1
|
Ray A, Gordus A. Nonlinear integration of sensory and motor inputs by a single neuron in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.05.647390. [PMID: 40236064 PMCID: PMC11996571 DOI: 10.1101/2025.04.05.647390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Context is important for sensory integration. Rather than simply considering sensory information independently, the brain integrates this information to inform behavior, however identifying this property at the single-neuron level is not trivial. In Caenorhabditis elegans , the paired interneurons AIBL and AIBR (AIB) have a compartmentalized organization of presynapses along its singular process. Sensory and sensory interneurons primarily synapse along the proximal process, while motor and motor interneurons synapse along the distal process. Since this neuron has graded potentials, the simplest model for AIB integration is simply a convolution of its presynaptic inputs. Through a series of experiments to manipulate sensory and motor input onto AIB, we find that while AIB activity is primarily a convolution of motor inputs, its sensory responses are not integrated independently. Instead, the gain in sensory input is a function of the temporal dynamics of motor input. Sensory information is reinforced when it matches the expected behavioral response. We find this property is also observed in other whole-brain datasets. Context-dependent behavioral responses to sensory input is well-documented. Here, we show this property can be localized to single neurons in the worm nervous system. This integration property likely plays an important role in context-dependent decision-making, as well as the highly variable dynamics of the worm nervous system.
Collapse
|
2
|
Dunn RL, Costello C, Borchardt JM, Sprague DY, Chiu GC, Miller JM, L’Etoile N, Kato S. Relative phase of distributed oscillatory dynamics implements a working memory in a simple brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.11.607402. [PMID: 39149308 PMCID: PMC11326443 DOI: 10.1101/2024.08.11.607402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
We report the existence of a working memory system in the nematode C. elegans that is employed for deferred action in a sensory-guided decision-making process. We find that the turn direction of discrete reorientations during navigation is under sensory-guided control and relies on a working memory that can persist over an intervening behavioral sequence. This memory system is implemented by the phasic interaction of two distributed oscillatory dynamical components. The interaction of oscillatory neural ensembles may be a conserved primitive of cognition across the animal kingdom.
Collapse
Affiliation(s)
- Raymond L. Dunn
- Weill Institute of Neurosciences, University of California San Francisco
| | - Caitriona Costello
- Weill Institute of Neurosciences, University of California San Francisco
| | | | - Daniel Y. Sprague
- Weill Institute of Neurosciences, University of California San Francisco
| | - Grace C. Chiu
- Weill Institute of Neurosciences, University of California San Francisco
| | - Julia M. Miller
- Department of Cell and Tissue Biology, University of California San Francisco
| | - Noelle L’Etoile
- Department of Cell and Tissue Biology, University of California San Francisco
| | - Saul Kato
- Weill Institute of Neurosciences, University of California San Francisco
| |
Collapse
|
3
|
Lee SA, Cho Y, Schafer WR, Lu H. Dynamic temperature control in microfluidics for in vivo imaging of cold-sensing in C. elegans. Biophys J 2024; 123:947-956. [PMID: 38449311 PMCID: PMC11052694 DOI: 10.1016/j.bpj.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/26/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
The ability to perceive temperature is crucial for most animals. It enables them to maintain their body temperature and swiftly react to noxiously cold or hot objects. Caenorhabditis elegans is a powerful genetic model for the study of thermosensation as its simple nervous system is well characterized and its transparent body is suited for in vivo functional imaging of neurons. The behavior triggered by experience-dependent thermosensation has been well studied in C. elegans under temperature-gradient environments. However, how C. elegans senses temperature via its nervous system is not well understood due to the limitations of currently available technologies. One major bottleneck is the difficulty in creating fast temperature changes, especially cold stimuli. Here, we developed a microfluidic-based platform that allowed the in vivo functional imaging of C. elegans responding to well-controlled temporally varying temperature stimulation by rapidly switching fluid streams at different temperatures. We used computational models to enable rational design and optimization of experimental conditions. We validated the design and utility of our system with studies of the functional role of thermosensory neurons. We showed that the responses of PVD polymodal nociceptor neurons observed in previous studies can be recapitulated. Further, we highlighted how this platform may be used to dissect neuronal circuits with an example of activity recording in PVC interneurons. Both of these neuron types show sensitization phenotypes. We envision that both the engineered system and the findings in this work will spur further studies of molecular and cellular mechanisms underlying cold-sensing through the nervous system.
Collapse
Affiliation(s)
- Sol Ah Lee
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta Georgia
| | - Yongmin Cho
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta Georgia
| | - William R Schafer
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta Georgia.
| |
Collapse
|
4
|
Meng J, Ahamed T, Yu B, Hung W, EI Mouridi S, Wang Z, Zhang Y, Wen Q, Boulin T, Gao S, Zhen M. A tonically active master neuron modulates mutually exclusive motor states at two timescales. SCIENCE ADVANCES 2024; 10:eadk0002. [PMID: 38598630 PMCID: PMC11006214 DOI: 10.1126/sciadv.adk0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
Continuity of behaviors requires animals to make smooth transitions between mutually exclusive behavioral states. Neural principles that govern these transitions are not well understood. Caenorhabditis elegans spontaneously switch between two opposite motor states, forward and backward movement, a phenomenon thought to reflect the reciprocal inhibition between interneurons AVB and AVA. Here, we report that spontaneous locomotion and their corresponding motor circuits are not separately controlled. AVA and AVB are neither functionally equivalent nor strictly reciprocally inhibitory. AVA, but not AVB, maintains a depolarized membrane potential. While AVA phasically inhibits the forward promoting interneuron AVB at a fast timescale, it maintains a tonic, extrasynaptic excitation on AVB over the longer timescale. We propose that AVA, with tonic and phasic activity of opposite polarities on different timescales, acts as a master neuron to break the symmetry between the underlying forward and backward motor circuits. This master neuron model offers a parsimonious solution for sustained locomotion consisted of mutually exclusive motor states.
Collapse
Affiliation(s)
- Jun Meng
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Tosif Ahamed
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Bin Yu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wesley Hung
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Sonia EI Mouridi
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR 5284, INSERM U1314, 69008 Lyon, France
| | - Zezhen Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yongning Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Quan Wen
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Thomas Boulin
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR 5284, INSERM U1314, 69008 Lyon, France
| | - Shangbang Gao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mei Zhen
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
5
|
Nicoletti M, Chiodo L, Loppini A, Liu Q, Folli V, Ruocco G, Filippi S. Biophysical modeling of the whole-cell dynamics of C. elegans motor and interneurons families. PLoS One 2024; 19:e0298105. [PMID: 38551921 PMCID: PMC10980225 DOI: 10.1371/journal.pone.0298105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/13/2024] [Indexed: 04/01/2024] Open
Abstract
The nematode Caenorhabditis elegans is a widely used model organism for neuroscience. Although its nervous system has been fully reconstructed, the physiological bases of single-neuron functioning are still poorly explored. Recently, many efforts have been dedicated to measuring signals from C. elegans neurons, revealing a rich repertoire of dynamics, including bistable responses, graded responses, and action potentials. Still, biophysical models able to reproduce such a broad range of electrical responses lack. Realistic electrophysiological descriptions started to be developed only recently, merging gene expression data with electrophysiological recordings, but with a large variety of cells yet to be modeled. In this work, we contribute to filling this gap by providing biophysically accurate models of six classes of C. elegans neurons, the AIY, RIM, and AVA interneurons, and the VA, VB, and VD motor neurons. We test our models by comparing computational and experimental time series and simulate knockout neurons, to identify the biophysical mechanisms at the basis of inter and motor neuron functioning. Our models represent a step forward toward the modeling of C. elegans neuronal networks and virtual experiments on the nematode nervous system.
Collapse
Affiliation(s)
- Martina Nicoletti
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
- Center for Life Nano- & Neuro-Science (CLN2S@Sapienza), Istituto Italiano di Tecnologia, Rome, Italy
| | - Letizia Chiodo
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Alessandro Loppini
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Qiang Liu
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Viola Folli
- Center for Life Nano- & Neuro-Science (CLN2S@Sapienza), Istituto Italiano di Tecnologia, Rome, Italy
- D-tails s.r.l., Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano- & Neuro-Science (CLN2S@Sapienza), Istituto Italiano di Tecnologia, Rome, Italy
| | - Simonetta Filippi
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
- Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO), Florence, Italy
- ICRANet—International Center for Relativistic Astrophysics Network, Pescara, Italy
| |
Collapse
|
6
|
Boor SA, Meisel JD, Kim DH. Neuroendocrine gene expression coupling of interoceptive bacterial food cues to foraging behavior of C. elegans. eLife 2024; 12:RP91120. [PMID: 38231572 PMCID: PMC10945577 DOI: 10.7554/elife.91120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
Animal internal state is modulated by nutrient intake, resulting in behavioral responses to changing food conditions. The neural mechanisms by which internal states are generated and maintained are not well understood. Here, we show that in the nematode Caenorhabditis elegans, distinct cues from bacterial food - interoceptive signals from the ingestion of bacteria and gustatory molecules sensed from nearby bacteria - act antagonistically on the expression of the neuroendocrine TGF-beta ligand DAF-7 from the ASJ pair of sensory neurons to modulate foraging behavior. A positive-feedback loop dependent on the expression of daf-7 from the ASJ neurons acts to promote transitions between roaming and dwelling foraging states and influence the persistence of roaming states. SCD-2, the C. elegans ortholog of mammalian anaplastic lymphoma kinase (ALK), which has been implicated in the central control of metabolism of mammals, functions in the AIA interneurons to regulate foraging behavior and cell-non-autonomously control the expression of DAF-7 from the ASJ neurons. Our data establish how a dynamic neuroendocrine daf-7 expression feedback loop regulated by SCD-2 functions to couple sensing and ingestion of bacterial food to foraging behavior. We further suggest that this neuroendocrine feedback loop underlies previously characterized exploratory behaviors in C. elegans. Our data suggest that the expression of daf-7 from the ASJ neurons contributes to and is correlated with an internal state of 'unmet need' that regulates exploratory foraging behavior in response to bacterial cues in diverse physiological contexts.
Collapse
Affiliation(s)
- Sonia A Boor
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical SchoolBostonUnited States
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Joshua D Meisel
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
| | - Dennis H Kim
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical SchoolBostonUnited States
| |
Collapse
|
7
|
Boor SA, Meisel JD, Kim DH. Neuroendocrine Gene Expression Coupling of Interoceptive Bacterial Food Cues to Foraging Behavior of C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.15.549072. [PMID: 37503081 PMCID: PMC10369937 DOI: 10.1101/2023.07.15.549072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Animal internal state is modulated by nutrient intake, resulting in behavioral responses to changing food conditions. The neural mechanisms by which internal states are generated and maintained are not well understood. Here, we show that in the nematode Caenorhabditis elegans, distinct cues from bacterial food - interoceptive signals from the ingestion of bacteria and gustatory molecules sensed from nearby bacteria - act antagonistically on the expression of the neuroendocrine TGF-beta ligand DAF-7 from the ASJ pair of sensory neurons to modulate foraging behavior. A positive-feedback loop dependent on the expression of daf-7 from the ASJ neurons acts to promote transitions between roaming and dwelling foraging states and influence the persistence of roaming states. SCD-2, the C. elegans ortholog of mammalian Anaplastic Lymphoma Kinase (ALK), which has been implicated in the central control of metabolism of mammals, functions in the AIA interneurons to regulate foraging behavior and cell-non-autonomously control the expression of DAF-7 from the ASJ neurons. Our data establish how a dynamic neuroendocrine daf-7 expression feedback loop regulated by SCD-2 functions to couple sensing and ingestion of bacterial food to foraging behavior. We further suggest that this neuroendocrine feedback loop underlies previously characterized exploratory behaviors in C. elegans. Our data suggest that the expression of daf-7 from the ASJ neurons contributes to and is correlated with an internal state of "unmet need" that regulates exploratory foraging behavior in response to bacterial cues in diverse physiological contexts.
Collapse
Affiliation(s)
- Sonia A. Boor
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Joshua D. Meisel
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Dennis H. Kim
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
8
|
Piatkevich KD, Boyden ES. Optogenetic control of neural activity: The biophysics of microbial rhodopsins in neuroscience. Q Rev Biophys 2023; 57:e1. [PMID: 37831008 DOI: 10.1017/s0033583523000033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Optogenetics, the use of microbial rhodopsins to make the electrical activity of targeted neurons controllable by light, has swept through neuroscience, enabling thousands of scientists to study how specific neuron types contribute to behaviors and pathologies, and how they might serve as novel therapeutic targets. By activating a set of neurons, one can probe what functions they can initiate or sustain, and by silencing a set of neurons, one can probe the functions they are necessary for. We here review the biophysics of these molecules, asking why they became so useful in neuroscience for the study of brain circuitry. We review the history of the field, including early thinking, early experiments, applications of optogenetics, pre-optogenetics targeted neural control tools, and the history of discovering and characterizing microbial rhodopsins. We then review the biophysical attributes of rhodopsins that make them so useful to neuroscience - their classes and structure, their photocycles, their photocurrent magnitudes and kinetics, their action spectra, and their ion selectivity. Our hope is to convey to the reader how specific biophysical properties of these molecules made them especially useful to neuroscientists for a difficult problem - the control of high-speed electrical activity, with great precision and ease, in the brain.
Collapse
Affiliation(s)
- Kiryl D Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Edward S Boyden
- McGovern Institute and Koch Institute, Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, K. Lisa Yang Center for Bionics and Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| |
Collapse
|
9
|
Bechtel W, Bich L. Using neurons to maintain autonomy: Learning from C. elegans. Biosystems 2023; 232:105017. [PMID: 37666409 DOI: 10.1016/j.biosystems.2023.105017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Understanding how biological organisms are autonomous-maintain themselves far from equilibrium through their own activities-requires understanding how they regulate those activities. In multicellular animals, such control can be exercised either via endocrine signaling through the vasculature or via neurons. In C. elegans this control is exercised by a well-delineated relatively small but distributed nervous system that relies on both chemical and electric transmission of signals. This system provides resources to integrate information from multiple sources as needed to maintain the organism. Especially important for the exercise of neural control are neuromodulators, which we present as setting agendas for control through more traditional electrical signaling. To illustrate how the C. elegans nervous system integrates multiple sources of information in controlling activities important for autonomy, we focus on feeding behavior and responses to adverse conditions. We conclude by considering how a distributed nervous system without a centralized controller is nonetheless adequate for autonomy.
Collapse
Affiliation(s)
- William Bechtel
- Department of Philosophy; University of California, San Diego; La Jolla, CA 92093-0119, USA.
| | - Leonardo Bich
- IAS-Research Centre for Life, Mind and Society; Department of Philosophy; University of the Basque Country (UPV/EHU); Avenida de Tolosa 70; Donostia-San Sebastian, 20018; Spain.
| |
Collapse
|
10
|
Peng JY, Liu X, Zeng XT, Hao Y, Zhang JH, Li Q, Tong XJ. Early pheromone perception remodels neurodevelopment and accelerates neurodegeneration in adult C. elegans. Cell Rep 2023; 42:112598. [PMID: 37289584 DOI: 10.1016/j.celrep.2023.112598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/24/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023] Open
Abstract
Age-associated neurodegenerative disorders such as Parkinson's and Alzheimer's diseases are mainly caused by protein aggregation. The etiologies of these neurodegenerative diseases share a chemical environment. However, how chemical cues modulate neurodegeneration remains unclear. Here, we found that in Caenorhabditis elegans, exposure to pheromones in the L1 stage accelerates neurodegeneration in adults. Perception of pheromones ascr#3 and ascr#10 is mediated by chemosensory neurons ASK and ASI. ascr#3 perceived by G protein-coupled receptor (GPCR) DAF-38 in ASK activates glutamatergic transmission into AIA interneurons. ascr#10 perceived by GPCR STR-2 in ASI activates the secretion of neuropeptide NLP-1, which binds to the NPR-11 receptor in AIA. Activation of both ASI and ASK is required and sufficient to remodel neurodevelopment via AIA, which triggers insulin-like signaling and inhibits autophagy in adult neurons non-cell-autonomously. Our work reveals how pheromone perception at the early developmental stage modulates neurodegeneration in adults and provides insights into how the external environment impacts neurodegenerative diseases.
Collapse
Affiliation(s)
- Jing-Yi Peng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuqing Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xian-Ting Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yue Hao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Hui Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Lingang Laboratory, Shanghai 200031, China
| | - Qian Li
- Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; Center for Brain Science, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Department of Anatomy and Physiology, Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health in Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia-Jing Tong
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
11
|
Porta-de-la-Riva M, Gonzalez AC, Sanfeliu-Cerdán N, Karimi S, Malaiwong N, Pidde A, Morales-Curiel LF, Fernandez P, González-Bolívar S, Hurth C, Krieg M. Neural engineering with photons as synaptic transmitters. Nat Methods 2023; 20:761-769. [PMID: 37024651 DOI: 10.1038/s41592-023-01836-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 03/03/2023] [Indexed: 04/08/2023]
Abstract
Neuronal computation is achieved through connections of individual neurons into a larger network. To expand the repertoire of endogenous cellular communication, we developed a synthetic, photon-assisted synaptic transmission (PhAST) system. PhAST is based on luciferases and channelrhodopsins that enable the transmission of a neuronal state across space, using photons as neurotransmitters. PhAST overcomes synaptic barriers and rescues the behavioral deficit of a glutamate mutant with conditional, calcium-triggered photon emission between two neurons of the Caenorhabditis elegans nociceptive avoidance circuit. To demonstrate versatility and flexibility, we generated de novo synaptic transmission between two unconnected cells in a sexually dimorphic neuronal circuit, suppressed endogenous nocifensive response through activation of an anion channelrhodopsin and switched attractive to aversive behavior in an olfactory circuit. Finally, we applied PhAST to dissect the calcium dynamics of the temporal pattern generator in a motor circuit for ovipositioning. In summary, we established photon-based synaptic transmission that facilitates the modification of animal behavior.
Collapse
Affiliation(s)
| | | | | | - Shadi Karimi
- Institut de Ciències Fotòniques, Castelldefels, Spain
| | | | | | | | | | | | - Cedric Hurth
- Institut de Ciències Fotòniques, Castelldefels, Spain
| | - Michael Krieg
- Institut de Ciències Fotòniques, Castelldefels, Spain.
| |
Collapse
|
12
|
Lin A, Qin S, Casademunt H, Wu M, Hung W, Cain G, Tan NZ, Valenzuela R, Lesanpezeshki L, Venkatachalam V, Pehlevan C, Zhen M, Samuel AD. Functional imaging and quantification of multineuronal olfactory responses in C. elegans. SCIENCE ADVANCES 2023; 9:eade1249. [PMID: 36857454 PMCID: PMC9977185 DOI: 10.1126/sciadv.ade1249] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/01/2023] [Indexed: 05/21/2023]
Abstract
Many animals perceive odorant molecules by collecting information from ensembles of olfactory neurons, where each neuron uses receptors that are tuned to recognize certain odorant molecules with different binding affinity. Olfactory systems are able, in principle, to detect and discriminate diverse odorants using combinatorial coding strategies. We have combined microfluidics and multineuronal imaging to study the ensemble-level olfactory representations at the sensory periphery of the nematode Caenorhabditis elegans. The collective activity of C. elegans chemosensory neurons reveals high-dimensional representations of olfactory information across a broad space of odorant molecules. We reveal diverse tuning properties and dose-response curves across chemosensory neurons and across odorants. We describe the unique contribution of each sensory neuron to an ensemble-level code for volatile odorants. We show that a natural stimuli, a set of nematode pheromones, are also encoded by the sensory ensemble. The integrated activity of the C. elegans chemosensory neurons contains sufficient information to robustly encode the intensity and identity of diverse chemical stimuli.
Collapse
Affiliation(s)
- Albert Lin
- Department of Physics, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Shanshan Qin
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Helena Casademunt
- Department of Physics, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Min Wu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Wesley Hung
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Gregory Cain
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Nicolas Z. Tan
- Department of Physics, Northeastern University, Boston, MA, USA
| | | | - Leila Lesanpezeshki
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | - Cengiz Pehlevan
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Aravinthan D.T. Samuel
- Department of Physics, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
13
|
Naudin L, Raison-Aubry L, Buhry L. A general pattern of non-spiking neuron dynamics under the effect of potassium and calcium channel modifications. J Comput Neurosci 2023; 51:173-186. [PMID: 36371576 DOI: 10.1007/s10827-022-00840-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/08/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Electrical activity of excitable cells results from ion exchanges through cell membranes, so that genetic or epigenetic changes in genes encoding ion channels are likely to affect neuronal electrical signaling throughout the brain. There is a large literature on the effect of variations in ion channels on the dynamics of spiking neurons that represent the main type of neurons found in the vertebrate nervous systems. Nevertheless, non-spiking neurons are also ubiquitous in many nervous tissues and play a critical role in the processing of some sensory systems. To our knowledge, however, how conductance variations affect the dynamics of non-spiking neurons has never been assessed. Based on experimental observations reported in the biological literature and on mathematical considerations, we first propose a phenotypic classification of non-spiking neurons. Then, we determine a general pattern of the phenotypic evolution of non-spiking neurons as a function of changes in calcium and potassium conductances. Furthermore, we study the homeostatic compensatory mechanisms of ion channels in a well-posed non-spiking retinal cone model. We show that there is a restricted range of ion conductance values for which the behavior and phenotype of the neuron are maintained. Finally, we discuss the implications of the phenotypic changes of individual cells at the level of neuronal network functioning of the C. elegans worm and the retina, which are two non-spiking nervous tissues composed of neurons with various phenotypes.
Collapse
Affiliation(s)
- Loïs Naudin
- Laboratoire Lorrain de Recherche en Informatique et ses Applications, CNRS, Université de Lorraine, Nancy, France.
| | - Laetitia Raison-Aubry
- Laboratoire Lorrain de Recherche en Informatique et ses Applications, CNRS, Université de Lorraine, Nancy, France
| | - Laure Buhry
- Laboratoire Lorrain de Recherche en Informatique et ses Applications, CNRS, Université de Lorraine, Nancy, France.
| |
Collapse
|
14
|
Yu YV, Xue W, Chen Y. Multisensory Integration in Caenorhabditis elegans in Comparison to Mammals. Brain Sci 2022; 12:brainsci12101368. [PMID: 36291302 PMCID: PMC9599712 DOI: 10.3390/brainsci12101368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Multisensory integration refers to sensory inputs from different sensory modalities being processed simultaneously to produce a unitary output. Surrounded by stimuli from multiple modalities, animals utilize multisensory integration to form a coherent and robust representation of the complex environment. Even though multisensory integration is fundamentally essential for animal life, our understanding of the underlying mechanisms, especially at the molecular, synaptic and circuit levels, remains poorly understood. The study of sensory perception in Caenorhabditis elegans has begun to fill this gap. We have gained a considerable amount of insight into the general principles of sensory neurobiology owing to C. elegans’ highly sensitive perceptions, relatively simple nervous system, ample genetic tools and completely mapped neural connectome. Many interesting paradigms of multisensory integration have been characterized in C. elegans, for which input convergence occurs at the sensory neuron or the interneuron level. In this narrative review, we describe some representative cases of multisensory integration in C. elegans, summarize the underlying mechanisms and compare them with those in mammalian systems. Despite the differences, we believe C. elegans is able to provide unique insights into how processing and integrating multisensory inputs can generate flexible and adaptive behaviors. With the emergence of whole brain imaging, the ability of C. elegans to monitor nearly the entire nervous system may be crucial for understanding the function of the brain as a whole.
Collapse
Affiliation(s)
- Yanxun V. Yu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430070, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430070, China
- Correspondence: or
| | - Weikang Xue
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430070, China
| | - Yuanhua Chen
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430070, China
| |
Collapse
|
15
|
Jiang J, Su Y, Zhang R, Li H, Tao L, Liu Q. C. elegans enteric motor neurons fire synchronized action potentials underlying the defecation motor program. Nat Commun 2022; 13:2783. [PMID: 35589790 PMCID: PMC9120479 DOI: 10.1038/s41467-022-30452-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
C. elegans neurons were thought to be non-spiking until our recent discovery of action potentials in the sensory neuron AWA; however, the extent to which the C. elegans nervous system relies on analog or digital coding is unclear. Here we show that the enteric motor neurons AVL and DVB fire synchronous all-or-none calcium-mediated action potentials following the intestinal pacemaker during the rhythmic C. elegans defecation behavior. AVL fires unusual compound action potentials with each depolarizing calcium spike mediated by UNC-2 followed by a hyperpolarizing potassium spike mediated by a repolarization-activated potassium channel EXP-2. Simultaneous behavior tracking and imaging in free-moving animals suggest that action potentials initiated in AVL propagate along its axon to activate precisely timed DVB action potentials through the INX-1 gap junction. This work identifies a novel circuit of spiking neurons in C. elegans that uses digital coding for long-distance communication and temporal synchronization underlying reliable behavioral rhythm.
Collapse
Affiliation(s)
- Jingyuan Jiang
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yifan Su
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ruilin Zhang
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
- Yuanpei College, Peking University, Beijing, 100871, China
| | - Haiwen Li
- LMAM, School of Mathematical Sciences, Peking University, Beijing, 100871, China
| | - Louis Tao
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Qiang Liu
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY, 10065, USA.
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR.
| |
Collapse
|
16
|
Naudin L, Jiménez Laredo JL, Liu Q, Corson N. Systematic generation of biophysically detailed models with generalization capability for non-spiking neurons. PLoS One 2022; 17:e0268380. [PMID: 35560186 PMCID: PMC9106219 DOI: 10.1371/journal.pone.0268380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/28/2022] [Indexed: 11/18/2022] Open
Abstract
Unlike spiking neurons which compress continuous inputs into digital signals for transmitting information via action potentials, non-spiking neurons modulate analog signals through graded potential responses. Such neurons have been found in a large variety of nervous tissues in both vertebrate and invertebrate species, and have been proven to play a central role in neuronal information processing. If general and vast efforts have been made for many years to model spiking neurons using conductance-based models (CBMs), very few methods have been developed for non-spiking neurons. When a CBM is built to characterize the neuron behavior, it should be endowed with generalization capabilities (i.e. the ability to predict acceptable neuronal responses to different novel stimuli not used during the model’s building). Yet, since CBMs contain a large number of parameters, they may typically suffer from a lack of such a capability. In this paper, we propose a new systematic approach based on multi-objective optimization which builds general non-spiking models with generalization capabilities. The proposed approach only requires macroscopic experimental data from which all the model parameters are simultaneously determined without compromise. Such an approach is applied on three non-spiking neurons of the nematode Caenorhabditis elegans (C. elegans), a well-known model organism in neuroscience that predominantly transmits information through non-spiking signals. These three neurons, arbitrarily labeled by convention as RIM, AIY and AFD, represent, to date, the three possible forms of non-spiking neuronal responses of C. elegans.
Collapse
Affiliation(s)
- Loïs Naudin
- Department of Applied Mathematics, Normandie University, Le Havre, Normandie, France
- * E-mail:
| | | | - Qiang Liu
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong, SAR, China
| | - Nathalie Corson
- Department of Applied Mathematics, Normandie University, Le Havre, Normandie, France
| |
Collapse
|
17
|
Flavell SW, Gordus A. Dynamic functional connectivity in the static connectome of Caenorhabditis elegans. Curr Opin Neurobiol 2022; 73:102515. [PMID: 35183877 PMCID: PMC9621599 DOI: 10.1016/j.conb.2021.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 01/01/2023]
Abstract
A hallmark of adaptive behavior is the ability to flexibly respond to sensory cues. To understand how neural circuits implement this flexibility, it is critical to resolve how a static anatomical connectome can be modulated such that functional connectivity in the network can be dynamically regulated. Here, we review recent work in the roundworm Caenorhabditis elegans on this topic. EM studies have mapped anatomical connectomes of many C. elegans animals, highlighting the level of stereotypy in the anatomical network. Brain-wide calcium imaging and studies of specified neural circuits have uncovered striking flexibility in the functional coupling of neurons. The coupling between neurons is controlled by neuromodulators that act over long timescales. This gives rise to persistent behavioral states that animals switch between, allowing them to generate adaptive behavioral responses across environmental conditions. Thus, the dynamic coupling of neurons enables multiple behavioral states to be encoded in a physically stereotyped connectome.
Collapse
Affiliation(s)
- Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Andrew Gordus
- Department of Biology, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
18
|
Groschner LN, Malis JG, Zuidinga B, Borst A. A biophysical account of multiplication by a single neuron. Nature 2022; 603:119-123. [PMID: 35197635 PMCID: PMC8891015 DOI: 10.1038/s41586-022-04428-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/14/2022] [Indexed: 12/19/2022]
Abstract
Nonlinear, multiplication-like operations carried out by individual nerve cells greatly enhance the computational power of a neural system1-3, but our understanding of their biophysical implementation is scant. Here we pursue this problem in the Drosophila melanogaster ON motion vision circuit4,5, in which we record the membrane potentials of direction-selective T4 neurons and of their columnar input elements6,7 in response to visual and pharmacological stimuli in vivo. Our electrophysiological measurements and conductance-based simulations provide evidence for a passive supralinear interaction between two distinct types of synapse on T4 dendrites. We show that this multiplication-like nonlinearity arises from the coincidence of cholinergic excitation and release from glutamatergic inhibition. The latter depends on the expression of the glutamate-gated chloride channel GluClα8,9 in T4 neurons, which sharpens the directional tuning of the cells and shapes the optomotor behaviour of the animals. Interacting pairs of shunting inhibitory and excitatory synapses have long been postulated as an analogue approximation of a multiplication, which is integral to theories of motion detection10,11, sound localization12 and sensorimotor control13.
Collapse
Affiliation(s)
| | | | - Birte Zuidinga
- Max Planck Institute of Neurobiology, Martinsried, Germany
| | | |
Collapse
|
19
|
Hori S, Mitani S. The transcription factor unc-130/FOXD3/4 contributes to the biphasic calcium response required to optimize avoidance behavior. Sci Rep 2022; 12:1907. [PMID: 35115609 PMCID: PMC8814005 DOI: 10.1038/s41598-022-05942-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 01/13/2022] [Indexed: 11/12/2022] Open
Abstract
The central neural network optimizes avoidance behavior depending on the nociceptive stimulation intensity and is essential for survival. How the property of hub neurons that enables the selection of behaviors is genetically defined is not well understood. We show that the transcription factor unc-130, a human FOXD3/4 ortholog, is required to optimize avoidance behavior depending on stimulus strength in Caenorhabditis elegans. unc-130 is necessary for both ON responses (calcium decreases) and OFF responses (calcium increases) in AIBs, central neurons of avoidance optimization. Ablation of predicted upstream inhibitory neurons reduces the frequency of turn behavior, suggesting that optimization needs both calcium responses. At the molecular level, unc-130 upregulates the expression of at least three genes: nca-2, a homolog of the vertebrate cation leak channel NALCN; glr-1, an AMPA-type glutamate receptor; and eat-4, a hypothetical L-glutamate transmembrane transporter in the central neurons of optimization. unc-130 shows more limited regulation in optimizing behavior than an atonal homolog lin-32, and unc-130 and lin-32 appear to act in parallel molecular pathways. Our findings suggest that unc-130 is required for the establishment of some AIB identities to optimize avoidance behavior.
Collapse
Affiliation(s)
- Sayaka Hori
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, 162-8666, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, 162-8666, Japan.
| |
Collapse
|
20
|
Ji N, Madan GK, Fabre GI, Dayan A, Baker CM, Kramer TS, Nwabudike I, Flavell SW. A neural circuit for flexible control of persistent behavioral states. eLife 2021; 10:e62889. [PMID: 34792019 PMCID: PMC8660023 DOI: 10.7554/elife.62889] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/17/2021] [Indexed: 11/29/2022] Open
Abstract
To adapt to their environments, animals must generate behaviors that are closely aligned to a rapidly changing sensory world. However, behavioral states such as foraging or courtship typically persist over long time scales to ensure proper execution. It remains unclear how neural circuits generate persistent behavioral states while maintaining the flexibility to select among alternative states when the sensory context changes. Here, we elucidate the functional architecture of a neural circuit controlling the choice between roaming and dwelling states, which underlie exploration and exploitation during foraging in C. elegans. By imaging ensemble-level neural activity in freely moving animals, we identify stereotyped changes in circuit activity corresponding to each behavioral state. Combining circuit-wide imaging with genetic analysis, we find that mutual inhibition between two antagonistic neuromodulatory systems underlies the persistence and mutual exclusivity of the neural activity patterns observed in each state. Through machine learning analysis and circuit perturbations, we identify a sensory processing neuron that can transmit information about food odors to both the roaming and dwelling circuits and bias the animal towards different states in different sensory contexts, giving rise to context-appropriate state transitions. Our findings reveal a potentially general circuit architecture that enables flexible, sensory-driven control of persistent behavioral states.
Collapse
Affiliation(s)
- Ni Ji
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Gurrein K Madan
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Guadalupe I Fabre
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Alyssa Dayan
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Casey M Baker
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Talya S Kramer
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
- MIT Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, United States
| | - Ijeoma Nwabudike
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Steven W Flavell
- Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
21
|
Ferkey DM, Sengupta P, L’Etoile ND. Chemosensory signal transduction in Caenorhabditis elegans. Genetics 2021; 217:iyab004. [PMID: 33693646 PMCID: PMC8045692 DOI: 10.1093/genetics/iyab004] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Chemosensory neurons translate perception of external chemical cues, including odorants, tastants, and pheromones, into information that drives attraction or avoidance motor programs. In the laboratory, robust behavioral assays, coupled with powerful genetic, molecular and optical tools, have made Caenorhabditis elegans an ideal experimental system in which to dissect the contributions of individual genes and neurons to ethologically relevant chemosensory behaviors. Here, we review current knowledge of the neurons, signal transduction molecules and regulatory mechanisms that underlie the response of C. elegans to chemicals, including pheromones. The majority of identified molecules and pathways share remarkable homology with sensory mechanisms in other organisms. With the development of new tools and technologies, we anticipate that continued study of chemosensory signal transduction and processing in C. elegans will yield additional new insights into the mechanisms by which this animal is able to detect and discriminate among thousands of chemical cues with a limited sensory neuron repertoire.
Collapse
Affiliation(s)
- Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Noelle D L’Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
22
|
Randi F, Leifer AM. Nonequilibrium Green's Functions for Functional Connectivity in the Brain. PHYSICAL REVIEW LETTERS 2021; 126:118102. [PMID: 33798383 PMCID: PMC8454901 DOI: 10.1103/physrevlett.126.118102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/29/2020] [Accepted: 02/18/2021] [Indexed: 05/28/2023]
Abstract
A theoretical framework describing the set of interactions between neurons in the brain, or functional connectivity, should include dynamical functions representing the propagation of signal from one neuron to another. Green's functions and response functions are natural candidates for this but, while they are conceptually very useful, they are usually defined only for linear time-translationally invariant systems. The brain, instead, behaves nonlinearly and in a time-dependent way. Here, we use nonequilibrium Green's functions to describe the time-dependent functional connectivity of a continuous-variable network of neurons. We show how the connectivity is related to the measurable response functions, and provide two illustrative examples via numerical calculations, inspired from Caenorhabditis elegans.
Collapse
Affiliation(s)
- Francesco Randi
- Department of Physics, Princeton University, Jadwin Hall, Princeton, New Jersey 08544, USA
| | - Andrew M. Leifer
- Department of Physics, Princeton University, Jadwin Hall, Princeton, New Jersey 08544, USA
- Princeton Neuroscience Institute, Princeton University, New Jersey 08544, USA
| |
Collapse
|
23
|
Randi F, Leifer AM. Measuring and modeling whole-brain neural dynamics in Caenorhabditis elegans. Curr Opin Neurobiol 2020; 65:167-175. [PMID: 33279794 PMCID: PMC7801769 DOI: 10.1016/j.conb.2020.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 11/19/2022]
Abstract
The compact nervous system of the nematode Caenorhabditis elegans makes it a powerful playground to study how neural dynamics constrained by neuroanatomy generate neural function and behavior. The ability to record neural activity from the whole brain simultaneously in this worm has opened several research avenues and is providing insights into brain-wide neural coding of locomotion, sleep, and other behaviors. We review these findings and the development of new methods, including new microscopes, new genetic tools, and new modeling approaches. We conclude with a discussion of the role of theory in interpreting or driving new experiments in C. elegans and potential paths forward.
Collapse
Affiliation(s)
- Francesco Randi
- Department of Physics, Princeton University, Jadwin Hall, Princeton, NJ 08544, USA
| | - Andrew M Leifer
- Department of Physics, Princeton University, Jadwin Hall, Princeton, NJ 08544, USA; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
24
|
Takeishi A, Yeon J, Harris N, Yang W, Sengupta P. Feeding state functionally reconfigures a sensory circuit to drive thermosensory behavioral plasticity. eLife 2020; 9:e61167. [PMID: 33074105 PMCID: PMC7644224 DOI: 10.7554/elife.61167] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/18/2020] [Indexed: 12/24/2022] Open
Abstract
Internal state alters sensory behaviors to optimize survival strategies. The neuronal mechanisms underlying hunger-dependent behavioral plasticity are not fully characterized. Here we show that feeding state alters C. elegans thermotaxis behavior by engaging a modulatory circuit whose activity gates the output of the core thermotaxis network. Feeding state does not alter the activity of the core thermotaxis circuit comprised of AFD thermosensory and AIY interneurons. Instead, prolonged food deprivation potentiates temperature responses in the AWC sensory neurons, which inhibit the postsynaptic AIA interneurons to override and disrupt AFD-driven thermotaxis behavior. Acute inhibition and activation of AWC and AIA, respectively, restores negative thermotaxis in starved animals. We find that state-dependent modulation of AWC-AIA temperature responses requires INS-1 insulin-like peptide signaling from the gut and DAF-16/FOXO function in AWC. Our results describe a mechanism by which functional reconfiguration of a sensory network via gut-brain signaling drives state-dependent behavioral flexibility.
Collapse
Affiliation(s)
- Asuka Takeishi
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Jihye Yeon
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Nathan Harris
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Wenxing Yang
- Department of Organismic and Evolutionary Biology, Center for Brain Science, Harvard UniversityCambridgeUnited States
| | - Piali Sengupta
- Department of Biology, Brandeis UniversityWalthamUnited States
| |
Collapse
|
25
|
Hu Y, Wang C, Yang L, Pan G, Liu H, Yu G, Ye B. A Neural Basis for Categorizing Sensory Stimuli to Enhance Decision Accuracy. Curr Biol 2020; 30:4896-4909.e6. [PMID: 33065003 DOI: 10.1016/j.cub.2020.09.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 08/08/2020] [Accepted: 09/14/2020] [Indexed: 11/15/2022]
Abstract
Sensory stimuli with graded intensities often lead to yes-or-no decisions on whether to respond to the stimuli. How this graded-to-binary conversion is implemented in the central nervous system (CNS) remains poorly understood. Here, we show that graded encodings of noxious stimuli are categorized in a decision-associated CNS region in Drosophila larvae, and then decoded by a group of peptidergic neurons for executing binary escape decisions. GABAergic inhibition gates weak nociceptive encodings from being decoded, whereas escalated amplification through the recruitment of second-order neurons boosts nociceptive encodings at intermediate intensities. These two modulations increase the detection accuracy by reducing responses to negligible stimuli whereas enhancing responses to intense stimuli. Our findings thus unravel a circuit mechanism that underlies accurate detection of harmful stimuli.
Collapse
Affiliation(s)
- Yujia Hu
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Congchao Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Limin Yang
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; School of Medicine, Dalian University, Dalian, Liaoning 116622, China
| | - Geng Pan
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hao Liu
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guoqiang Yu
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA.
| | - Bing Ye
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
26
|
Fadda M, De Fruyt N, Borghgraef C, Watteyne J, Peymen K, Vandewyer E, Naranjo Galindo FJ, Kieswetter A, Mirabeau O, Chew YL, Beets I, Schoofs L. NPY/NPF-Related Neuropeptide FLP-34 Signals from Serotonergic Neurons to Modulate Aversive Olfactory Learning in Caenorhabditis elegans. J Neurosci 2020; 40:6018-6034. [PMID: 32576621 PMCID: PMC7392509 DOI: 10.1523/jneurosci.2674-19.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/26/2020] [Accepted: 06/12/2020] [Indexed: 02/03/2023] Open
Abstract
Aversive learning is fundamental for animals to increase chances of survival. In addition to classical neurotransmitters, neuropeptides have emerged to modulate such complex behaviors. Among them, neuropeptide Y (NPY) is well known to promote aversive memory acquisition in mammals. Here we identify an NPY/neuropeptide F (NPF)-related neuropeptide system in Caenorhabditis elegans and show that this FLP-34/NPR-11 system is required for learning negative associations, a process that is reminiscent of NPY signaling in mammals. The Caenorhabditis elegans NPY/NPF ortholog FLP-34 displays conserved structural hallmarks of bilaterian-wide NPY/NPF neuropeptides. We show that it is required for aversive olfactory learning after pairing diacetyl with the absence of food, but not for appetitive olfactory learning in response to butanone. To mediate diacetyl learning and thus integrate the aversive food context with the diacetyl odor, FLP-34 is released from serotonergic neurons and signals through its evolutionarily conserved NPY/NPF GPCR, NPR-11, in downstream AIA interneurons. NPR-11 activation in the AIA integration center results in avoidance of a previously attractive stimulus. This study opens perspectives for a deeper understanding of stress conditions in which aversive learning results in excessive avoidance.SIGNIFICANCE STATEMENT Aversive learning evolved early in evolution to promote avoidance of dangerous and stressful situations. In addition to classical neurotransmitters, neuropeptides are emerging as modulators of complex behaviors, including learning and memory. Here, we identified the evolutionary ortholog of neuropeptide Y/neuropeptide F in the nematode Caenorhabditis elegans, and we discovered that it is required for olfactory aversive learning. In addition, we elucidated the neural circuit underlying this avoidance behavior, and we discovered a novel coordinated action of Caenorhabditis elegans neuropeptide Y/neuropeptide F and serotonin that could aid in our understanding of the molecular mechanisms underlying stress disorders in which excessive avoidance results in maladaptive behaviors.
Collapse
Affiliation(s)
- Melissa Fadda
- Department of Biology, KU Leuven, Leuven, 3000, Belgium
| | | | | | - Jan Watteyne
- Department of Biology, KU Leuven, Leuven, 3000, Belgium
| | | | | | | | | | - Olivier Mirabeau
- Genetics and Biology of Cancers Unit, Institut Curie, Institut National de la Santé et de la Recherche Médicale U830, Paris Sciences et Lettres Research University, Paris, 75005, France
| | - Yee Lian Chew
- Illawarra Health & Medical Research Institute School of Chemistry & Molecular Bioscience, University of Wollongong, Wollongong, 2522 New South Wales, Australia
| | - Isabel Beets
- Department of Biology, KU Leuven, Leuven, 3000, Belgium
| | | |
Collapse
|