1
|
Impact of Lycium barbarum polysaccharide on the expression of glucagon-like peptide 1 in vitro and in vivo. Int J Biol Macromol 2022; 224:908-918. [DOI: 10.1016/j.ijbiomac.2022.10.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
2
|
Benraiss A, Mariani JN, Tate A, Madsen PM, Clark KM, Welle KA, Solly R, Capellano L, Bentley K, Chandler-Militello D, Goldman SA. A TCF7L2-responsive suppression of both homeostatic and compensatory remyelination in Huntington disease mice. Cell Rep 2022; 40:111291. [PMID: 36044851 DOI: 10.1016/j.celrep.2022.111291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 05/04/2022] [Accepted: 08/08/2022] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is characterized by defective oligodendroglial differentiation and white matter disease. Here, we investigate the role of oligodendrocyte progenitor cell (OPC) dysfunction in adult myelin maintenance in HD. We first note a progressive, age-related loss of myelin in both R6/2 and zQ175 HD mice compared with wild-type controls. Adult R6/2 mice then manifest a significant delay in remyelination following cuprizone demyelination. RNA-sequencing and proteomic analysis of callosal white matter and OPCs isolated from both R6/2 and zQ175 mice reveals a systematic downregulation of genes associated with oligodendrocyte differentiation and myelinogenesis. Gene co-expression and network analysis predicts repressed Tcf7l2 signaling as a major driver of this expression pattern. In vivo Tcf7l2 overexpression restores both myelin gene expression and remyelination in demyelinated R6/2 mice. These data causally link impaired TCF7L2-dependent transcription to the poor development and homeostatic retention of myelin in HD and provide a mechanism for its therapeutic restoration.
Collapse
Affiliation(s)
- Abdellatif Benraiss
- Center for Translational Neuromedicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA.
| | - John N Mariani
- Center for Translational Neuromedicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA
| | - Ashley Tate
- Center for Translational Neuromedicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA
| | - Pernille M Madsen
- Center for Translational Neuromedicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA; Center for Basic and Translational Neuroscience, University of Copenhagen, Copenhagen 2200, Denmark
| | - Kathleen M Clark
- Center for Translational Neuromedicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA
| | - Kevin A Welle
- Mass Spectrometry Resource Laboratory, URMC, Rochester, NY 14642, USA
| | - Renee Solly
- Center for Translational Neuromedicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA
| | - Laetitia Capellano
- Center for Translational Neuromedicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA
| | - Karen Bentley
- Department of Pathology and Laboratory Medicine, URMC, Rochester, NY 14642, USA
| | - Devin Chandler-Militello
- Center for Translational Neuromedicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA; Center for Basic and Translational Neuroscience, University of Copenhagen, Copenhagen 2200, Denmark; Sana Biotechnology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Verma M, Loh NY, Sabaratnam R, Vasan SK, van Dam AD, Todorčević M, Neville MJ, Toledo E, Karpe F, Christodoulides C. TCF7L2 plays a complex role in human adipose progenitor biology, which might contribute to genetic susceptibility to type 2 diabetes. Metabolism 2022; 133:155240. [PMID: 35697299 DOI: 10.1016/j.metabol.2022.155240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Non-coding genetic variation at TCF7L2 is the strongest genetic determinant of type 2 diabetes (T2D) risk in humans. TCF7L2 encodes a transcription factor mediating the nuclear effects of WNT signaling in adipose tissue (AT). In vivo studies in transgenic mice have highlighted important roles for TCF7L2 in adipose tissue biology and systemic metabolism. OBJECTIVE To map the expression of TCF7L2 in human AT, examine its role in human adipose cell biology in vitro, and investigate the effects of the fine-mapped T2D-risk allele at rs7903146 on AT morphology and TCF7L2 expression. METHODS Ex vivo gene expression studies of TCF7L2 in whole and fractionated human AT. In vitro TCF7L2 gain- and/or loss-of-function studies in primary and immortalized human adipose progenitor cells (APCs) and mature adipocytes (mADs). AT phenotyping of rs7903146 T2D-risk variant carriers and matched controls. RESULTS Adipose progenitors (APs) exhibited the highest TCF7L2 mRNA abundance compared to mature adipocytes and adipose-derived endothelial cells. Obesity was associated with reduced TCF7L2 transcript levels in whole subcutaneous abdominal AT but paradoxically increased expression in APs. In functional studies, TCF7L2 knockdown (KD) in abdominal APs led to dose-dependent activation of WNT/β-catenin signaling, impaired proliferation and dose-dependent effects on adipogenesis. Whilst partial KD enhanced adipocyte differentiation, near-total KD impaired lipid accumulation and adipogenic gene expression. Over-expression of TCF7L2 accelerated adipogenesis. In contrast, TCF7L2-KD in gluteal APs dose-dependently enhanced lipid accumulation. Transcriptome-wide profiling revealed that TCF7L2 might modulate multiple aspects of AP biology including extracellular matrix secretion, immune signaling and apoptosis. The T2D-risk allele at rs7903146 was associated with reduced AP TCF7L2 expression and enhanced AT insulin sensitivity. CONCLUSIONS TCF7L2 plays a complex role in AP biology and has both dose- and depot-dependent effects on adipogenesis. In addition to regulating pancreatic insulin secretion, genetic variation at TCF7L2 might also influence T2D risk by modulating AP function.
Collapse
Affiliation(s)
- Manu Verma
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Nellie Y Loh
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Rugivan Sabaratnam
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK; Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense, Denmark; Department of Clinical Research, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Senthil K Vasan
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Andrea D van Dam
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Marijana Todorčević
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Matthew J Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK
| | - Enrique Toledo
- Department of Computational Biology, Novo Nordisk Research Centre Oxford, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, OUH Foundation Trust, Oxford OX3 7LE, UK
| | - Constantinos Christodoulides
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, OUH Foundation Trust, Oxford OX3 7LE, UK.
| |
Collapse
|
4
|
Torres-Aguila NP, Salonna M, Hoppler S, Ferrier DEK. Evolutionary diversification of the canonical Wnt signaling effector TCF/LEF in chordates. Dev Growth Differ 2022; 64:120-137. [PMID: 35048372 PMCID: PMC9303524 DOI: 10.1111/dgd.12771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/29/2022]
Abstract
Wnt signaling is essential during animal development and regeneration, but also plays an important role in diseases such as cancer and diabetes. The canonical Wnt signaling pathway is one of the most conserved signaling cascades in the animal kingdom, with the T‐cell factor/lymphoid enhancer factor (TCF/LEF) proteins being the major mediators of Wnt/β‐catenin‐regulated gene expression. In comparison with invertebrates, vertebrates possess a high diversity of TCF/LEF family genes, implicating this as a possible key change to Wnt signaling at the evolutionary origin of vertebrates. However, the precise nature of this diversification is only poorly understood. The aim of this study is to clarify orthology, paralogy, and isoform relationships within the TCF/LEF gene family within chordates via in silico comparative study of TCF/LEF gene structure, molecular phylogeny, and gene synteny. Our results support the notion that the four TCF/LEF paralog subfamilies in jawed vertebrates (gnathostomes) evolved via the two rounds of whole‐genome duplications that occurred during early vertebrate evolution. Importantly, gene structure comparisons and synteny analysis of jawless vertebrate (cyclostome) TCFs suggest that a TCF7L2‐like form of gene structure is a close proxy for the ancestral vertebrate structure. In conclusion, we propose a detailed evolutionary path based on a new pre‐whole‐genome duplication vertebrate TCF gene model. This ancestor gene model highlights the chordate and vertebrate innovations of TCF/LEF gene structure, providing the foundation for understanding the role of Wnt/β‐catenin signaling in vertebrate evolution.
Collapse
Affiliation(s)
- Nuria P Torres-Aguila
- Gatty Marine Laboratory, The Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, UK
| | - Marika Salonna
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Stefan Hoppler
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - David E K Ferrier
- Gatty Marine Laboratory, The Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
5
|
Bélanger C, Cardinal T, Leduc E, Viger RS, Pilon N. CHARGE syndrome-associated proteins FAM172A and CHD7 influence male sex determination and differentiation through transcriptional and alternative splicing mechanisms. FASEB J 2022; 36:e22176. [PMID: 35129866 PMCID: PMC9304217 DOI: 10.1096/fj.202100837rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/11/2022]
Abstract
To gain further insight into chromatin‐mediated regulation of mammalian sex determination, we analyzed the role of the CHARGE syndrome‐associated proteins FAM172A and CHD7. This study is based on our prior discoveries that a subset of corresponding mutant mice display complete male‐to‐female sex reversal, and that both of these proteins regulate co‐transcriptional alternative splicing in neural crest cells. Here, we report that FAM172A and CHD7 are present in the developing gonads when sex determination normally occurs in mice. The interactome of FAM172A in pre‐Sertoli cells again suggests a role at the chromatin‐spliceosome interface, like in neural crest cells. Accordingly, analysis of Fam172a‐mutant pre‐Sertoli cells revealed transcriptional and splicing dysregulation of hundreds of genes. Many of these genes are similarly affected in Chd7‐mutant pre‐Sertoli cells, including several known key regulators of sex determination and subsequent formation of testis cords. Among them, we notably identified Sry as a direct transcriptional target and WNT pathway‐associated Lef1 and Tcf7l2 as direct splicing targets. The identified molecular defects are also associated with the abnormal morphology of seminiferous tubules in mutant postnatal testes. Altogether, our results thus identify FAM172A and CHD7 as new players in the regulation of male sex determination and differentiation in mice, and further highlight the importance of chromatin‐mediated regulatory mechanisms in these processes.
Collapse
Affiliation(s)
- Catherine Bélanger
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Tatiana Cardinal
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Elizabeth Leduc
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada
| | - Robert S Viger
- Reproduction, Mother and Child Health, Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Centre de recherche du CHU de Québec-Université Laval, Quebec City, Québec, Canada.,Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, Québec, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Québec, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Québec, Canada.,Département de pédiatrie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
6
|
Bou-Rouphael J, Durand BC. T-Cell Factors as Transcriptional Inhibitors: Activities and Regulations in Vertebrate Head Development. Front Cell Dev Biol 2021; 9:784998. [PMID: 34901027 PMCID: PMC8651982 DOI: 10.3389/fcell.2021.784998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Since its first discovery in the late 90s, Wnt canonical signaling has been demonstrated to affect a large variety of neural developmental processes, including, but not limited to, embryonic axis formation, neural proliferation, fate determination, and maintenance of neural stem cells. For decades, studies have focused on the mechanisms controlling the activity of β-catenin, the sole mediator of Wnt transcriptional response. More recently, the spotlight of research is directed towards the last cascade component, the T-cell factor (TCF)/Lymphoid-Enhancer binding Factor (LEF), and more specifically, the TCF/LEF-mediated switch from transcriptional activation to repression, which in both embryonic blastomeres and mouse embryonic stem cells pushes the balance from pluri/multipotency towards differentiation. It has been long known that Groucho/Transducin-Like Enhancer of split (Gro/TLE) is the main co-repressor partner of TCF/LEF. More recently, other TCF/LEF-interacting partners have been identified, including the pro-neural BarH-Like 2 (BARHL2), which belongs to the evolutionary highly conserved family of homeodomain-containing transcription factors. This review describes the activities and regulatory modes of TCF/LEF as transcriptional repressors, with a specific focus on the functions of Barhl2 in vertebrate brain development. Specific attention is given to the transcriptional events leading to formation of the Organizer, as well as the roles and regulations of Wnt/β-catenin pathway in growth of the caudal forebrain. We present TCF/LEF activities in both embryonic and neural stem cells and discuss how alterations of this pathway could lead to tumors.
Collapse
Affiliation(s)
| | - Béatrice C. Durand
- Sorbonne Université, CNRS UMR7622, IBPS Developmental Biology Laboratory, Campus Pierre et Marie Curie, Paris, France
| |
Collapse
|
7
|
Hu JM, He LJ, Wang PB, Yu Y, Ye YP, Liang L. Antagonist targeting miR‑106b‑5p attenuates acute renal injury by regulating renal function, apoptosis and autophagy via the upregulation of TCF4. Int J Mol Med 2021; 48:169. [PMID: 34278441 PMCID: PMC8285052 DOI: 10.3892/ijmm.2021.5002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Acute renal injury (ARI) is a life‑threatening condition and a main contributor to end‑stage renal disease, which is mainly caused by ischemia‑reperfusion (I/R). miR‑106b‑5p is a kidney function‑related miRNA; however, whether miR‑106b‑5p regulates the progression of ARI remains unclear. The present study thus aimed to examine the effects of miR‑106b‑5p antagonist on the regulation of ARI progression. It was found that miR‑106b‑5p expression was upregulated in the renal tissue of rats with I/R‑induced ARI and in NRK‑52E rat renal proximal tubular epithelial cells subjected to hypoxia‑reoxygenation (H/R). In vitro, H/R induction suppressed the proliferation, and promoted the apoptosis and autophagy of NRK‑52E cells, whereas miR‑106b‑5p antagonist (inhibition of miR‑106b‑5p) promoted the proliferation, and attenuated the apoptosis and autophagy of NRK‑52E cells under the H/R condition. Dual luciferase reporter gene assay validated that transcription factor 4 (TCF4) was a target of miR‑106b‑5p. It was further found that TCF4 overexpression promoted the proliferation, and inhibited the apoptosis and autophagy of NRK‑52E cells subjected to H/R. Moreover, the effects of miR‑106b‑5p antagonist on NRK‑52E cell proliferation, apoptosis and autophagy were mediated through the regulation of TCF4. In vivo, miR‑106b‑5p antagonist reduced the severity of renal injury, decreased cell proliferation in renal tissues and lowered the serum creatinine (Scr) and blood urea nitrogen (BUN) levels in the blood samples from rats with I/R‑induced ARI. On the whole, the findings presented herein demonstrate that miR‑106b‑5p antagonist attenuates ARI by promoting the proliferation, and suppressing the apoptosis and autophagy of renal cells via upregulating TCF4.
Collapse
Affiliation(s)
- Jing-Meng Hu
- Department of Pathology, The Southern Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Li-Jie He
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710000, P.R. China
| | - Peng-Bo Wang
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710000, P.R. China
| | - Yan Yu
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710000, P.R. China
| | - Ya-Ping Ye
- Department of Pathology, The Southern Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Li Liang
- Department of Pathology, The Southern Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|