01/12/2025]
Abstract
Traditionally, differences among individuals have been divided into genetic and environmental causes. However, both types of variation can underlie regulatory changes in gene expression - that is, epigenetic changes - that persist across cell divisions (developmental differentiation) and even across generations (transgenerational inheritance). Increasingly, epigenetic variation among individuals is recognized as an important factor in human diseases and ageing. Moreover, non-genetic inheritance can lead to evolutionary changes within populations that differ from those expected by genetic inheritance alone. Despite its importance, causally linking epigenetic variation to phenotypic differences across individuals has proven difficult, particularly when epigenetic variation operates independently of genetic variation. New genomic approaches are providing unprecedented opportunity to measure and perturb epigenetic variation, helping to elucidate the role of epigenetic variation in mediating the genotype-phenotype map. Here, we review studies that have advanced our understanding of how epigenetic variation contributes to phenotypic differences between individuals within and across generations, and provide a unifying framework that allows historical and mechanistic perspectives to more fully inform one another.
Collapse
Affiliation(s)
- Amy K Webster
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
7
|
Marquez-Molins J, Cheng J, Corell-Sierra J, Juarez-Gonzalez VT, Villalba-Bermell P, Annacondia ML, Gomez G, Martinez G. Hop stunt viroid infection induces heterochromatin reorganization. THE NEW PHYTOLOGIST 2024; 243:2351-2367. [PMID: 39030826 DOI: 10.1111/nph.19986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/26/2024] [Indexed: 07/22/2024]
Abstract
Viroids are pathogenic noncoding RNAs that completely rely on their host molecular machinery to accomplish their life cycle. Several interactions between viroids and their host molecular machinery have been identified, including interference with epigenetic mechanisms such as DNA methylation. Despite this, whether viroids influence changes in other epigenetic marks such as histone modifications remained unknown. Epigenetic regulation is particularly important during pathogenesis processes because it might be a key regulator of the dynamism of the defense response. Here we have analyzed the changes taking place in Cucumis sativus (cucumber) facultative and constitutive heterochromatin during hop stunt viroid (HSVd) infection using chromatin immunoprecipitation (ChIP) of the two main heterochromatic marks: H3K9me2 and H3K27me3. We find that HSVd infection is associated with changes in both H3K27me3 and H3K9me2, with a tendency to decrease the levels of repressive epigenetic marks through infection progression. These epigenetic changes are connected to the transcriptional regulation of their expected targets, genes, and transposable elements. Indeed, several genes related to the defense response are targets of both epigenetic marks. Our results highlight another host regulatory mechanism affected by viroid infection, providing further information about the complexity of the multiple layers of interactions between pathogens/viroids and hosts/plants.
Collapse
Affiliation(s)
- Joan Marquez-Molins
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, 75007, Sweden
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC), University of Valencia (UV), Paterna, 46980, Spain
| | - Jinping Cheng
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, 75007, Sweden
| | - Julia Corell-Sierra
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC), University of Valencia (UV), Paterna, 46980, Spain
| | - Vasti Thamara Juarez-Gonzalez
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, 75007, Sweden
| | - Pascual Villalba-Bermell
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC), University of Valencia (UV), Paterna, 46980, Spain
| | - Maria Luz Annacondia
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, 75007, Sweden
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Frederiksberg, 1871, Denmark
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC), University of Valencia (UV), Paterna, 46980, Spain
| | - German Martinez
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, 75007, Sweden
| |
Collapse
|
8
|
Baduel P, Sammarco I, Barrett R, Coronado‐Zamora M, Crespel A, Díez‐Rodríguez B, Fox J, Galanti D, González J, Jueterbock A, Wootton E, Harney E. The evolutionary consequences of interactions between the epigenome, the genome and the environment. Evol Appl 2024; 17:e13730. [PMID: 39050763 PMCID: PMC11266121 DOI: 10.1111/eva.13730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/30/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024] Open
Abstract
The epigenome is the suite of interacting chemical marks and molecules that helps to shape patterns of development, phenotypic plasticity and gene regulation, in part due to its responsiveness to environmental stimuli. There is increasing interest in understanding the functional and evolutionary importance of this sensitivity under ecologically realistic conditions. Observations that epigenetic variation abounds in natural populations have prompted speculation that it may facilitate evolutionary responses to rapid environmental perturbations, such as those occurring under climate change. A frequent point of contention is whether epigenetic variants reflect genetic variation or are independent of it. The genome and epigenome often appear tightly linked and interdependent. While many epigenetic changes are genetically determined, the converse is also true, with DNA sequence changes influenced by the presence of epigenetic marks. Understanding how the epigenome, genome and environment interact with one another is therefore an essential step in explaining the broader evolutionary consequences of epigenomic variation. Drawing on results from experimental and comparative studies carried out in diverse plant and animal species, we synthesize our current understanding of how these factors interact to shape phenotypic variation in natural populations, with a focus on identifying similarities and differences between taxonomic groups. We describe the main components of the epigenome and how they vary within and between taxa. We review how variation in the epigenome interacts with genetic features and environmental determinants, with a focus on the role of transposable elements (TEs) in integrating the epigenome, genome and environment. And we look at recent studies investigating the functional and evolutionary consequences of these interactions. Although epigenetic differentiation in nature is likely often a result of drift or selection on stochastic epimutations, there is growing evidence that a significant fraction of it can be stably inherited and could therefore contribute to evolution independently of genetic change.
Collapse
Affiliation(s)
- Pierre Baduel
- Institut de Biologie de l'Ecole Normale SupérieurePSL University, CNRSParisFrance
| | - Iris Sammarco
- Institute of Botany of the Czech Academy of SciencesPrůhoniceCzechia
| | - Rowan Barrett
- Redpath Museum and Department of BiologyMcGill UniversityMontrealCanada
| | | | | | | | - Janay Fox
- Redpath Museum and Department of BiologyMcGill UniversityMontrealCanada
| | - Dario Galanti
- Institute of Evolution and Ecology (EvE)University of TuebingenTübingenGermany
| | | | - Alexander Jueterbock
- Algal and Microbial Biotechnology Division, Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | - Eric Wootton
- Redpath Museum and Department of BiologyMcGill UniversityMontrealCanada
| | - Ewan Harney
- Institute of Evolutionary BiologyCSIC, UPFBarcelonaSpain
- School of BiosciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
9
|
Gregory EF, Luxton GWG, Starr DA. Anchorage of H3K9-methylated heterochromatin to the nuclear periphery helps mediate P-cell nuclear migration though constricted spaces in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595380. [PMID: 38826247 PMCID: PMC11142143 DOI: 10.1101/2024.05.22.595380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Nuclei adjust their deformability while migrating through constrictions to enable structural changes and maintain nuclear integrity. The effect of heterochromatin anchored at the nucleoplasmic face of the inner nuclear membrane on nuclear morphology and deformability during in vivo nuclear migration through constricted spaces remains unclear. Here, we show that abolishing peripheral heterochromatin anchorage by eliminating CEC-4, a chromodomain protein that tethers H3K9-methylated chromatin to the nuclear periphery, disrupts constrained P-cell nuclear migration in Caenorhabditis elegans larvae in the absence of the established LINC complex-dependent pathway. CEC-4 acts in parallel to an actin and CDC-42-based pathway. We also demonstrate the necessity for the chromatin methyltransferases MET-2 and JMJD-1.2 during P-cell nuclear migration in the absence of functional LINC complexes. We conclude that H3K9-nethylated chromatin needs to be anchored to the nucleoplasmic face of the inner nuclear membrane to help facilitate nuclear migration through constricted spaces in vivo.
Collapse
Affiliation(s)
- Ellen F Gregory
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616 USA
| | - G W Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616 USA
| | - Daniel A Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616 USA
| |
Collapse
|
10
|
Lee MB, Blue B, Muir M, Kaeberlein M. The million-molecule challenge: a moonshot project to rapidly advance longevity intervention discovery. GeroScience 2023; 45:3103-3113. [PMID: 37432607 PMCID: PMC10643437 DOI: 10.1007/s11357-023-00867-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023] Open
Abstract
Targeting aging is the future of twenty-first century preventative medicine. Small molecule interventions that promote healthy longevity are known, but few are well-developed and discovery of novel, robust interventions has stagnated. To accelerate longevity intervention discovery and development, high-throughput systems are needed that can perform unbiased drug screening and directly measure lifespan and healthspan metrics in whole animals. C. elegans is a powerful model system for this type of drug discovery. Combined with automated data capture and analysis technologies, truly high-throughput longevity drug discovery is possible. In this perspective, we propose the "million-molecule challenge", an effort to quantitatively assess 1,000,000 interventions for longevity within five years. The WormBot-AI, our best-in-class robotics and AI data analysis platform, provides a tool to achieve the million-molecule challenge for pennies per animal tested.
Collapse
Affiliation(s)
- Mitchell B Lee
- Ora Biomedical, Inc., 12101 Tukwila International Blvd Suite 210, Seattle, WA, 98168, USA.
| | - Benjamin Blue
- Ora Biomedical, Inc., 12101 Tukwila International Blvd Suite 210, Seattle, WA, 98168, USA
| | - Michael Muir
- Ora Biomedical, Inc., 12101 Tukwila International Blvd Suite 210, Seattle, WA, 98168, USA
| | - Matt Kaeberlein
- Ora Biomedical, Inc., 12101 Tukwila International Blvd Suite 210, Seattle, WA, 98168, USA
- Optispan Geroscience, Seattle, WA, USA
| |
Collapse
|
11
|
Silva-García CG, Láscarez-Lagunas LI, Papsdorf K, Heintz C, Prabhakar A, Morrow CS, Pajuelo Torres L, Sharma A, Liu J, Colaiácovo MP, Brunet A, Mair WB. The CRTC-1 transcriptional domain is required for COMPASS complex-mediated longevity in C. elegans. NATURE AGING 2023; 3:1358-1371. [PMID: 37946042 PMCID: PMC10645585 DOI: 10.1038/s43587-023-00517-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 09/28/2023] [Indexed: 11/12/2023]
Abstract
Loss of function during aging is accompanied by transcriptional drift, altering gene expression and contributing to a variety of age-related diseases. CREB-regulated transcriptional coactivators (CRTCs) have emerged as key regulators of gene expression that might be targeted to promote longevity. Here we define the role of the Caenorhabditis elegans CRTC-1 in the epigenetic regulation of longevity. Endogenous CRTC-1 binds chromatin factors, including components of the COMPASS complex, which trimethylates lysine 4 on histone H3 (H3K4me3). CRISPR editing of endogenous CRTC-1 reveals that the CREB-binding domain in neurons is specifically required for H3K4me3-dependent longevity. However, this effect is independent of CREB but instead acts via the transcription factor AP-1. Strikingly, CRTC-1 also mediates global histone acetylation levels, and this acetylation is essential for H3K4me3-dependent longevity. Indeed, overexpression of an acetyltransferase enzyme is sufficient to promote longevity in wild-type worms. CRTCs, therefore, link energetics to longevity by critically fine-tuning histone acetylation and methylation to promote healthy aging.
Collapse
Affiliation(s)
- Carlos G Silva-García
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | | | | | - Caroline Heintz
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Aditi Prabhakar
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Christopher S Morrow
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Lourdes Pajuelo Torres
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Arpit Sharma
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Jihe Liu
- Harvard Chan Bioinformatics Core, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Monica P Colaiácovo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA
- Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA
| | - William B Mair
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| |
Collapse
|
12
|
Emerson FJ, Lee SS. Chromatin: the old and young of it. Front Mol Biosci 2023; 10:1270285. [PMID: 37877123 PMCID: PMC10591336 DOI: 10.3389/fmolb.2023.1270285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/20/2023] [Indexed: 10/26/2023] Open
Abstract
Aging affects nearly all aspects of our cells, from our DNA to our proteins to how our cells handle stress and communicate with each other. Age-related chromatin changes are of particular interest because chromatin can dynamically respond to the cellular and organismal environment, and many modifications at chromatin are reversible. Changes at chromatin occur during aging, and evidence from model organisms suggests that chromatin factors could play a role in modulating the aging process itself, as altering proteins that work at chromatin often affect the lifespan of yeast, worms, flies, and mice. The field of chromatin and aging is rapidly expanding, and high-resolution genomics tools make it possible to survey the chromatin environment or track chromatin factors implicated in longevity with precision that was not previously possible. In this review, we discuss the state of chromatin and aging research. We include examples from yeast, Drosophila, mice, and humans, but we particularly focus on the commonly used aging model, the worm Caenorhabditis elegans, in which there are many examples of chromatin factors that modulate longevity. We include evidence of both age-related changes to chromatin and evidence of specific chromatin factors linked to longevity in core histones, nuclear architecture, chromatin remodeling, and histone modifications.
Collapse
Affiliation(s)
| | - Siu Sylvia Lee
- Lee Lab, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| |
Collapse
|
13
|
Liu R, Zhao E, Yu H, Yuan C, Abbas MN, Cui H. Methylation across the central dogma in health and diseases: new therapeutic strategies. Signal Transduct Target Ther 2023; 8:310. [PMID: 37620312 PMCID: PMC10449936 DOI: 10.1038/s41392-023-01528-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 08/26/2023] Open
Abstract
The proper transfer of genetic information from DNA to RNA to protein is essential for cell-fate control, development, and health. Methylation of DNA, RNAs, histones, and non-histone proteins is a reversible post-synthesis modification that finetunes gene expression and function in diverse physiological processes. Aberrant methylation caused by genetic mutations or environmental stimuli promotes various diseases and accelerates aging, necessitating the development of therapies to correct the disease-driver methylation imbalance. In this Review, we summarize the operating system of methylation across the central dogma, which includes writers, erasers, readers, and reader-independent outputs. We then discuss how dysregulation of the system contributes to neurological disorders, cancer, and aging. Current small-molecule compounds that target the modifiers show modest success in certain cancers. The methylome-wide action and lack of specificity lead to undesirable biological effects and cytotoxicity, limiting their therapeutic application, especially for diseases with a monogenic cause or different directions of methylation changes. Emerging tools capable of site-specific methylation manipulation hold great promise to solve this dilemma. With the refinement of delivery vehicles, these new tools are well positioned to advance the basic research and clinical translation of the methylation field.
Collapse
Affiliation(s)
- Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Erhu Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Huijuan Yu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Chaoyu Yuan
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
14
|
Abay-Nørgaard S, Tapia MC, Zeijdner M, Kim JH, Won KJ, Porse B, Salcini AE. Inter and transgenerational impact of H3K4 methylation in neuronal homeostasis. Life Sci Alliance 2023; 6:e202301970. [PMID: 37225426 PMCID: PMC10209521 DOI: 10.26508/lsa.202301970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023] Open
Abstract
Epigenetic marks and associated traits can be transmitted for one or more generations, phenomena known respectively as inter- or transgenerational epigenetic inheritance. It remains unknown if genetically and conditionally induced aberrant epigenetic states can influence the development of the nervous system across generations. Here, we show, using Caenorhabditis elegans as a model system, that alteration of H3K4me3 levels in the parental generation, caused by genetic manipulation or changes in parental conditions, has, respectively, trans- and intergenerational effects on H3K4 methylome, transcriptome, and nervous system development. Thus, our study reveals the relevance of H3K4me3 transmission and maintenance in preventing long-lasting deleterious effects in nervous system homeostasis.
Collapse
Affiliation(s)
- Steffen Abay-Nørgaard
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marta Cecylia Tapia
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mandoh Zeijdner
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jeonghwan Henry Kim
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kyoung Jae Won
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bo Porse
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Elisabetta Salcini
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Spanoudakis E, Tavernarakis N. Age-associated anatomical and physiological alterations in Caenorhabditis elegans. Mech Ageing Dev 2023; 213:111827. [PMID: 37268279 DOI: 10.1016/j.mad.2023.111827] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023]
Abstract
Since its introduction by Sydney Brenner, Caenorhabditis elegans has become a widely studied organism. Given its highly significant properties, including transparency, short lifespan, self-fertilization, high reproductive yield and ease in manipulation and genetic modifications, the nematode has contributed to the elucidation of several fundamental aspects of biology, such as development and ageing. Moreover, it has been extensively used as a platform for the modelling of ageing-associated human disorders, especially those related to neurodegeneration. The use of C. elegans for such purposes requires, and at the same time promotes the investigation of its normal ageing process. In this review we aim to summarize the major organismal alterations during normal worm ageing, in terms of morphology and functionality.
Collapse
Affiliation(s)
- Emmanuel Spanoudakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece; Department of Biology, University of Crete, Heraklion 70013, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece; Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion 70013, Crete, Greece.
| |
Collapse
|
16
|
González-Rodríguez P, Füllgrabe J, Joseph B. The hunger strikes back: an epigenetic memory for autophagy. Cell Death Differ 2023:10.1038/s41418-023-01159-4. [PMID: 37031275 DOI: 10.1038/s41418-023-01159-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
Historical and demographical human cohorts of populations exposed to famine, as well as animal studies, revealed that exposure to food deprivation is associated to lasting health-related effects for the exposed individuals, as well as transgenerational effects in their offspring that affect their diseases' risk and overall longevity. Autophagy, an evolutionary conserved catabolic process, serves as cellular response to cope with nutrient starvation, allowing the mobilization of an internal source of stored nutrients and the production of energy. We review the evidence obtained in multiple model organisms that support the idea that autophagy induction, including through dietary regimes based on reduced food intake, is in fact associated to improved health span and extended lifespan. Thereafter, we expose autophagy-induced chromatin remodeling, such as DNA methylation and histone posttranslational modifications that are known heritable epigenetic marks, as a plausible mechanism for transgenerational epigenetic inheritance of hunger.
Collapse
Affiliation(s)
- Patricia González-Rodríguez
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jens Füllgrabe
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
17
|
Carpenter BS, Scott A, Goldin R, Chavez SR, Rodriguez JD, Myrick DA, Curlee M, Schmeichel KL, Katz DJ. SPR-1/CoREST facilitates the maternal epigenetic reprogramming of the histone demethylase SPR-5/LSD1. Genetics 2023; 223:6992629. [PMID: 36655746 PMCID: PMC9991509 DOI: 10.1093/genetics/iyad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/07/2022] [Accepted: 12/09/2022] [Indexed: 01/20/2023] Open
Abstract
Maternal reprogramming of histone methylation is critical for reestablishing totipotency in the zygote, but how histone-modifying enzymes are regulated during maternal reprogramming is not well characterized. To address this gap, we asked whether maternal reprogramming by the H3K4me1/2 demethylase SPR-5/LSD1/KDM1A, is regulated by the chromatin co-repressor protein, SPR-1/CoREST, in Caenorhabditis elegans and mice. In C. elegans, SPR-5 functions as part of a reprogramming switch together with the H3K9 methyltransferase MET-2. By examining germline development, fertility, and gene expression in double mutants between spr-1 and met-2, as well as fertility in double mutants between spr-1 and spr-5, we find that loss of SPR-1 results in a partial loss of SPR-5 maternal reprogramming function. In mice, we generated a separation of function Lsd1 M448V point mutation that compromises CoREST binding, but only slightly affects LSD1 demethylase activity. When maternal LSD1 in the oocyte is derived exclusively from this allele, the progeny phenocopy the increased perinatal lethality that we previously observed when LSD1 was reduced maternally. Together, these data are consistent with CoREST having a conserved function in facilitating maternal LSD1 epigenetic reprogramming.
Collapse
Affiliation(s)
- Brandon S Carpenter
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Alyssa Scott
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Robert Goldin
- Uniformed Services University School of Medicine, Bethesda, MD 20814, USA
| | - Sindy R Chavez
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Juan D Rodriguez
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dexter A Myrick
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Marcus Curlee
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Karen L Schmeichel
- Natural Sciences Division, Oglethorpe University, Atlanta, GA 30319, USA
| | - David J Katz
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
18
|
Croft JC, Colunga A, Solh L, Dillon MK, Lee TWS. Pharyngeal pumping rate does not reflect lifespan extension in C. elegans transgenerational longevity mutants. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000719. [PMID: 36793895 PMCID: PMC9923420 DOI: 10.17912/micropub.biology.000719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/17/2023]
Abstract
Epigenetic modifications must be reprogrammed with each new generation. In Caenorhabditis elegans , defects in histone methylation reprogramming allow for the transgenerational acquisition of longevity. For example, mutations in the putative H3K9 demethylase JHDM-1 extend lifespan after six to ten generations. We noticed that long-lived jhdm-1 mutants appear healthier than wild-type animals from the same generation. To quantify health, we compared the common metric of pharyngeal pumping rate at specific adult ages between early-gen populations with normal lifespans and late-gen populations with long lifespans. Longevity did not affect pumping rate, but long-lived mutants stop pumping at a younger age, suggesting a possible conservation of energy to extend lifespan.
Collapse
Affiliation(s)
- Jaime C. Croft
- Department of Biological Sciences, University of Massachusetts Lowell, MA, USA
| | - Arthur Colunga
- Department of Biological Sciences, University of Massachusetts Lowell, MA, USA
| | - Lea Solh
- Department of Biological Sciences, University of Massachusetts Lowell, MA, USA
| | - Michaela K. Dillon
- Department of Biological Sciences, University of Massachusetts Lowell, MA, USA
| | - Teresa Wei-sy Lee
- Department of Biological Sciences, University of Massachusetts Lowell, MA, USA
,
Correspondence to: Teresa Wei-sy Lee (
)
| |
Collapse
|
19
|
Venney CJ, Cayuela H, Rougeux C, Laporte M, Mérot C, Normandeau E, Leitwein M, Dorant Y, Præbel K, Kenchington E, Clément M, Sirois P, Bernatchez L. Genome-wide DNA methylation predicts environmentally driven life history variation in a marine fish. Evolution 2023; 77:186-198. [PMID: 36622671 DOI: 10.1093/evolut/qpac028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/21/2022] [Accepted: 11/16/2022] [Indexed: 01/10/2023]
Abstract
Epigenetic modifications are thought to be one of the molecular mechanisms involved in plastic adaptive responses to environmental variation. However, studies reporting associations between genome-wide epigenetic changes and habitat-specific variations in life history traits (e.g., lifespan, reproduction) are still scarce, likely due to the recent application of methylome resequencing methods to non-model species. In this study, we examined associations between whole genome DNA methylation and environmentally driven life history variation in 2 lineages of a marine fish, the capelin (Mallotus villosus), from North America and Europe. In both lineages, capelin harbor 2 contrasting life history tactics (demersal vs. beach-spawning). Performing whole genome and methylome sequencing, we showed that life history tactics are associated with epigenetic changes in both lineages, though the effect was stronger in European capelin. Genetic differentiation between the capelin harboring different life history tactics was negligible, but we found genome-wide methylation changes in both lineages. We identified 9,125 European and 199 North American differentially methylated regions (DMRs) due to life history. Gene ontology (GO) enrichment analysis for both lineages revealed an excess of terms related to neural function. Our results suggest that environmental variation causes important epigenetic changes that are associated with contrasting life history tactics in lineages with divergent genetic backgrounds, with variable importance of genetic variation in driving epigenetic variation. Our study emphasizes the potential role of genome-wide epigenetic variation in adaptation to environmental variation.
Collapse
Affiliation(s)
- Clare J Venney
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Hugo Cayuela
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,University of Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Clément Rougeux
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Martin Laporte
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Claire Mérot
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Eric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Maëva Leitwein
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Yann Dorant
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Kim Præbel
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ellen Kenchington
- Department of Fisheries and Oceans, Bedford Institute of Oceanography, Dartmouth, NS, Canada
| | - Marie Clément
- Centre for Fisheries Ecosystems Research, Fisheries and Marine Institute of Memorial University of Newfoundland, St. John's, NL, Canada.,Labrador Institute, Memorial University of Newfoundland, Happy Valley-Goose Bay, NL, Canada
| | - Pascal Sirois
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| |
Collapse
|
20
|
Rothi MH, Greer EL. From correlation to causation: The new frontier of transgenerational epigenetic inheritance. Bioessays 2023; 45:e2200118. [PMID: 36351255 PMCID: PMC9772138 DOI: 10.1002/bies.202200118] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/03/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
While heredity is predominantly controlled by what deoxyribonucleic acid (DNA) sequences are passed from parents to their offspring, a small but growing number of traits have been shown to be regulated in part by the non-genetic inheritance of information. Transgenerational epigenetic inheritance is defined as heritable information passed from parents to their offspring without changing the DNA sequence. Work of the past seven decades has transitioned what was previously viewed as rare phenomenology, into well-established paradigms by which numerous traits can be modulated. For the most part, studies in model organisms have correlated transgenerational epigenetic inheritance phenotypes with changes in epigenetic modifications. The next steps for this field will entail transitioning from correlative studies to causal ones. Here, we delineate the major molecules that have been implicated in transgenerational epigenetic inheritance in both mammalian and non-mammalian models, speculate on additional molecules that could be involved, and highlight some of the tools which might help transition this field from correlation to causation.
Collapse
Affiliation(s)
- M. Hafiz Rothi
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston MA, USA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
| | - Eric Lieberman Greer
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston MA, USA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
| |
Collapse
|
21
|
Rodriguez JD, Katz DJ. Lineage Tracing and Single-Cell RNA-seq in C. elegans to Analyze Transgenerational Epigenetic Phenotypes Inherited from Germ Cells. Methods Mol Biol 2023; 2677:61-79. [PMID: 37464235 DOI: 10.1007/978-1-0716-3259-8_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The last several years have seen an increasing number of examples of transgenerational epigenetic inheritance, in which phenotypes are inherited for three or more generations without changes to the underlying DNA sequence. One model system that has been particularly useful for studying transgenerational epigenetic inheritance is C. elegans. Their short generation time and hermaphroditic reproduction have allowed multiple transgenerational phenotypes to be identified, including aging, fertility, and behavior. However, it is still not clear how transgenerational epigenetic inheritance from the germline affects embryogenesis. Fortunately, the C. elegans embryo has a unique property that makes it ideal for addressing this question: they develop via an invariant lineage, with each cell undergoing stereotypical cell divisions to adopt the same cell fate in every individual embryo. Because of this invariant cell lineage, automated lineage tracing and single-cell RNA-seq can be employed to determine how transgenerational epigenetic inheritance from the germline affects developmental timing and cell fate. Unfortunately, difficulties with these techniques have severely limited their adoption in the community. Here, we provide a practical guide to automated lineage tracing coupled with single-cell RNA-seq to facilitate their use in studying transgenerational epigenetic inheritance in C. elegans embryos.
Collapse
Affiliation(s)
- Juan D Rodriguez
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - David J Katz
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
22
|
Huang M, Hong M, Hou X, Zhu C, Chen D, Chen X, Guang S, Feng X. H3K9me1/2 methylation limits the lifespan of daf-2 mutants in C. elegans. eLife 2022; 11:74812. [PMID: 36125117 PMCID: PMC9514849 DOI: 10.7554/elife.74812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 09/16/2022] [Indexed: 11/29/2022] Open
Abstract
Histone methylation plays crucial roles in the development, gene regulation, and maintenance of stem cell pluripotency in mammals. Recent work shows that histone methylation is associated with aging, yet the underlying mechanism remains unclear. In this work, we identified a class of putative histone 3 lysine 9 mono/dimethyltransferase genes (met-2, set-6, set-19, set-20, set-21, set-32, and set-33), mutations in which induce synergistic lifespan extension in the long-lived DAF-2 (insulin growth factor 1 [IGF-1] receptor) mutant in Caenorhabditis elegans. These putative histone methyltransferase plus daf-2 double mutants not only exhibited an average lifespan nearly three times that of wild-type animals and a maximal lifespan of approximately 100 days, but also significantly increased resistance to oxidative and heat stress. Synergistic lifespan extension depends on the transcription factor DAF-16 (FOXO). mRNA-seq experiments revealed that the mRNA levels of DAF-16 Class I genes, which are activated by DAF-16, were further elevated in the daf-2;set double mutants. Among these genes, tts-1, F35E8.7, ins-35, nhr-62, sod-3, asm-2, and Y39G8B.7 are required for the lifespan extension of the daf-2;set-21 double mutant. In addition, treating daf-2 animals with the H3K9me1/2 methyltransferase G9a inhibitor also extends lifespan and increases stress resistance. Therefore, investigation of DAF-2 and H3K9me1/2 deficiency-mediated synergistic longevity will contribute to a better understanding of the molecular mechanisms of aging and therapeutic applications.
Collapse
Affiliation(s)
- Meng Huang
- Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
| | - Minjie Hong
- Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
| | - Xinhao Hou
- Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
| | - Chengming Zhu
- Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
| | - Di Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Xiangyang Chen
- Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
| | - Xuezhu Feng
- Department of Obstetrics and Gynecology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
23
|
Sawh AN, Mango SE. Chromosome organization in 4D: insights from C. elegans development. Curr Opin Genet Dev 2022; 75:101939. [PMID: 35759905 DOI: 10.1016/j.gde.2022.101939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 11/03/2022]
Abstract
Eukaryotic genome organization is ordered and multilayered, from the nucleosome to chromosomal scales. These layers are not static during development, but are remodeled over time and between tissues. Thus, animal model studies with high spatiotemporal resolution are necessary to understand the various forms and functions of genome organization in vivo. In C. elegans, sequencing- and imaging-based advances have provided insight on how histone modifications, regulatory elements, and large-scale chromosome conformations are established and changed. Recent observations include unexpected physiological roles for topologically associating domains, different roles for the nuclear lamina at different chromatin scales, cell-type-specific enhancer and promoter regulatory grammars, and prevalent compartment variability in early development. Here, we summarize these and other recent findings in C. elegans, and suggest future avenues of research to enrich our in vivo knowledge of the forms and functions of nuclear organization.
Collapse
Affiliation(s)
- Ahilya N Sawh
- Biozentrum, University of Basel, 4056 Basel-Stadt, Switzerland.
| | - Susan E Mango
- Biozentrum, University of Basel, 4056 Basel-Stadt, Switzerland.
| |
Collapse
|
24
|
Lister-Shimauchi EH, McCarthy B, Lippincott M, Ahmed S. Genetic and Epigenetic Inheritance at Telomeres. EPIGENOMES 2022; 6:9. [PMID: 35323213 PMCID: PMC8947350 DOI: 10.3390/epigenomes6010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 12/17/2022] Open
Abstract
Transgenerational inheritance can occur at telomeres in distinct contexts. Deficiency for telomerase or telomere-binding proteins in germ cells can result in shortened or lengthened chromosome termini that are transmitted to progeny. In human families, altered telomere lengths can result in stem cell dysfunction or tumor development. Genetic inheritance of altered telomeres as well as mutations that alter telomeres can result in progressive telomere length changes over multiple generations. Telomeres of yeast can modulate the epigenetic state of subtelomeric genes in a manner that is mitotically heritable, and the effects of telomeres on subtelomeric gene expression may be relevant to senescence or other human adult-onset disorders. Recently, two novel epigenetic states were shown to occur at C. elegans telomeres, where very low or high levels of telomeric protein foci can be inherited for multiple generations through a process that is regulated by histone methylation.Together, these observations illustrate that information relevant to telomere biology can be inherited via genetic and epigenetic mechanisms, although the broad impact of epigenetic inheritance to human biology remains unclear.
Collapse
Affiliation(s)
- Evan H. Lister-Shimauchi
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-3280, USA; (E.H.L.-S.); (B.M.); (M.L.)
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Benjamin McCarthy
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-3280, USA; (E.H.L.-S.); (B.M.); (M.L.)
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Michael Lippincott
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-3280, USA; (E.H.L.-S.); (B.M.); (M.L.)
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | - Shawn Ahmed
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599-3280, USA; (E.H.L.-S.); (B.M.); (M.L.)
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
25
|
Wan QL, Meng X, Wang C, Dai W, Luo Z, Yin Z, Ju Z, Fu X, Yang J, Ye Q, Zhang ZH, Zhou Q. Histone H3K4me3 modification is a transgenerational epigenetic signal for lipid metabolism in Caenorhabditis elegans. Nat Commun 2022; 13:768. [PMID: 35140229 PMCID: PMC8828817 DOI: 10.1038/s41467-022-28469-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/20/2022] [Indexed: 11/09/2022] Open
Abstract
As a major risk factor to human health, obesity presents a massive burden to people and society. Interestingly, the obese status of parents can cause progeny's lipid accumulation through epigenetic inheritance in multiple species. To date, many questions remain as to how lipid accumulation leads to signals that are transmitted across generations. In this study, we establish a nematode model of C. elegans raised on a high-fat diet (HFD) that leads to measurable lipid accumulation, which can transmit the lipid accumulation signal to their multigenerational progeny. Using this model, we find that transcription factors DAF-16/FOXO and SBP-1/SREBP, nuclear receptors NHR-49 and NHR-80, and delta-9 desaturases (fat-5, fat-6, and fat-7) are required for transgenerational lipid accumulation. Additionally, histone H3K4 trimethylation (H3K4me3) marks lipid metabolism genes and increases their transcription response to multigenerational obesogenic effects. In summary, this study establishes an interaction between a network of lipid metabolic genes and chromatin modifications, which work together to achieve transgenerational epigenetic inheritance of obesogenic effects.
Collapse
Affiliation(s)
- Qin-Li Wan
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China.,Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiao Meng
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Chongyang Wang
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Wenyu Dai
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhenhuan Luo
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhinan Yin
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regeneration Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiaodie Fu
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jing Yang
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qunshan Ye
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhan-Hui Zhang
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qinghua Zhou
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523560, Guangdong, China. .,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
26
|
Caron M, Gely L, Garvis S, Adrait A, Couté Y, Palladino F, Fabrizio P. Loss of SET1/COMPASS methyltransferase activity reduces lifespan and fertility in Caenorhabditis elegans. Life Sci Alliance 2021; 5:5/3/e202101140. [PMID: 34893559 PMCID: PMC8675910 DOI: 10.26508/lsa.202101140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 01/06/2023] Open
Abstract
Changes in histone post-translational modifications are associated with aging through poorly defined mechanisms. Histone 3 lysine 4 (H3K4) methylation at promoters is deposited by SET1 family methyltransferases acting within conserved multiprotein complexes known as COMPASS. Previous work yielded conflicting results about the requirement for H3K4 methylation during aging. Here, we reassessed the role of SET1/COMPASS-dependent H3K4 methylation in Caenorhabditis elegans lifespan and fertility by generating set-2(syb2085) mutant animals that express a catalytically inactive form of SET-2, the C. elegans SET1 homolog. We show that set-2(syb2085) animals retain the ability to form COMPASS, but have a marked global loss of H3K4 di- and trimethylation (H3K4me2/3). Reduced H3K4 methylation was accompanied by loss of fertility, as expected; however, in contrast to earlier studies, set-2(syb2085) mutants displayed a significantly shortened, not extended, lifespan and had normal intestinal fat stores. Other commonly used set-2 mutants were also short-lived, as was a cfp-1 mutant that lacks the SET1/COMPASS chromatin-targeting component. These results challenge previously held views and establish that WT H3K4me2/3 levels are essential for normal lifespan in C. elegans.
Collapse
Affiliation(s)
- Matthieu Caron
- Laboratory of Biology and Modelling of the Cell, Ecole Normale Supérieure de Lyon, CNRS UMR5239, INSERM U1210, Université de Lyon, Lyon, France
| | - Loïc Gely
- Laboratory of Biology and Modelling of the Cell, Ecole Normale Supérieure de Lyon, CNRS UMR5239, INSERM U1210, Université de Lyon, Lyon, France
| | - Steven Garvis
- Laboratory of Biology and Modelling of the Cell, Ecole Normale Supérieure de Lyon, CNRS UMR5239, INSERM U1210, Université de Lyon, Lyon, France
| | - Annie Adrait
- University of Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, Grenoble, France
| | - Yohann Couté
- University of Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, Grenoble, France
| | - Francesca Palladino
- Laboratory of Biology and Modelling of the Cell, Ecole Normale Supérieure de Lyon, CNRS UMR5239, INSERM U1210, Université de Lyon, Lyon, France
| | - Paola Fabrizio
- Laboratory of Biology and Modelling of the Cell, Ecole Normale Supérieure de Lyon, CNRS UMR5239, INSERM U1210, Université de Lyon, Lyon, France
| |
Collapse
|
27
|
Das S, Min S, Prahlad V. Gene bookmarking by the heat shock transcription factor programs the insulin-like signaling pathway. Mol Cell 2021; 81:4843-4860.e8. [PMID: 34648748 PMCID: PMC8642288 DOI: 10.1016/j.molcel.2021.09.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/09/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022]
Abstract
Maternal stress can have long-lasting epigenetic effects on offspring. To examine how epigenetic changes are triggered by stress, we examined the effects of activating the universal stress-responsive heat shock transcription factor HSF-1 in the germline of Caenorhabditis elegans. We show that, when activated in germ cells, HSF-1 recruits MET-2, the putative histone 3 lysine 9 (H3K9) methyltransferase responsible for repressive H3K9me2 (H3K9 dimethyl) marks in chromatin, and negatively bookmarks the insulin receptor daf-2 and other HSF-1 target genes. Increased H3K9me2 at these genes persists in adult progeny and shifts their stress response strategy away from inducible chaperone expression as a mechanism to survive stress and instead rely on decreased insulin/insulin growth factor (IGF-1)-like signaling (IIS). Depending on the duration of maternal heat stress exposure, this epigenetic memory is inherited by the next generation. Thus, paradoxically, HSF-1 recruits the germline machinery normally responsible for erasing transcriptional memory but, instead, establishes a heritable epigenetic memory of prior stress exposure.
Collapse
Affiliation(s)
- Srijit Das
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building, Iowa City, IA 52242-1324, USA
| | - Sehee Min
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building, Iowa City, IA 52242-1324, USA
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, 143 Biology Building, Iowa City, IA 52242-1324, USA; Department of Biology, 143 Biology Building, Iowa City, IA 52242-1324, USA; Iowa Neuroscience Institute, 169 Newton Road, 2312 Pappajohn Biomedical Discovery Building, Iowa City, IA 52242, USA.
| |
Collapse
|
28
|
Anastasiadi D, Venney CJ, Bernatchez L, Wellenreuther M. Epigenetic inheritance and reproductive mode in plants and animals. Trends Ecol Evol 2021; 36:1124-1140. [PMID: 34489118 DOI: 10.1016/j.tree.2021.08.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022]
Abstract
Epigenetic inheritance is another piece of the puzzle of nongenetic inheritance, although the prevalence, sources, persistence, and phenotypic consequences of heritable epigenetic marks across taxa remain unclear. We systematically reviewed over 500 studies from the past 5 years to identify trends in the frequency of epigenetic inheritance due to differences in reproductive mode and germline development. Genetic, intrinsic (e.g., disease), and extrinsic (e.g., environmental) factors were identified as sources of epigenetic inheritance, with impacts on phenotype and adaptation depending on environmental predictability. Our review shows that multigenerational persistence of epigenomic patterns is common in both plants and animals, but also highlights many knowledge gaps that remain to be filled. We provide a framework to guide future studies towards understanding the generational persistence and eco-evolutionary significance of epigenomic patterns.
Collapse
Affiliation(s)
- Dafni Anastasiadi
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten St, Nelson 7010, New Zealand
| | - Clare J Venney
- Institut de Biologie Intégrative des Systèmes (IBIS), Département de Biologie, Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Québec, QC, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative des Systèmes (IBIS), Département de Biologie, Université Laval, 1030 Avenue de la Médecine, G1V 0A6, Québec, QC, Canada
| | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research Ltd, Nelson Research Centre, 293 Akersten St, Nelson 7010, New Zealand; School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland 1010, New Zealand.
| |
Collapse
|
29
|
Zhang Y, Zhao C, Zhang H, Lu Q, Zhou J, Liu R, Wang S, Pu Y, Yin L. Trans-generational effects of copper on nerve damage in Caenorhabditis elegans. CHEMOSPHERE 2021; 284:131324. [PMID: 34225113 DOI: 10.1016/j.chemosphere.2021.131324] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 05/15/2023]
Abstract
The potential toxicity of copper has received great attention for a long time, however, trans-generational effects of copper have not been extensively investigated. Caenorhabditis elegans (C. elegans) was used to evaluate the trans-generational toxicities of copper several physiological endpoints: growth, head thrashes and body bends and degree of neuronal damage. Copper significantly inhibited growth, body bends, head thrashes and caused degeneration of dopaminergic neurons in a concentration-dependent manner in parental worms. Further we found oxidative damage was to underlying the onset of neuron degeneration. In our study copper promoted ROS accumulation, and led to an increased expression of the oxidative stress response-related genes sod-3 and a decreased expression of metal detoxification genes mtl-1 and mtl-2. Moreover, copper increased the fluorescence intensity of the transgenic strain that encodes the antioxidant enzyme SOD-3. Gradually decline in copper-induced impairments were observed in the filial generations without exposure. No growth impairment was shown in F3, the trend of head thrashes recovery gradually appeared in F2 and no growth impairment was shown in F3, the body bends impairment caused by the parental copper exposure was recovery until F4 and no growth impairment was shown in F5. Besides, dopamine neurons revealed damage related to neurobehavioral endpoints, with hereditary effects in the progeny together. In addition, sequencing results suggested that copper exposure could cause epigenetic changes. QRT-PCR results showed that differentially expressed genes can also be passed on to offspring.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Chao Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Qiang Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Jingjing Zhou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
30
|
Hime GR, Stonehouse SLA, Pang TY. Alternative models for transgenerational epigenetic inheritance: Molecular psychiatry beyond mice and man. World J Psychiatry 2021; 11:711-735. [PMID: 34733638 PMCID: PMC8546770 DOI: 10.5498/wjp.v11.i10.711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/19/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Mental illness remains the greatest chronic health burden globally with few in-roads having been made despite significant advances in genomic knowledge in recent decades. The field of psychiatry is constantly challenged to bring new approaches and tools to address and treat the needs of vulnerable individuals and subpopulations, and that has to be supported by a continuous growth in knowledge. The majority of neuropsychiatric symptoms reflect complex gene-environment interactions, with epigenetics bridging the gap between genetic susceptibility and environmental stressors that trigger disease onset and drive the advancement of symptoms. It has more recently been demonstrated in preclinical models that epigenetics underpins the transgenerational inheritance of stress-related behavioural phenotypes in both paternal and maternal lineages, providing further supporting evidence for heritability in humans. However, unbiased prospective studies of this nature are practically impossible to conduct in humans so preclinical models remain our best option for researching the molecular pathophysiologies underlying many neuropsychiatric conditions. While rodents will remain the dominant model system for preclinical studies (especially for addressing complex behavioural phenotypes), there is scope to expand current research of the molecular and epigenetic pathologies by using invertebrate models. Here, we will discuss the utility and advantages of two alternative model organisms-Caenorhabditis elegans and Drosophila melanogaster-and summarise the compelling insights of the epigenetic regulation of transgenerational inheritance that are potentially relevant to human psychiatry.
Collapse
Affiliation(s)
- Gary R Hime
- Department of Anatomy and Physiology, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Sophie LA Stonehouse
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville 3052, VIC, Australia
| | - Terence Y Pang
- Department of Anatomy and Physiology, The University of Melbourne, Parkville 3010, VIC, Australia
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville 3052, VIC, Australia
| |
Collapse
|
31
|
Li CL, Pu M, Wang W, Chaturbedi A, Emerson FJ, Lee SS. Region-specific H3K9me3 gain in aged somatic tissues in Caenorhabditis elegans. PLoS Genet 2021; 17:e1009432. [PMID: 34506495 PMCID: PMC8457455 DOI: 10.1371/journal.pgen.1009432] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/22/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic alterations occur as organisms age, and lead to chromatin deterioration, loss of transcriptional silencing and genomic instability. Dysregulation of the epigenome has been associated with increased susceptibility to age-related disorders. In this study, we aimed to characterize the age-dependent changes of the epigenome and, in turn, to understand epigenetic processes that drive aging phenotypes. We focused on the aging-associated changes in the repressive histone marks H3K9me3 and H3K27me3 in C. elegans. We observed region-specific gain and loss of both histone marks, but the changes are more evident for H3K9me3. We further found alteration of heterochromatic boundaries in aged somatic tissues. Interestingly, we discovered that the most statistically significant changes reflected H3K9me3-marked regions that are formed during aging, and are absent in developing worms, which we termed "aging-specific repressive regions" (ASRRs). These ASRRs preferentially occur in genic regions that are marked by high levels of H3K9me2 and H3K36me2 in larval stages. Maintenance of high H3K9me2 levels in these regions have been shown to correlate with a longer lifespan. Next, we examined whether the changes in repressive histone marks lead to de-silencing of repetitive DNA elements, as reported for several other organisms. We observed increased expression of active repetitive DNA elements but not global re-activation of silent repeats in old worms, likely due to the distributed nature of repetitive elements in the C. elegans genome. Intriguingly, CELE45, a putative short interspersed nuclear element (SINE), was greatly overexpressed at old age and upon heat stress. SINEs have been suggested to regulate transcription in response to various cellular stresses in mammals. It is likely that CELE45 RNAs also play roles in stress response and aging in C. elegans. Taken together, our study revealed significant and specific age-dependent changes in repressive histone modifications and repetitive elements, providing important insights into aging biology.
Collapse
Affiliation(s)
- Cheng-Lin Li
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Mintie Pu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Wenke Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Amaresh Chaturbedi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Felicity J Emerson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
32
|
Burton NO, Greer EL. Multigenerational epigenetic inheritance: Transmitting information across generations. Semin Cell Dev Biol 2021; 127:121-132. [PMID: 34426067 DOI: 10.1016/j.semcdb.2021.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/07/2023]
Abstract
Inherited epigenetic information has been observed to regulate a variety of complex organismal phenotypes across diverse taxa of life. This continually expanding body of literature suggests that epigenetic inheritance plays a significant, and potentially fundamental, role in inheritance. Despite the important role these types of effects play in biology, the molecular mediators of this non-genetic transmission of information are just now beginning to be deciphered. Here we provide an intellectual framework for interpreting these findings and how they can interact with each other. We also define the different types of mechanisms that have been found to mediate epigenetic inheritance and to regulate whether epigenetic information persists for one or many generations. The field of epigenetic inheritance is entering an exciting phase, in which we are beginning to understand the mechanisms by which non-genetic information is transmitted to, and deciphered by, subsequent generations to maintain essential environmental information without permanently altering the genetic code. A more complete understanding of how and when epigenetic inheritance occurs will advance our understanding of numerous different aspects of biology ranging from how organisms cope with changing environments to human pathologies influenced by a parent's environment.
Collapse
Affiliation(s)
- Nicholas O Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| | - Eric L Greer
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Medical School Initiative for RNA Medicine, Boston, MA 02115, USA.
| |
Collapse
|
33
|
How do histone modifications contribute to transgenerational epigenetic inheritance in C. elegans? Biochem Soc Trans 2021; 48:1019-1034. [PMID: 32539084 DOI: 10.1042/bst20190944] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/20/2022]
Abstract
Gene regulatory information can be inherited between generations in a phenomenon termed transgenerational epigenetic inheritance (TEI). While examples of TEI in many animals accumulate, the nematode Caenorhabditis elegans has proven particularly useful in investigating the underlying molecular mechanisms of this phenomenon. In C. elegans and other animals, the modification of histone proteins has emerged as a potential carrier and effector of transgenerational epigenetic information. In this review, we explore the contribution of histone modifications to TEI in C. elegans. We describe the role of repressive histone marks, histone methyltransferases, and associated chromatin factors in heritable gene silencing, and discuss recent developments and unanswered questions in how these factors integrate with other known TEI mechanisms. We also review the transgenerational effects of the manipulation of histone modifications on germline health and longevity.
Collapse
|
34
|
Environmentally Induced Epigenetic Transgenerational Inheritance and the Weismann Barrier: The Dawn of Neo-Lamarckian Theory. J Dev Biol 2020; 8:jdb8040028. [PMID: 33291540 PMCID: PMC7768451 DOI: 10.3390/jdb8040028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
For the past 120 years, the Weismann barrier and associated germ plasm theory of heredity have been a doctrine that has impacted evolutionary biology and our concepts of inheritance through the germline. Although August Weismann in his 1872 book was correct that the sperm and egg were the only cells to transmit molecular information to the subsequent generation, the concept that somatic cells do not impact the germline (i.e., the Weismann barrier) is incorrect. However, the doctrine or dogma of the Weismann barrier still influences many scientific fields and topics. The discovery of epigenetics, and more recently environmentally induced epigenetic transgenerational inheritance of phenotypic variation and pathology, have had significant impacts on evolution theory and medicine today. Environmental epigenetics and the concept of epigenetic transgenerational inheritance refute aspects of the Weismann barrier and require a re-evaluation of both inheritance theory and evolution theory.
Collapse
|
35
|
Robert VJ, Knutson AK, Rechtsteiner A, Garvis S, Yvert G, Strome S, Palladino F. Caenorhabditis elegans SET1/COMPASS Maintains Germline Identity by Preventing Transcriptional Deregulation Across Generations. Front Cell Dev Biol 2020; 8:561791. [PMID: 33072747 PMCID: PMC7536326 DOI: 10.3389/fcell.2020.561791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
Chromatin regulators contribute to the maintenance of the germline transcriptional program. In the absence of SET-2, the Caenorhabditis elegans homolog of the SET1/COMPASS H3 Lys4 (H3K4) methyltransferase, animals show transgenerational loss of germline identity, leading to sterility. To identify transcriptional signatures associated with progressive loss of fertility, we performed expression profiling of set-2 mutant germlines across generations. We identify a subset of genes whose misexpression is first observed in early generations, a step we refer to as priming; their misexpression then further progresses in late generations, as animals reach sterility. Analysis of misregulated genes shows that down-regulation of germline genes, expression of somatic transcriptional programs, and desilencing of the X-chromosome are concurrent events leading to loss of germline identity in both early and late generations. Upregulation of transcription factor LIN-15B, the C/EBP homolog CEBP-1, and TGF-β pathway components strongly contribute to loss of fertility, and RNAi inactivation of cebp-1 and TGF-β/Smad signaling delays the onset of sterility, showing they individually contribute to maintenance of germ cell identity. Our approach therefore identifies genes and pathways whose misexpression actively contributes to the loss of germ cell fate. More generally, our data shows how loss of a chromatin regulator in one generation leads to transcriptional changes that are amplified over subsequent generations, ultimately leading to loss of appropriate cell fate.
Collapse
Affiliation(s)
- Valérie J Robert
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Université Claude Bernard de Lyon, Université de Lyon, Lyon, France
| | - Andrew K Knutson
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Andreas Rechtsteiner
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Steven Garvis
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Université Claude Bernard de Lyon, Université de Lyon, Lyon, France
| | - Gaël Yvert
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Université Claude Bernard de Lyon, Université de Lyon, Lyon, France
| | - Susan Strome
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Francesca Palladino
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Université Claude Bernard de Lyon, Université de Lyon, Lyon, France
| |
Collapse
|
36
|
Abstract
Worms with increased levels of the epigenetic mark H3K9me2 have a longer lifespan that can be passed down to future generations.
Collapse
Affiliation(s)
- Felicity Emerson
- Biomedical and Biological Sciences Program, Cornell University, Ithaca, United States.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Cheng-Lin Li
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| |
Collapse
|
37
|
Lee TWS, David HS, Engstrom AK, Carpenter BS, Katz DJ. Repressive H3K9me2 protects lifespan against the transgenerational burden of COMPASS activity in C. elegans. eLife 2019; 8:e48498. [PMID: 31815663 PMCID: PMC7299346 DOI: 10.7554/elife.48498] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/06/2019] [Indexed: 12/17/2022] Open
Abstract
In Caenorhabditis elegans, mutations in WDR-5 and other components of the COMPASS H3K4 methyltransferase complex extend lifespan and enable its inheritance. Here, we show that wdr-5 mutant longevity is itself a transgenerational trait that corresponds with a global enrichment of the heterochromatin factor H3K9me2 over twenty generations. In addition, we find that the transgenerational aspects of wdr-5 mutant longevity require the H3K9me2 methyltransferase MET-2, and can be recapitulated by removal of the putative H3K9me2 demethylase JHDM-1. Finally, we show that the transgenerational acquisition of longevity in jhdm-1 mutants is associated with accumulating genomic H3K9me2 that is inherited by their long-lived wild-type descendants at a subset of loci. These results suggest that heterochromatin facilitates the transgenerational establishment and inheritance of a complex trait. Based on these results, we propose that transcription-coupled H3K4me via COMPASS limits lifespan by encroaching upon domains of heterochromatin in the genome.
Collapse
Affiliation(s)
- Teresa Wei-sy Lee
- Department of Cell BiologyEmory University School of MedicineAtlantaUnited States
| | - Heidi Shira David
- Department of Cell BiologyEmory University School of MedicineAtlantaUnited States
| | | | | | - David John Katz
- Department of Cell BiologyEmory University School of MedicineAtlantaUnited States
| |
Collapse
|