1
|
Alquisiras-Burgos I, Peralta-Arrieta I, Espinoza-Rojo M, Salazar-Salgado A, Antonino-Olguín I, Sánchez-Mendoza A, Sánchez-Aguilar M, Ruiz-Tachiquín ME, Valdez-Salazar HA, Ortiz-Plata A, Franco-Pérez J, Hernández-Cruz A, Aguilera P. Expression of SUR1 isoforms in the brain and heart after ischemia/reperfusion. Front Mol Neurosci 2025; 18:1536409. [PMID: 40313402 PMCID: PMC12043708 DOI: 10.3389/fnmol.2025.1536409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/28/2025] [Indexed: 05/03/2025] Open
Abstract
The sulfonylurea receptor 1 (SUR1) has been classified as a member of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter superfamily. SUR1, unlike the classic ABC transporters, assembles with Kir6.2, forming KATP channels to regulate the flux of potassium ions. In the central nervous system, SUR1 is weakly expressed in some brain regions but is induced by pathological conditions in the different cell types of the neurovascular unit. Therefore, we first analyzed the expression of SUR1 in various rat tissues and brain regions to identify SUR1 isoforms and their mRNA exon composition under physiological conditions. Later, we focused on the SUR1 expression in the brain and heart after ischemia/reperfusion. We observed two SUR1 isoforms (170 and 60-75 kDa) abundantly expressed in most rat tissues, except for the testis and brain, where basal expression of these isoforms was relatively low and exhibit a band of 100 kDa. Every exons coding for the functional domains of SUR1 mRNA were amplified from the tissues and brain regions analyzed. Results from in vitro and in vivo experiments indicated that SUR1 isoforms previously identified (170 and 60-75 kDa) were dramatically overexpressed in the brain after middle cerebral artery occlusion followed by reperfusion. In contrast, myocardial infarction followed by reperfusion significantly reduced SUR1 isoform expression in the heart. This study demonstrates the expression of at least two SUR1 isoforms in various tissues and suggests that ischemic processes may differentially regulate SUR1 expression depending on the tissue injured.
Collapse
Affiliation(s)
- Iván Alquisiras-Burgos
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - Irlanda Peralta-Arrieta
- Laboratorio de Transducción de Señales, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, Mexico
| | - Mónica Espinoza-Rojo
- Laboratorio de Biología Molecular y Genómica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Mexico
| | - Alejandro Salazar-Salgado
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Iván Antonino-Olguín
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
- Laboratorio de Biología Molecular y Genómica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo, Mexico
| | - Alicia Sánchez-Mendoza
- Departamento de Farmacología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - María Sánchez-Aguilar
- Departamento de Farmacología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | - Martha-Eugenia Ruiz-Tachiquín
- Unidad de Investigación Médica en Enfermedades Oncológicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Hilda-Alicia Valdez-Salazar
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Alma Ortiz-Plata
- Laboratorio de Patología Experimental, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - Javier Franco-Pérez
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - Arturo Hernández-Cruz
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Penélope Aguilera
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| |
Collapse
|
2
|
De Faveri C, Mattheisen JM, Sakmar TP, Coin I. Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies. Chem Rev 2024; 124:12498-12550. [PMID: 39509680 PMCID: PMC11613316 DOI: 10.1021/acs.chemrev.4c00181] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024]
Abstract
Methods rooted in chemical biology have contributed significantly to studies of integral membrane proteins. One recent key approach has been the application of genetic code expansion (GCE), which enables the site-specific incorporation of noncanonical amino acids (ncAAs) with defined chemical properties into proteins. Efficient GCE is challenging, especially for membrane proteins, which have specialized biogenesis and cell trafficking machinery and tend to be expressed at low levels in cell membranes. Many eukaryotic membrane proteins cannot be expressed functionally in E. coli and are most effectively studied in mammalian cell culture systems. Recent advances have facilitated broader applications of GCE for studies of membrane proteins. First, AARS/tRNA pairs have been engineered to function efficiently in mammalian cells. Second, bioorthogonal chemical reactions, including cell-friendly copper-free "click" chemistry, have enabled linkage of small-molecule probes such as fluorophores to membrane proteins in live cells. Finally, in concert with advances in GCE methodology, the variety of available ncAAs has increased dramatically, thus enabling the investigation of protein structure and dynamics by multidisciplinary biochemical and biophysical approaches. These developments are reviewed in the historical framework of the development of GCE technology with a focus on applications to studies of membrane proteins.
Collapse
Affiliation(s)
- Chiara De Faveri
- Faculty
of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| | - Jordan M. Mattheisen
- Laboratory
of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
- Tri-Institutional
PhD Program in Chemical Biology, New York, New York 10065, United States
| | - Thomas P. Sakmar
- Laboratory
of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
| | - Irene Coin
- Faculty
of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
3
|
Driggers CM, Kuo YY, Zhu P, ElSheikh A, Shyng SL. Structure of an open K ATP channel reveals tandem PIP 2 binding sites mediating the Kir6.2 and SUR1 regulatory interface. Nat Commun 2024; 15:2502. [PMID: 38509107 PMCID: PMC10954709 DOI: 10.1038/s41467-024-46751-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
ATP-sensitive potassium (KATP) channels, composed of four pore-lining Kir6.2 subunits and four regulatory sulfonylurea receptor 1 (SUR1) subunits, control insulin secretion in pancreatic β-cells. KATP channel opening is stimulated by PIP2 and inhibited by ATP. Mutations that increase channel opening by PIP2 reduce ATP inhibition and cause neonatal diabetes. Although considerable evidence has implicated a role for PIP2 in KATP channel function, previously solved open-channel structures have lacked bound PIP2, and mechanisms by which PIP2 regulates KATP channels remain unresolved. Here, we report the cryoEM structure of a KATP channel harboring the neonatal diabetes mutation Kir6.2-Q52R, in the open conformation, bound to amphipathic molecules consistent with natural C18:0/C20:4 long-chain PI(4,5)P2 at two adjacent binding sites between SUR1 and Kir6.2. The canonical PIP2 binding site is conserved among PIP2-gated Kir channels. The non-canonical PIP2 binding site forms at the interface of Kir6.2 and SUR1. Functional studies demonstrate both binding sites determine channel activity. Kir6.2 pore opening is associated with a twist of the Kir6.2 cytoplasmic domain and a rotation of the N-terminal transmembrane domain of SUR1, which widens the inhibitory ATP binding pocket to disfavor ATP binding. The open conformation is particularly stabilized by the Kir6.2-Q52R residue through cation-π bonding with SUR1-W51. Together, these results uncover the cooperation between SUR1 and Kir6.2 in PIP2 binding and gating, explain the antagonistic regulation of KATP channels by PIP2 and ATP, and provide a putative mechanism by which Kir6.2-Q52R stabilizes an open channel to cause neonatal diabetes.
Collapse
Affiliation(s)
- Camden M Driggers
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA.
| | - Yi-Ying Kuo
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Phillip Zhu
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Assmaa ElSheikh
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Medical Biochemistry, Tanta University, Tanta, Egypt
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
4
|
Driggers CM, Kuo YY, Zhu P, ElSheikh A, Shyng SL. Structure of an open K ATP channel reveals tandem PIP 2 binding sites mediating the Kir6.2 and SUR1 regulatory interface. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.01.551546. [PMID: 37577494 PMCID: PMC10418277 DOI: 10.1101/2023.08.01.551546] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
ATP-sensitive potassium (K ATP ) channels, composed of four pore-lining Kir6.2 subunits and four regulatory sulfonylurea receptor 1 (SUR1) subunits, control insulin secretion in pancreatic β-cells. K ATP channel opening is stimulated by PIP 2 and inhibited by ATP. Mutations that increase channel opening by PIP 2 reduce ATP inhibition and cause neonatal diabetes. Although considerable evidence has indicated PIP 2 in K ATP channel function, previously solved open-channel structures have lacked bound PIP 2 , and mechanisms by which PIP 2 regulates K ATP channels remain unresolved. Here, we report the cryoEM structure of a K ATP channel harboring the neonatal diabetes mutation Kir6.2-Q52R, bound to natural C18:0/C20:4 long-chain PIP 2 in an open conformation. The structure reveals two adjacent PIP 2 molecules between SUR1 and Kir6.2. The first PIP 2 binding site is conserved among PIP 2 -gated Kir channels. The second site forms uniquely in K ATP at the interface of Kir6.2 and SUR1. Functional studies demonstrate both binding sites determine channel activity. Kir6.2 pore opening is associated with a twist of the Kir6.2 cytoplasmic domain and a rotation of the N-terminal transmembrane domain of SUR1, which widens the inhibitory ATP binding pocket to disfavor ATP binding. The open conformation is particularly stabilized by the Kir6.2-Q52R residue through cation-π bonding with SUR1-W51. Together, these results uncover the cooperation between SUR1 and Kir6.2 in PIP 2 binding and gating, explain the antagonistic regulation of K ATP channels by PIP 2 and ATP, and provide the mechanism by which Kir6.2-Q52R stabilizes an open channel to cause neonatal diabetes.
Collapse
|
5
|
Kawanabe A, Takeshita K, Takata M, Fujiwara Y. ATP modulates the activity of the voltage-gated proton channel through direct binding interaction. J Physiol 2023; 601:4073-4089. [PMID: 37555355 DOI: 10.1113/jp284175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
ATP is an important molecule implicated in diverse biochemical processes, including the modulation of ion channel and transporter activity. The voltage-gated proton channel (Hv1) controls proton flow through the transmembrane pathway in response to membrane potential, and various molecules regulate its activity. Although it is believed that ATP is not essential for Hv1 activity, a report has indicated that cytosolic ATP may modulate Hv1. However, the detailed molecular mechanism underlying the effect of ATP on Hv1 is unknown, and whether ATP is involved in the physiological regulation of Hv1 activity remains unclear. Here, we report that cytosolic ATP is required to maintain Hv1 activity. To gain insight into the underlying mechanism, we analysed the effects of ATP on the mouse Hv1 channel (mHv1) using electrophysiological and microscale thermophoresis (MST) methods. Intracellular ATP accelerated the activation kinetics of mHv1, thereby increasing the amplitude of the proton current within the physiological concentration range. The increase in proton current was reproduced with a non-hydrolysable ATP analogue, indicating that ATP directly influences Hv1 activity without an enzymatic reaction. The direct molecular interaction between the purified mHv1 protein and ATP was analysed and demonstrated through MST. In addition, ATP facilitation was observed for the endogenous proton current flowing through Hv1 in the physiological concentration range of ATP. These results suggest that ATP influences Hv1 activity via direct molecular interactions and is required for the physiological function of Hv1. KEY POINTS: We found that ATP is required to maintain the activity of voltage-gated proton channels (Hv1) and investigated the underlying molecular mechanism. Application of intracellular ATP increased the amplitude of the proton current flowing through Hv1, accompanied by an acceleration of activation kinetics. The direct interaction between purified Hv1 protein and ATP was quantitatively analysed using microscale thermophoresis. ATP enhanced endogenous proton currents in breast cancer cell lines. These results suggest that ATP influences Hv1 activity via direct molecular interactions and that its functional characteristics are required for the physiological activity of Hv1.
Collapse
Affiliation(s)
- Akira Kawanabe
- Laboratory of Molecular Physiology & Biophysics, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | | | - Maki Takata
- Laboratory of Molecular Physiology & Biophysics, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| | - Yuichiro Fujiwara
- Laboratory of Molecular Physiology & Biophysics, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, Japan
| |
Collapse
|
6
|
Ashcroft FM. KATP Channels and the Metabolic Regulation of Insulin Secretion in Health and Disease: The 2022 Banting Medal for Scientific Achievement Award Lecture. Diabetes 2023; 72:693-702. [PMID: 37815796 PMCID: PMC10202764 DOI: 10.2337/dbi22-0030] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/28/2023] [Indexed: 10/11/2023]
Abstract
Diabetes is characterized by elevation of plasma glucose due to an insufficiency of the hormone insulin and is associated with both inadequate insulin secretion and impaired insulin action. The Banting Medal for Scientific Achievement Commemorates the work of Sir Frederick Banting, a member of the team that first used insulin to treat a patient with diabetes almost exactly one hundred years ago on 11 January 1922. This article is based on my Banting lecture of 2022 and concerns the mechanism of glucose-stimulated insulin secretion from pancreatic β-cells, with an emphasis on the metabolic regulation of the KATP channel. This channel plays a central role in insulin release. Its closure in response to metabolically generated changes in the intracellular concentrations of ATP and MgADP stimulates β-cell electrical activity and insulin granule exocytosis. Activating mutations in KATP channel genes that impair the ability of the channel to respond to ATP give rise to neonatal diabetes. Impaired KATP channel regulation may also play a role in type 2 diabetes. I conjecture that KATP channel closure in response to glucose is reduced because of impaired glucose metabolism, which fails to generate a sufficient increase in ATP. Consequently, glucose-stimulated β-cell electrical activity is less. As ATP is also required for insulin granule exocytosis, both reduced exocytosis and less β-cell electrical activity may contribute to the reduction in insulin secretion. I emphasize that what follows is not a definitive review of the topic but a personal account of the contribution of my team to the field that is based on my Banting lecture.
Collapse
Affiliation(s)
- Frances M. Ashcroft
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, U.K
| |
Collapse
|
7
|
Martin GM, Patton BL, Shyng SL. K ATP channels in focus: Progress toward a structural understanding of ligand regulation. Curr Opin Struct Biol 2023; 79:102541. [PMID: 36807078 PMCID: PMC10023423 DOI: 10.1016/j.sbi.2023.102541] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/11/2022] [Accepted: 01/14/2023] [Indexed: 02/21/2023]
Abstract
KATP channels are hetero-octameric complexes of four inward rectifying potassium channels, Kir6.1 or Kir6.2, and four sulfonylurea receptors, SUR1, SUR2A, or SUR2B from the ABC transporter family. This unique combination enables KATP channels to couple intracellular ATP/ADP ratios, through gating, with membrane excitability, thus regulating a broad range of cellular activities. The prominence of KATP channels in human physiology, disease, and pharmacology has long attracted research interest. Since 2017, a steady flow of high-resolution KATP cryoEM structures has revealed complex and dynamic interactions between channel subunits and their ligands. Here, we highlight insights from recent structures that begin to provide mechanistic explanations for decades of experimental data and discuss the remaining knowledge gaps in our understanding of KATP channel regulation.
Collapse
Affiliation(s)
- Gregory M Martin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Bruce L Patton
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
8
|
Driggers CM, Shyng SL. Mechanistic insights on KATP channel regulation from cryo-EM structures. J Gen Physiol 2022; 155:213723. [PMID: 36441147 PMCID: PMC9700523 DOI: 10.1085/jgp.202113046] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022] Open
Abstract
Gated by intracellular ATP and ADP, ATP-sensitive potassium (KATP) channels couple cell energetics with membrane excitability in many cell types, enabling them to control a wide range of physiological processes based on metabolic demands. The KATP channel is a complex of four potassium channel subunits from the Kir channel family, Kir6.1 or Kir6.2, and four sulfonylurea receptor subunits, SUR1, SUR2A, or SUR2B, from the ATP-binding cassette (ABC) transporter family. Dysfunction of KATP channels underlies several human diseases. The importance of these channels in human health and disease has made them attractive drug targets. How the channel subunits interact with one another and how the ligands interact with the channel to regulate channel activity have been long-standing questions in the field. In the past 5 yr, a steady stream of high-resolution KATP channel structures has been published using single-particle cryo-electron microscopy (cryo-EM). Here, we review the advances these structures bring to our understanding of channel regulation by physiological and pharmacological ligands.
Collapse
Affiliation(s)
- Camden M. Driggers
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health and Science University, Portland, OR,Correspondence to Show-Ling Shyng:
| |
Collapse
|
9
|
Characterising ion channel structure and dynamics using fluorescence spectroscopy techniques. Biochem Soc Trans 2022; 50:1427-1445. [DOI: 10.1042/bst20220605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022]
Abstract
Ion channels undergo major conformational changes that lead to channel opening and ion conductance. Deciphering these structure-function relationships is paramount to understanding channel physiology and pathophysiology. Cryo-electron microscopy, crystallography and computer modelling provide atomic-scale snapshots of channel conformations in non-cellular environments but lack dynamic information that can be linked to functional results. Biophysical techniques such as electrophysiology, on the other hand, provide functional data with no structural information of the processes involved. Fluorescence spectroscopy techniques help bridge this gap in simultaneously obtaining structure-function correlates. These include voltage-clamp fluorometry, Förster resonance energy transfer, ligand binding assays, single molecule fluorescence and their variations. These techniques can be employed to unearth several features of ion channel behaviour. For instance, they provide real time information on local and global rearrangements that are inherent to channel properties. They also lend insights in trafficking, expression, and assembly of ion channels on the membrane surface. These methods have the advantage that they can be carried out in either native or heterologous systems. In this review, we briefly explain the principles of fluorescence and how these have been translated to study ion channel function. We also report several recent advances in fluorescence spectroscopy that has helped address and improve our understanding of the biophysical behaviours of different ion channel families.
Collapse
|
10
|
Sung MW, Driggers CM, Mostofian B, Russo JD, Patton BL, Zuckerman DM, Shyng SL. Ligand-mediated Structural Dynamics of a Mammalian Pancreatic K ATP Channel. J Mol Biol 2022; 434:167789. [PMID: 35964676 PMCID: PMC9618280 DOI: 10.1016/j.jmb.2022.167789] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022]
Abstract
Regulation of pancreatic KATP channels involves orchestrated interactions of their subunits, Kir6.2 and SUR1, and ligands. Previously we reported KATP channel cryo-EM structures in the presence and absence of pharmacological inhibitors and ATP, focusing on the mechanisms by which inhibitors act as pharmacological chaperones of KATP channels (Martin et al., 2019). Here we analyzed the same cryo-EM datasets with a focus on channel conformational dynamics to elucidate structural correlates pertinent to ligand interactions and channel gating. We found pharmacological inhibitors and ATP enrich a channel conformation in which the Kir6.2 cytoplasmic domain is closely associated with the transmembrane domain, while depleting one where the Kir6.2 cytoplasmic domain is extended away into the cytoplasm. This conformational change remodels a network of intra- and inter-subunit interactions as well as the ATP and PIP2 binding pockets. The structures resolved key contacts between the distal N-terminus of Kir6.2 and SUR1's ABC module involving residues implicated in channel function and showed a SUR1 residue, K134, participates in PIP2 binding. Molecular dynamics simulations revealed two Kir6.2 residues, K39 and R54, that mediate both ATP and PIP2 binding, suggesting a mechanism for competitive gating by ATP and PIP2.
Collapse
Affiliation(s)
- Min Woo Sung
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, USA. https://twitter.com/MinWooSung5
| | - Camden M Driggers
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Barmak Mostofian
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - John D Russo
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Bruce L Patton
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Daniel M Zuckerman
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA.
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
11
|
Pipatpolkai T, Usher SG, Vedovato N, Ashcroft FM, Stansfeld PJ. The dynamic interplay of PIP 2 and ATP in the regulation of the K ATP channel. J Physiol 2022; 600:4503-4519. [PMID: 36047384 PMCID: PMC9825998 DOI: 10.1113/jp283345] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/04/2022] [Indexed: 01/11/2023] Open
Abstract
ATP-sensitive potassium (KATP ) channels couple the intracellular ATP concentration to insulin secretion. KATP channel activity is inhibited by ATP binding to the Kir6.2 tetramer and activated by phosphatidylinositol 4,5-bisphosphate (PIP2 ). Here, we use molecular dynamics simulation, electrophysiology and fluorescence spectroscopy to show that ATP and PIP2 occupy different binding pockets that share a single amino acid residue, K39. When both ligands are present, simulations suggest that K39 shows a greater preference to co-ordinate with PIP2 than with ATP. They also predict that a neonatal diabetes mutation at K39 (K39R) increases the number of hydrogen bonds formed between K39 and PIP2 , potentially accounting for the reduced ATP inhibition observed in electrophysiological experiments. Our work suggests that PIP2 and ATP interact allosterically to regulate KATP channel activity. KEY POINTS: The KATP channel is activated by the binding of phosphatidylinositol 4,5-bisphosphate (PIP2 ) lipids and inactivated by the binding of ATP. K39 has the potential to bind to both PIP2 and ATP. A mutation to this residue (K39R) results in neonatal diabetes. This study uses patch-clamp fluorometry, electrophysiology and molecular dynamics simulation. We show that PIP2 competes with ATP for K39, and this reduces channel inhibition by ATP. We show that K39R increases channel affinity to PIP2 by increasing the number of hydrogen bonds with PIP2 , when compared with the wild-type K39. This therefore decreases KATP channel inhibition by ATP.
Collapse
Affiliation(s)
- Tanadet Pipatpolkai
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordOxfordshireUK
- Department of BiochemistryUniversity of OxfordOxfordOxfordshireUK
- OXION Initiative in Ion Channels and DiseaseUniversity of OxfordOxfordOxfordshireUK
- Science for Life LaboratoryDepartment of Applied PhysicsKTH Royal Institute of TechnologySolnaSweden
| | - Samuel G. Usher
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordOxfordshireUK
- OXION Initiative in Ion Channels and DiseaseUniversity of OxfordOxfordOxfordshireUK
- Department of Drug Design and PharmacologyUniversity of CopenhagenCopenhagenDenmark
| | - Natascia Vedovato
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordOxfordshireUK
| | - Frances M. Ashcroft
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordOxfordshireUK
| | - Phillip J. Stansfeld
- School of Life SciencesUniversity of WarwickCoventryWarwickshireUK
- Department of ChemistryUniversity of WarwickCoventryWarwickshireUK
| |
Collapse
|
12
|
Wang Z, Bian W, Yan Y, Zhang DM. Functional Regulation of K ATP Channels and Mutant Insight Into Clinical Therapeutic Strategies in Cardiovascular Diseases. Front Pharmacol 2022; 13:868401. [PMID: 35837280 PMCID: PMC9274113 DOI: 10.3389/fphar.2022.868401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
ATP-sensitive potassium channels (KATP channels) play pivotal roles in excitable cells and link cellular metabolism with membrane excitability. The action potential converts electricity into dynamics by ion channel-mediated ion exchange to generate systole, involved in every heartbeat. Activation of the KATP channel repolarizes the membrane potential and decreases early afterdepolarization (EAD)-mediated arrhythmias. KATP channels in cardiomyocytes have less function under physiological conditions but they open during severe and prolonged anoxia due to a reduced ATP/ADP ratio, lessening cellular excitability and thus preventing action potential generation and cell contraction. Small active molecules activate and enhance the opening of the KATP channel, which induces the repolarization of the membrane and decreases the occurrence of malignant arrhythmia. Accumulated evidence indicates that mutation of KATP channels deteriorates the regulatory roles in mutation-related diseases. However, patients with mutations in KATP channels still have no efficient treatment. Hence, in this study, we describe the role of KATP channels and subunits in angiocardiopathy, summarize the mutations of the KATP channels and the functional regulation of small active molecules in KATP channels, elucidate the potential mechanisms of mutant KATP channels and provide insight into clinical therapeutic strategies.
Collapse
Affiliation(s)
- Zhicheng Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Weikang Bian
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yufeng Yan
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Dai-Min Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Zhao C, MacKinnon R. Molecular structure of an open human K ATP channel. Proc Natl Acad Sci U S A 2021; 118:e2112267118. [PMID: 34815345 PMCID: PMC8640745 DOI: 10.1073/pnas.2112267118] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2021] [Indexed: 11/18/2022] Open
Abstract
KATP channels are metabolic sensors that translate intracellular ATP/ADP balance into membrane excitability. The molecular composition of KATP includes an inward-rectifier potassium channel (Kir) and an ABC transporter-like sulfonylurea receptor (SUR). Although structures of KATP have been determined in many conformations, in all cases, the pore in Kir is closed. Here, we describe human pancreatic KATP (hKATP) structures with an open pore at 3.1- to 4.0-Å resolution using single-particle cryo-electron microscopy (cryo-EM). Pore opening is associated with coordinated structural changes within the ATP-binding site and the channel gate in Kir. Conformational changes in SUR are also observed, resulting in an area reduction of contact surfaces between SUR and Kir. We also observe that pancreatic hKATP exhibits the unique (among inward-rectifier channels) property of PIP2-independent opening, which appears to be correlated with a docked cytoplasmic domain in the absence of PIP2.
Collapse
Affiliation(s)
- Chen Zhao
- HHMI, The Rockefeller University, New York, NY 10065
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY 10065
| | - Roderick MacKinnon
- HHMI, The Rockefeller University, New York, NY 10065;
- Laboratory of Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY 10065
| |
Collapse
|
14
|
Woodbury DJ, Whitt EC, Coffman RE. A review of TNP-ATP in protein binding studies: benefits and pitfalls. BIOPHYSICAL REPORTS 2021; 1:100012. [PMID: 36425312 PMCID: PMC9680771 DOI: 10.1016/j.bpr.2021.100012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/03/2021] [Indexed: 06/16/2023]
Abstract
We review 50 years of use of 2',3'-O-trinitrophenyl (TNP)-ATP, a fluorescently tagged ATP analog. It has been extensively used to detect binding interactions of ATP to proteins and to measure parameters of those interactions such as the dissociation constant, Kd, or inhibitor dissociation constant, Ki. TNP-ATP has also found use in other applications, for example, as a fluorescence marker in microscopy, as a FRET pair, or as an antagonist (e.g., of P2X receptors). However, its use in protein binding studies has limitations because the TNP moiety often enhances binding affinity, and the fluorescence changes that occur with binding can be masked or mimicked in unexpected ways. The goal of this review is to provide a clear perspective of the pros and cons of using TNP-ATP to allow for better experimental design and less ambiguous data in future experiments using TNP-ATP and other TNP nucleotides.
Collapse
Affiliation(s)
- Dixon J. Woodbury
- Department of Cell Biology and Physiology
- Neuroscience Center, Brigham Young University, Provo, Utah
| | | | | |
Collapse
|
15
|
Pipatpolkai T, Quetschlich D, Stansfeld PJ. From Bench to Biomolecular Simulation: Phospholipid Modulation of Potassium Channels. J Mol Biol 2021; 433:167105. [PMID: 34139216 PMCID: PMC8361781 DOI: 10.1016/j.jmb.2021.167105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/05/2022]
Abstract
Potassium (K+) ion channels are crucial in numerous cellular processes as they hyperpolarise a cell through K+ conductance, returning a cell to its resting potential. K+ channel mutations result in multiple clinical complications such as arrhythmia, neonatal diabetes and migraines. Since 1995, the regulation of K+ channels by phospholipids has been heavily studied using a range of interdisciplinary methods such as cellular electrophysiology, structural biology and computational modelling. As a result, K+ channels are model proteins for the analysis of protein-lipid interactions. In this review, we will focus on the roles of lipids in the regulation of K+ channels, and how atomic-level structures, along with experimental techniques and molecular simulations, have helped guide our understanding of the importance of phospholipid interactions.
Collapse
Affiliation(s)
- Tanadet Pipatpolkai
- Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK; Department of Physiology Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK; OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford OX1 3PT, UK
| | - Daniel Quetschlich
- Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK; Department of Chemistry, South Parks Road, Oxford OX1 3QZ, UK
| | - Phillip J Stansfeld
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
16
|
Production and purification of ATP-sensitive potassium channel particles for cryo-electron microscopy. Methods Enzymol 2021; 653:121-150. [PMID: 34099169 DOI: 10.1016/bs.mie.2021.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
ATP-sensitive potassium (KATP) channels are multimeric protein complexes made of four inward rectifying potassium channel (Kir6.x) subunits and four ABC protein sulfonylurea receptor (SURx) subunits. Kir6.x subunits form the potassium ion conducting pore of the channel, and SURx functions to regulate Kir6.x. Kir6.x and SURx are uniquely dependent on each other for expression and function. In pancreatic β-cells, channels comprising SUR1 and Kir6.2 mediate glucose-stimulated insulin secretion and are the targets of antidiabetic sulfonylureas. Mutations in genes encoding SUR1 or Kir6.2 are linked to insulin secretion disorders, with loss- or gain-of-function mutations causing congenital hyperinsulinism or neonatal diabetes mellitus, respectively. Defects in the KATP channel in other tissues underlie human diseases of the cardiovascular and nervous systems. Key to understanding how channels are regulated by physiological and pharmacological ligands and how mutations disrupt channel assembly or gating to cause disease is the ability to observe structural changes associated with subunit interactions and ligand binding. While recent advances in the structural method of single-particle cryo-electron microscopy (cryoEM) offers direct visualization of channel structures, success of obtaining high-resolution structures is dependent on highly concentrated, homogeneous KATP channel particles. In this chapter, we describe a method for expressing KATP channels in mammalian cell culture, solubilizing the channel in detergent micelles and purifying KATP channels using an affinity tag to the SURx subunit for cryoEM structural studies.
Collapse
|
17
|
Abstract
Fluorescence spectroscopy and microscopy are non-destructive methods that provide real-time measurements of ion channel structural dynamics. As such, they constitute a direct path linking the high-resolution structural models from X-ray crystallography and cryo-electron microscopy with the high-resolution functional data from ionic current measurements. The utility of fluorescence as a reporter of channel structure is limited by the palette of available fluorophores. Thiol-reactive fluorophores are small and bright, but are restricted in terms of the positions on a protein that can be labeled and present significant issues with background incorporation. Genetically encoded fluorescent protein tags are specific to a protein of interest, but are very large and usually only used to label the free N- and C-termini of proteins. L-3-(6-acetylnaphthalen-2-ylamino)-2-aminopropionic acid (ANAP) is a fluorescent amino acid that can be specifically incorporated into virtually any site on a protein of interest using amber stop-codon suppression. Due to its environmental sensitivity and potential as a donor in fluorescence resonance energy transfer experiments, it has been adopted by numerous investigators to study voltage, ligand, and temperature-dependent activation of a host of ion channels. Simultaneous measurements of ionic currents and ANAP fluorescence yield exceptional mechanistic insights into channel function. In this chapter, I will summarize the current literature regarding ANAP and ion channels and discuss the practical aspects of using ANAP, including potential pitfalls and confounds.
Collapse
|
18
|
Braun N, Sheikh ZP, Pless SA. The current chemical biology tool box for studying ion channels. J Physiol 2020; 598:4455-4471. [DOI: 10.1113/jp276695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- N. Braun
- Department of Drug Design and Pharmacology University of Copenhagen Jagtvej 160 Copenhagen 2100 Denmark
| | - Z. P. Sheikh
- Department of Drug Design and Pharmacology University of Copenhagen Jagtvej 160 Copenhagen 2100 Denmark
| | - S. A. Pless
- Department of Drug Design and Pharmacology University of Copenhagen Jagtvej 160 Copenhagen 2100 Denmark
| |
Collapse
|
19
|
Usher SG, Ashcroft FM, Puljung MC. Nucleotide inhibition of the pancreatic ATP-sensitive K+ channel explored with patch-clamp fluorometry. eLife 2020; 9:52775. [PMID: 31909710 PMCID: PMC7004565 DOI: 10.7554/elife.52775] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ATP-sensitive K+ channels (KATP) comprise four inward rectifier subunits (Kir6.2), each associated with a sulphonylurea receptor (SUR1). ATP/ADP binding to Kir6.2 shuts KATP. Mg-nucleotide binding to SUR1 stimulates KATP. In the absence of Mg2+, SUR1 increases the apparent affinity for nucleotide inhibition at Kir6.2 by an unknown mechanism. We simultaneously measured channel currents and nucleotide binding to Kir6.2. Fits to combined data sets suggest that KATP closes with only one nucleotide molecule bound. A Kir6.2 mutation (C166S) that increases channel activity did not affect nucleotide binding, but greatly perturbed the ability of bound nucleotide to inhibit KATP. Mutations at position K205 in SUR1 affected both nucleotide affinity and the ability of bound nucleotide to inhibit KATP. This suggests a dual role for SUR1 in KATP inhibition, both in directly contributing to nucleotide binding and in stabilising the nucleotide-bound closed state.
Collapse
Affiliation(s)
- Samuel G Usher
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Michael C Puljung
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|