1
|
Hu P, van Loosdrecht M, Gu JD, Yang Y. The core anammox redox reaction system of 12 anammox bacterial genera and their evolution and application implications. WATER RESEARCH 2025; 281:123551. [PMID: 40187147 DOI: 10.1016/j.watres.2025.123551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/04/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
Anaerobic ammonium-oxidation (anammox) is a typical redox reaction driven by membrane electron transformation. However, the electron transfer mechanism of the core redox reaction and its evolutionary origins are still not thoroughly identified. In this study, a preliminary analysis was conducted for such interaction based on the 64 anammox bacterial genomes representing 12 genera available currently. The results suggested that enzymes involved in anammox reaction share the similar catalytic and electron transfer modes in different lineages, while the electron-carrying proteins shuttled between membrane and soluble enzymes are very different. A comparatively simple electronic shuttle protein system was encoded in the early-branching groundwater lineages Candidatus (Ca.) Avalokitesvara and Ca. Tripitaka, which was replaced by a sophisticated electron carrier scheme in the late-branching marine and terrestrial groups within family Ca. Brocadiaceae. Remarkably, the increasing availability of nitrite after Great Oxidation Event (GOE) potentially drove the adaptive evolution of the core redox systems by successively recruiting the nitrite reductase (NIR) for nitrite balance, a stable complex of two small cytochrome c proteins (NaxL and NaxS homologues) for electron transfer to HZS, as well as optimizing the structure of nitrite oxidoreductase gamma (NxrC) for electron conservation. In particular, a tubule-inducing nitrite oxidoreductase subunit (NxrT homologue) was further formed for electron transformation after the Neoproterozoic Oxygenation Event (NOE). Finally, based on two full-scale anammox-based wastewater treatment systems (WWTPs), we identified core gene transcriptional activities affecting the abundance of the family Ca. Brocadiaceae and their association with environmental factors. Overall, our study not only provides key information for understanding the dynamic patterns and evolutionary mechanisms of the anammox reactions and the associated electron transfers in conjunction with major geological events, but also provides new insights for future enrichment and effective applications.
Collapse
Affiliation(s)
- Pengfei Hu
- Environmental Science and Engineering Research Group, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, PR China; Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel
| | - Mark van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9 2629 HZ Delft, the Netherlands
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, PR China; Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 320003, Israel; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, PR China.
| | - Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, PR China.
| |
Collapse
|
2
|
Liu L, Manley JL. Non-canonical isoforms of the mRNA polyadenylation factor WDR33 regulate STING-mediated immune responses. Cell Rep 2024; 43:113886. [PMID: 38430516 PMCID: PMC11019558 DOI: 10.1016/j.celrep.2024.113886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 03/04/2024] Open
Abstract
The human WDR33 gene encodes three major isoforms. The canonical isoform WDR33v1 (V1) is a well-characterized nuclear mRNA polyadenylation factor, while the other two, WDR33v2 (V2) and WDR33v3 (V3), have not been studied. Here, we report that V2 and V3 are generated by alternative polyadenylation, and neither protein contains all seven WD (tryptophan-aspartic acid) repeats that characterize V1. Surprisingly, V2 and V3 are not polyadenylation factors but localize to the endoplasmic reticulum and interact with stimulator of interferon genes (STING), the immune factor that induces the cellular response to cytosolic double-stranded DNA. V2 suppresses interferon-β induction by preventing STING disulfide oligomerization but promotes autophagy, likely by recruiting WIPI2 isoforms. V3, on the other hand, functions to increase STING protein levels. Our study has not only provided mechanistic insights into STING regulation but also revealed that protein isoforms can be functionally completely unrelated, indicating that alternative mRNA processing is a more powerful mechanism than previously appreciated.
Collapse
Affiliation(s)
- Lizhi Liu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
3
|
Flood R, Cerofolini L, Fragai M, Crowley PB. Multivalent Calixarene Complexation of a Designed Pentameric Lectin. Biomacromolecules 2024; 25:1303-1309. [PMID: 38227741 PMCID: PMC10865345 DOI: 10.1021/acs.biomac.3c01280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024]
Abstract
We describe complex formation between a designed pentameric β-propeller and the anionic macrocycle sulfonato-calix[8]arene (sclx8), as characterized by X-ray crystallography and NMR spectroscopy. Two crystal structures and 15N HSQC experiments reveal a single calixarene binding site in the concave pocket of the β-propeller toroid. Despite the symmetry mismatch between the pentameric protein and the octameric macrocycle, they form a high affinity multivalent complex, with the largest protein-calixarene interface observed to date. This system provides a platform for investigating multivalency.
Collapse
Affiliation(s)
- Ronan
J. Flood
- SSPC,
Science Foundation Ireland Research Centre for Pharmaceuticals, School
of Biological and Chemical Sciences, University
of Galway, University
Road, Galway H91 TK33, Ireland
| | - Linda Cerofolini
- Magnetic
Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto, Fiorentino, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto, Fiorentino, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto, Fiorentino, Italy
| | - Marco Fragai
- Magnetic
Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto, Fiorentino, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto, Fiorentino, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto, Fiorentino, Italy
| | - Peter B. Crowley
- SSPC,
Science Foundation Ireland Research Centre for Pharmaceuticals, School
of Biological and Chemical Sciences, University
of Galway, University
Road, Galway H91 TK33, Ireland
| |
Collapse
|
4
|
Tagami S. Why we are made of proteins and nucleic acids: Structural biology views on extraterrestrial life. Biophys Physicobiol 2023; 20:e200026. [PMID: 38496239 PMCID: PMC10941967 DOI: 10.2142/biophysico.bppb-v20.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/29/2023] [Indexed: 03/19/2024] Open
Abstract
Is it a miracle that life exists on the Earth, or is it a common phenomenon in the universe? If extraterrestrial organisms exist, what are they like? To answer these questions, we must understand what kinds of molecules could evolve into life, or in other words, what properties are generally required to perform biological functions and store genetic information. This review summarizes recent findings on simple ancestral proteins, outlines the basic knowledge in textbooks, and discusses the generally required properties for biological molecules from structural biology viewpoints (e.g., restriction of shapes, and types of intra- and intermolecular interactions), leading to the conclusion that proteins and nucleic acids are at least one of the simplest (and perhaps very common) forms of catalytic and genetic biopolymers in the universe. This review article is an extended version of the Japanese article, On the Origin of Life: Coevolution between RNA and Peptide, published in SEIBUTSU BUTSURI Vol. 61, p. 232-235 (2021).
Collapse
Affiliation(s)
- Shunsuke Tagami
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
5
|
Qiu K, Ben‐Tal N, Kolodny R. Similar protein segments shared between domains of different evolutionary lineages. Protein Sci 2022; 31:e4407. [PMID: 36040261 PMCID: PMC9387206 DOI: 10.1002/pro.4407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/01/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022]
Abstract
The emergence of novel proteins, beyond these that can be readily made by duplication and recombination of preexisting domains, is elusive. De novo emergence from random sequences is unlikely because the vast majority of random chains would not even fold, let alone function. An alternative explanation is that novel proteins emerge by duplication and fusion of pre-existing polypeptide segments. In this case, traces of such ancient events may remain within contemporary proteins in the form of reused segments. Together with the late Dan Tawfik, we detected such similar segments, far shorter than intact protein domains, which are found in different environments. The detection of these, "bridging themes," was based on a unique search strategy, where in addition to searching for similarity of shared fragments, so-called "themes," we also explicitly searched for cases in which the sequence segments before and after the theme are dissimilar (both in sequence and structure). Here, using a similar strategy, we further expanded the search and discovered almost 500 additional "bridging themes," linking domains that are often from ancient folds. The themes, of 20 residues or more (average 53), do not retain their structure despite sharing 37% sequence identity on average. Indeed, conformation flexibility may confer an evolutionary advantage, in that it fits in multiple environments. We elaborate on two interesting themes, shared between Rossmann/Trefoil-Plexin-like domains and a β-propeller-like domain. FOR A BROAD AUDIENCE: A fundamental question in molecular evolution is how protein domains emerged. Similar segments shared between domains of seemingly distinct origins, may offer clues, as these may be remnants of the evolutionary process through which these domains emerged. However, finding such cases is difficult. Here, we expand the set of such cases which we curated previously, adding segments shared between domains that are considered ancient.
Collapse
Affiliation(s)
- Kaiyu Qiu
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Nir Ben‐Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Rachel Kolodny
- Department of Computer ScienceUniversity of HaifaHaifaIsrael
| |
Collapse
|
6
|
Pereira J, Lupas AN. New β-Propellers Are Continuously Amplified From Single Blades in all Major Lineages of the β-Propeller Superfamily. Front Mol Biosci 2022; 9:895496. [PMID: 35755816 PMCID: PMC9218822 DOI: 10.3389/fmolb.2022.895496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
β-Propellers are toroidal folds, in which consecutive supersecondary structure units of four anti-parallel β-strands-called blades-are arranged radially around a central axis. Uniquely among toroidal folds, blades span the full range of sequence symmetry, from near identity to complete divergence, indicating an ongoing process of amplification and differentiation. We have proposed that the major lineages of β-propellers arose through this mechanism and that therefore their last common ancestor was a single blade, not a fully formed β-propeller. Here we show that this process of amplification and differentiation is also widespread within individual lineages, yielding β-propellers with blades of more than 60% pairwise sequence identity in most major β-propeller families. In some cases, the blades are nearly identical, indicating a very recent amplification event, but even in cases where such recently amplified β-propellers have more than 80% overall sequence identity to each other, comparison of their DNA sequence shows that the amplification occurred independently.
Collapse
Affiliation(s)
- Joana Pereira
- Department of Protein Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Andrei N Lupas
- Department of Protein Evolution, Max Planck Institute for Biology, Tübingen, Germany
| |
Collapse
|
7
|
Imran A, Moyer BS, Kalina D, Duncan TM, Moody KJ, Wolfe AJ, Cosgrove MS, Movileanu L. Convergent Alterations of a Protein Hub Produce Divergent Effects within a Binding Site. ACS Chem Biol 2022; 17:1586-1597. [PMID: 35613319 PMCID: PMC9207812 DOI: 10.1021/acschembio.2c00273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/11/2022] [Indexed: 11/29/2022]
Abstract
Progress in tumor sequencing and cancer databases has created an enormous amount of information that scientists struggle to sift through. While several research groups have created computational methods to analyze these databases, much work still remains in distinguishing key implications of pathogenic mutations. Here, we describe an approach to identify and evaluate somatic cancer mutations of WD40 repeat protein 5 (WDR5), a chromatin-associated protein hub. This multitasking protein maintains the functional integrity of large multi-subunit enzymatic complexes of the six human SET1 methyltransferases. Remarkably, the somatic cancer mutations of WDR5 preferentially distribute within and around an essential cavity, which hosts the WDR5 interaction (Win) binding site. Hence, we assessed the real-time binding kinetics of the interactions of key clustered WDR5 mutants with the Win motif peptide ligands of the SET1 family members (SET1Win). Our measurements highlight that this subset of mutants exhibits divergent perturbations in the kinetics and strength of interactions not only relative to those of the native WDR5 but also among various SET1Win ligands. These outcomes could form a fundamental basis for future drug discovery and other developments in medical biotechnology.
Collapse
Affiliation(s)
- Ali Imran
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
| | - Brandon S. Moyer
- Ichor
Life Sciences, Inc., 2651 US Route 11, LaFayette, New York 13084, United
States
| | - Dan Kalina
- Ichor
Life Sciences, Inc., 2651 US Route 11, LaFayette, New York 13084, United
States
- Department
of Chemistry, State University of New York
College of Environmental Science and Forestry, 1 Forestry Dr., Syracuse, New York 13210, United States
| | - Thomas M. Duncan
- Department
of Biochemistry and Molecular Biology, State
University of New York Upstate Medical University, 4249 Weiskotten Hall, 766 Irving
Avenue, Syracuse, New York 13210, United States
| | - Kelsey J. Moody
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- Ichor
Life Sciences, Inc., 2651 US Route 11, LaFayette, New York 13084, United
States
- Department
of Chemistry, State University of New York
College of Environmental Science and Forestry, 1 Forestry Dr., Syracuse, New York 13210, United States
- Lewis
School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Aaron J. Wolfe
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- Ichor
Life Sciences, Inc., 2651 US Route 11, LaFayette, New York 13084, United
States
- Department
of Chemistry, State University of New York
College of Environmental Science and Forestry, 1 Forestry Dr., Syracuse, New York 13210, United States
- Lewis
School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Michael S. Cosgrove
- Department
of Biochemistry and Molecular Biology, State
University of New York Upstate Medical University, 4249 Weiskotten Hall, 766 Irving
Avenue, Syracuse, New York 13210, United States
| | - Liviu Movileanu
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United
States
- The
BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
8
|
Blaber M. Variable and Conserved Regions of Secondary Structure in the β-Trefoil Fold: Structure Versus Function. Front Mol Biosci 2022; 9:889943. [PMID: 35517858 PMCID: PMC9062101 DOI: 10.3389/fmolb.2022.889943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
β-trefoil proteins exhibit an approximate C3 rotational symmetry. An analysis of the secondary structure for members of this diverse superfamily of proteins indicates that it is comprised of remarkably conserved β-strands and highly-divergent turn regions. A fundamental “minimal” architecture can be identified that is devoid of heterogenous and extended turn regions, and is conserved among all family members. Conversely, the different functional families of β-trefoils can potentially be identified by their unique turn patterns (or turn “signature”). Such analyses provide clues as to the evolution of the β-trefoil family, suggesting a folding/stability role for the β-strands and a functional role for turn regions. This viewpoint can also guide de novo protein design of β-trefoil proteins having novel functionality.
Collapse
Affiliation(s)
- Michael Blaber
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
9
|
Mayse LA, Imran A, Larimi MG, Cosgrove MS, Wolfe AJ, Movileanu L. Disentangling the recognition complexity of a protein hub using a nanopore. Nat Commun 2022; 13:978. [PMID: 35190547 PMCID: PMC8861093 DOI: 10.1038/s41467-022-28465-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/25/2022] [Indexed: 11/12/2022] Open
Abstract
WD40 repeat proteins are frequently involved in processing cell signaling and scaffolding large multi-subunit machineries. Despite their significance in physiological and disease-like conditions, their reversible interactions with other proteins remain modestly examined. Here, we show the development and validation of a protein nanopore for the detection and quantification of WD40 repeat protein 5 (WDR5), a chromatin-associated hub involved in epigenetic regulation of histone methylation. Our nanopore sensor is equipped with a 14-residue Win motif of mixed lineage leukemia 4 methyltransferase (MLL4Win), a WDR5 ligand. Our approach reveals a broad dynamic range of MLL4Win-WDR5 interactions and three distant subpopulations of binding events, representing three modes of protein recognition. The three binding events are confirmed as specific interactions using a weakly binding WDR5 derivative and various environmental contexts. These outcomes demonstrate the substantial sensitivity of our nanopore sensor, which can be utilized in protein analytics. Nanopores are powerful tools for sampling protein-peptide interactions. Here, the authors convert a protein-based nanopore into a sensitive biosensor to characterize the complex binding of WDR5 protein to a 14-residue ligand.
Collapse
|
10
|
Mylemans B, Lee XY, Laier I, Helsen C, Voet ARD. Structure and stability of the designer protein WRAP-T and its permutants. Sci Rep 2021; 11:18867. [PMID: 34552189 PMCID: PMC8458387 DOI: 10.1038/s41598-021-98391-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/01/2021] [Indexed: 11/29/2022] Open
Abstract
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document}β-Propeller proteins are common natural disc-like pseudo-symmetric proteins that contain multiple repeats (‘blades’) each consisting of a 4-stranded anti-parallel \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document}β-sheet. So far, 4- to 12-bladed \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document}β-propellers have been discovered in nature showing large functional and sequential variation. Using computational design approaches, we created perfectly symmetric \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document}β-propellers out of natural pseudo-symmetric templates. These proteins are useful tools to study protein evolution of this very diverse fold. While the 7-bladed architecture is the most common, no symmetric 7-bladed monomer has been created and characterized so far. Here we describe such a engineered protein, based on a highly symmetric natural template, and test the effects of circular permutation on its stability. Geometrical analysis of this protein and other artificial symmetrical proteins reveals no systematic constraint that could be used to help in engineering of this fold, and suggests sequence constraints unique to each \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document}β-propeller sub-family.
Collapse
Affiliation(s)
- Bram Mylemans
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, 3001, Leuven, Belgium
| | - Xiao Yin Lee
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000, Leuven, Belgium
| | - Ina Laier
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, 3001, Leuven, Belgium
| | - Christine Helsen
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000, Leuven, Belgium
| | - Arnout R D Voet
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, 3001, Leuven, Belgium.
| |
Collapse
|
11
|
Heizinger L, Merkl R. Evidence for the preferential reuse of sub-domain motifs in primordial protein folds. Proteins 2021; 89:1167-1179. [PMID: 33957009 DOI: 10.1002/prot.26089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/15/2021] [Accepted: 04/28/2021] [Indexed: 11/06/2022]
Abstract
A comparison of protein backbones makes clear that not more than approximately 1400 different folds exist, each specifying the three-dimensional topology of a protein domain. Large proteins are composed of specific domain combinations and many domains can accommodate different functions. These findings confirm that the reuse of domains is key for the evolution of multi-domain proteins. If reuse was also the driving force for domain evolution, ancestral fragments of sub-domain size exist that are shared between domains possessing significantly different topologies. For the fully automated detection of putatively ancestral motifs, we developed the algorithm Fragstatt that compares proteins pairwise to identify fragments, that is, instantiations of the same motif. To reach maximal sensitivity, Fragstatt compares sequences by means of cascaded alignments of profile Hidden Markov Models. If the fragment sequences are sufficiently similar, the program determines and scores the structural concordance of the fragments. By analyzing a comprehensive set of proteins from the CATH database, Fragstatt identified 12 532 partially overlapping and structurally similar motifs that clustered to 134 unique motifs. The dissemination of these motifs is limited: We found only two domain topologies that contain two different motifs and generally, these motifs occur in not more than 18% of the CATH topologies. Interestingly, motifs are enriched in topologies that are considered ancestral. Thus, our findings suggest that the reuse of sub-domain sized fragments was relevant in early phases of protein evolution and became less important later on.
Collapse
Affiliation(s)
- Leonhard Heizinger
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Rainer Merkl
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| |
Collapse
|
12
|
Pereira J, Lupas AN. The VCBS superfamily forms a third supercluster of β-propellers that includes tachylectin and integrins. Bioinformatics 2021; 36:5618-5622. [PMID: 33416871 PMCID: PMC8023676 DOI: 10.1093/bioinformatics/btaa1085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 01/15/2023] Open
Abstract
MOTIVATION β-Propellers are found in great variety across all kingdoms of life. They assume many cellular roles, primarily as scaffolds for macromolecular interactions and catalysis. Despite their diversity, most β-propeller families clearly originated by amplification from the same ancient peptide-the "blade". In cluster analyses, β-propellers of the WD40 superfamily always formed the largest group, to which some important families, such as the α-integrin, Asp-box, and glycoside hydrolase β-propellers connected weakly. Motivated by the dramatic growth of sequence databases we revisited these connections, with a special focus on VCBS-like β-propellers, which have not been analysed for their evolutionary relationships so far. RESULTS We found that VCBS-like form a supercluster with integrin-like β-propellers and tachylectins, clearly delimited from the superclusters formed by WD40 and Asp-Box β-propellers. Connections between the three superclusters are made mainly through PQQ-like β-propeller. Our results present a new, greatly expanded view of the β-propeller classification landscape. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Joana Pereira
- Department of Protein Evolution, Max-Planck-Institute for Developmental Biology, Tübingen, 72076, Germany
| | - Andrei N Lupas
- Department of Protein Evolution, Max-Planck-Institute for Developmental Biology, Tübingen, 72076, Germany
| |
Collapse
|
13
|
Mylemans B, Voet AR, Tame JR. The Taming of the Screw: the natural and artificial development of β-propeller proteins. Curr Opin Struct Biol 2020; 68:48-54. [PMID: 33373773 DOI: 10.1016/j.sbi.2020.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/09/2020] [Accepted: 11/27/2020] [Indexed: 12/17/2022]
Abstract
Many proteins are found to possess repeated structural elements, which hint at ancient evolutionary origins and ongoing evolutionary processes. β-propeller proteins are a large family of such proteins, and a popular focus of structural analysis. This review highlights recent work to understand how they arose, and how they have developed into one of the most successful of all protein folds.
Collapse
Affiliation(s)
- Bram Mylemans
- Laboraotry for biomolecular modelling and design, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium
| | - Arnout Rd Voet
- Protein Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Suehiro 1-7-29, Tsurumi, Yokohama 230-0045, Japan
| | - Jeremy Rh Tame
- Protein Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Suehiro 1-7-29, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
14
|
Vrancken JPM, Tame JRH, Voet ARD. Development and applications of artificial symmetrical proteins. Comput Struct Biotechnol J 2020; 18:3959-3968. [PMID: 33335692 PMCID: PMC7734218 DOI: 10.1016/j.csbj.2020.10.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 12/28/2022] Open
Abstract
Since the determination of the first molecular models of proteins there has been interest in creating proteins artificially, but such methods have only become widely successful in the last decade. Gradual improvements over a long period of time have now yielded numerous examples of non-natural proteins, many of which are built from repeated elements. In this review we discuss the design of such symmetrical proteins and their various applications in chemistry and medicine.
Collapse
Affiliation(s)
- Jeroen P M Vrancken
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium
| | - Jeremy R H Tame
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Arnout R D Voet
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium
| |
Collapse
|
15
|
Noda-Garcia L, Tawfik DS. Enzyme evolution in natural products biosynthesis: target- or diversity-oriented? Curr Opin Chem Biol 2020; 59:147-154. [PMID: 32771972 DOI: 10.1016/j.cbpa.2020.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Natural product biosynthesis (NPB) is the Panda's Thumb of evolutionary biochemistry. Arm races between organisms, and ever-changing environments, result in relentless innovation. This review focusses on enzyme evolution in NPB. First, we review cases of de novo emergence, whereby a completely new enzymatic activity arose in a ligand-binding protein, or a new enzyme emerged including a completely new scaffold. Second, we briefly review the current models for enzyme evolution, and how they explain the inherent promiscuity of NPB enzymes and their tendency to produce multiple related products. We thus suggest that NPB enzymes a priori evolved to generate a specific product; they are, however, trapped in a multifunctional, generalist evolutionary state and thereby produce a diversity of products.
Collapse
Affiliation(s)
- Lianet Noda-Garcia
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dan S Tawfik
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
16
|
Mylemans B, Laier I, Kamata K, Akashi S, Noguchi H, Tame JRH, Voet ARD. Structural plasticity of a designer protein sheds light on β-propeller protein evolution. FEBS J 2020; 288:530-545. [PMID: 32343866 DOI: 10.1111/febs.15347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/07/2020] [Accepted: 04/23/2020] [Indexed: 11/26/2022]
Abstract
β-propeller proteins are common in nature, where they are observed to adopt 4- to 10-fold internal rotational pseudo-symmetry. This size diversity can be explained by the evolutionary process of gene duplication and fusion. In this study, we investigated a distorted β-propeller protein, an apparent intermediate between two symmetries. From this template, we created a perfectly symmetric 9-bladed β-propeller named Cake, using computational design and ancestral sequence reconstruction. The designed repeat sequence was found to be capable of generating both 8-fold and 9-fold propellers which are highly stable. Cake variants with 2-10 identical copies of the repeat sequence were characterised by X-ray crystallography and in solution. They were found to be highly stable, and to self-assemble into 8- or 9-fold symmetrical propellers. These findings show that the β-propeller fold allows sufficient structural plasticity to permit a given blade to assemble different forms, a transition from even to odd changes in blade number, and provide a potential explanation for the wide diversity of repeat numbers observed in natural propeller proteins. DATABASE: Structural data are available in Protein Data Bank database under the accession numbers 6TJB, 6TJC, 6TJD, 6TJE, 6TJF, 6TJG, 6TJH and 6TJI.
Collapse
Affiliation(s)
| | - Ina Laier
- Department of Chemistry, KU Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
17
|
Afanasieva E, Chaudhuri I, Martin J, Hertle E, Ursinus A, Alva V, Hartmann MD, Lupas AN. Structural diversity of oligomeric β-propellers with different numbers of identical blades. eLife 2019; 8:49853. [PMID: 31613220 PMCID: PMC6805158 DOI: 10.7554/elife.49853] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/25/2019] [Indexed: 12/29/2022] Open
Abstract
β-Propellers arise through the amplification of a supersecondary structure element called a blade. This process produces toroids of between four and twelve repeats, which are almost always arranged sequentially in a single polypeptide chain. We found that new propellers evolve continuously by amplification from single blades. We therefore investigated whether such nascent propellers can fold as homo-oligomers before they have been fully amplified within a single chain. One- to six-bladed building blocks derived from two seven-bladed WD40 propellers yielded stable homo-oligomers with six to nine blades, depending on the size of the building block. High-resolution structures for tetramers of two blades, trimers of three blades, and dimers of four and five blades, respectively, show structurally diverse propellers and include a novel fold, highlighting the inherent flexibility of the WD40 blade. Our data support the hypothesis that subdomain-sized fragments can provide structural versatility in the evolution of new proteins.
Collapse
Affiliation(s)
- Evgenia Afanasieva
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Indronil Chaudhuri
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Jörg Martin
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eva Hertle
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Astrid Ursinus
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Andrei N Lupas
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|