1
|
Roberto GM, Boutet A, Keil S, Del Guidice E, Duramé E, Tremblay MG, Moss T, Therrien M, Emery G. Tao and Rap2l ensure proper Misshapen activation and levels during Drosophila border cell migration. Dev Cell 2025; 60:119-132.e6. [PMID: 39393350 DOI: 10.1016/j.devcel.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/26/2024] [Accepted: 09/12/2024] [Indexed: 10/13/2024]
Abstract
Collective cell migration is fundamental in development, wound healing, and metastasis. During Drosophila oogenesis, border cells (BCs) migrate collectively inside the egg chamber, controlled by the Ste20-like kinase Misshapen (Msn). Msn coordinates the restriction of protrusion formation and contractile forces within the cluster. Here, we demonstrate that Tao acts as an upstream activator of Msn in BCs. Depleting Tao significantly impedes BC migration, producing a phenotype similar to Msn loss of function. Furthermore, we show that the localization of Msn relies on its citron homology (CNH) domain, which interacts with the small GTPase Rap2l. Rap2l promotes the trafficking of Msn to the endolysosomal pathway. Depleting Rap2l elevates Msn levels by reducing its trafficking into late endosomes and increases overall contractility. These data suggest that Tao promotes Msn activation, while global Msn protein levels are controlled via Rap2l and the endolysosomal degradation pathway. Thus, two mechanisms ensure appropriate Msn levels and activation in BCs.
Collapse
Affiliation(s)
- Gabriela Molinari Roberto
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, QC H3C 3J7, Canada
| | - Alison Boutet
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, QC H3C 3J7, Canada
| | - Sarah Keil
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, QC H3C 3J7, Canada
| | - Emmanuelle Del Guidice
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, QC H3C 3J7, Canada
| | - Eloïse Duramé
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, QC H3C 3J7, Canada
| | - Michel G Tremblay
- St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Laval University, Québec, QC, Canada
| | - Tom Moss
- St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Laval University, Québec, QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, QC, Canada; Cancer Research Centre, Laval University, Québec, QC, Canada
| | - Marc Therrien
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, QC H3C 3J7, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Gregory Emery
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, QC H3C 3J7, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
2
|
Chen Y, McDonald JA. Collective cell migration relies on PPP1R15-mediated regulation of the endoplasmic reticulum stress response. Curr Biol 2024; 34:1390-1402.e4. [PMID: 38428416 PMCID: PMC11003853 DOI: 10.1016/j.cub.2024.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/19/2023] [Accepted: 02/07/2024] [Indexed: 03/03/2024]
Abstract
Collective cell migration is integral to many developmental and disease processes. Previously, we discovered that protein phosphatase 1 (Pp1) promotes border cell collective migration in the Drosophila ovary. We now report that the Pp1 phosphatase regulatory subunit dPPP1R15 is a critical regulator of border cell migration. dPPP1R15 is an ortholog of mammalian PPP1R15 proteins that attenuate the endoplasmic reticulum (ER) stress response. We show that, in collectively migrating border cells, dPPP1R15 phosphatase restrains an active physiological protein kinase R-like ER kinase- (PERK)-eIF2α-activating transcription factor 4 (ATF4) stress pathway. RNAi knockdown of dPPP1R15 blocks border cell delamination from the epithelium and subsequent migration, increases eIF2α phosphorylation, reduces translation, and drives expression of the stress response transcription factor ATF4. We observe similar defects upon overexpression of ATF4 or the eIF2α kinase PERK. Furthermore, we show that normal border cells express markers of the PERK-dependent ER stress response and require PERK and ATF4 for efficient migration. In many other cell types, unresolved ER stress induces initiation of apoptosis. In contrast, border cells with chronic RNAi knockdown of dPPP1R15 survive. Together, our results demonstrate that the PERK-eIF2α-ATF4 pathway, regulated by dPPP1R15 activity, counteracts the physiological ER stress that occurs during collective border cell migration. We propose that in vivo collective cell migration is intrinsically "stressful," requiring tight homeostatic control of the ER stress response for collective cell cohesion, dynamics, and movement.
Collapse
Affiliation(s)
- Yujun Chen
- Division of Biology, Kansas State University, 1717 Claflin Road, Manhattan, KS 66506, USA
| | - Jocelyn A McDonald
- Division of Biology, Kansas State University, 1717 Claflin Road, Manhattan, KS 66506, USA.
| |
Collapse
|
3
|
Bhattacharya M, Starz-Gaiano M. Steroid hormone signaling synchronizes cell migration machinery, adhesion and polarity to direct collective movement. J Cell Sci 2024; 137:jcs261164. [PMID: 38323986 DOI: 10.1242/jcs.261164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Migratory cells - either individually or in cohesive groups - are critical for spatiotemporally regulated processes such as embryonic development and wound healing. Their dysregulation is the underlying cause of formidable health problems such as congenital abnormalities and metastatic cancers. Border cell behavior during Drosophila oogenesis provides an effective model to study temporally regulated, collective cell migration in vivo. Developmental timing in flies is primarily controlled by the steroid hormone ecdysone, which acts through a well-conserved, nuclear hormone receptor complex. Ecdysone signaling determines the timing of border cell migration, but the molecular mechanisms governing this remain obscure. We found that border cell clusters expressing a dominant-negative form of ecdysone receptor extended ineffective protrusions. Additionally, these clusters had aberrant spatial distributions of E-cadherin (E-cad), apical domain markers and activated myosin that did not overlap. Remediating their expression or activity individually in clusters mutant for ecdysone signaling did not restore proper migration. We propose that ecdysone signaling synchronizes the functional distribution of E-cadherin, atypical protein kinase C (aPKC), Discs large (Dlg1) and activated myosin post-transcriptionally to coordinate adhesion, polarity and contractility and temporally control collective cell migration.
Collapse
Affiliation(s)
- Mallika Bhattacharya
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Michelle Starz-Gaiano
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| |
Collapse
|
4
|
Berg C, Sieber M, Sun J. Finishing the egg. Genetics 2024; 226:iyad183. [PMID: 38000906 PMCID: PMC10763546 DOI: 10.1093/genetics/iyad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
Gamete development is a fundamental process that is highly conserved from early eukaryotes to mammals. As germ cells develop, they must coordinate a dynamic series of cellular processes that support growth, cell specification, patterning, the loading of maternal factors (RNAs, proteins, and nutrients), differentiation of structures to enable fertilization and ensure embryonic survival, and other processes that make a functional oocyte. To achieve these goals, germ cells integrate a complex milieu of environmental and developmental signals to produce fertilizable eggs. Over the past 50 years, Drosophila oogenesis has risen to the forefront as a system to interrogate the sophisticated mechanisms that drive oocyte development. Studies in Drosophila have defined mechanisms in germ cells that control meiosis, protect genome integrity, facilitate mRNA trafficking, and support the maternal loading of nutrients. Work in this system has provided key insights into the mechanisms that establish egg chamber polarity and patterning as well as the mechanisms that drive ovulation and egg activation. Using the power of Drosophila genetics, the field has begun to define the molecular mechanisms that coordinate environmental stresses and nutrient availability with oocyte development. Importantly, the majority of these reproductive mechanisms are highly conserved throughout evolution, and many play critical roles in the development of somatic tissues as well. In this chapter, we summarize the recent progress in several key areas that impact egg chamber development and ovulation. First, we discuss the mechanisms that drive nutrient storage and trafficking during oocyte maturation and vitellogenesis. Second, we examine the processes that regulate follicle cell patterning and how that patterning impacts the construction of the egg shell and the establishment of embryonic polarity. Finally, we examine regulatory factors that control ovulation, egg activation, and successful fertilization.
Collapse
Affiliation(s)
- Celeste Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065 USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
5
|
Burghardt E, Rakijas J, Tyagi A, Majumder P, Olson BJSC, McDonald JA. Transcriptome analysis reveals temporally regulated genetic networks during Drosophila border cell collective migration. BMC Genomics 2023; 24:728. [PMID: 38041052 PMCID: PMC10693066 DOI: 10.1186/s12864-023-09839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Collective cell migration underlies many essential processes, including sculpting organs during embryogenesis, wound healing in the adult, and metastasis of cancer cells. At mid-oogenesis, Drosophila border cells undergo collective migration. Border cells round up into a small group at the pre-migration stage, detach from the epithelium and undergo a dynamic and highly regulated migration at the mid-migration stage, and stop at the oocyte, their final destination, at the post-migration stage. While specific genes that promote cell signaling, polarization of the cluster, formation of protrusions, and cell-cell adhesion are known to regulate border cell migration, there may be additional genes that promote these distinct active phases of border cell migration. Therefore, we sought to identify genes whose expression patterns changed during border cell migration. RESULTS We performed RNA-sequencing on border cells isolated at pre-, mid-, and post-migration stages. We report that 1,729 transcripts, in nine co-expression gene clusters, are temporally and differentially expressed across the three migration stages. Gene ontology analyses and constructed protein-protein interaction networks identified genes expected to function in collective migration, such as regulators of the cytoskeleton, adhesion, and tissue morphogenesis, but also uncovered a notable enrichment of genes involved in immune signaling, ribosome biogenesis, and stress responses. Finally, we validated the in vivo expression and function of a subset of identified genes in border cells. CONCLUSIONS Overall, our results identified differentially and temporally expressed genetic networks that may facilitate the efficient development and migration of border cells. The genes identified here represent a wealth of new candidates to investigate the molecular nature of dynamic collective cell migrations in developing tissues.
Collapse
Affiliation(s)
- Emily Burghardt
- Division of Biology, Kansas State University, 116 Ackert Hall, 1717 Claflin Rd, Manhattan, KS, 66506, USA
| | - Jessica Rakijas
- Division of Biology, Kansas State University, 116 Ackert Hall, 1717 Claflin Rd, Manhattan, KS, 66506, USA
| | - Antariksh Tyagi
- Division of Biology, Kansas State University, 116 Ackert Hall, 1717 Claflin Rd, Manhattan, KS, 66506, USA
| | - Pralay Majumder
- Department of Life Sciences, Presidency University, Kolkata, 700073, West Bengal, India
| | - Bradley J S C Olson
- Division of Biology, Kansas State University, 116 Ackert Hall, 1717 Claflin Rd, Manhattan, KS, 66506, USA.
| | - Jocelyn A McDonald
- Division of Biology, Kansas State University, 116 Ackert Hall, 1717 Claflin Rd, Manhattan, KS, 66506, USA.
| |
Collapse
|
6
|
Messer CL, McDonald JA. Expect the unexpected: conventional and unconventional roles for cadherins in collective cell migration. Biochem Soc Trans 2023; 51:1495-1504. [PMID: 37387360 DOI: 10.1042/bst20221202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Migrating cell collectives navigate complex tissue environments both during normal development and in pathological contexts such as tumor invasion and metastasis. To do this, cells in collectives must stay together but also communicate information across the group. The cadherin superfamily of proteins mediates junctional adhesions between cells, but also serve many essential functions in collective cell migration. Besides keeping migrating cell collectives cohesive, cadherins help follower cells maintain their attachment to leader cells, transfer information about front-rear polarity among the cohort, sense and respond to changes in the tissue environment, and promote intracellular signaling, in addition to other cellular behaviors. In this review, we highlight recent studies that reveal diverse but critical roles for both classical and atypical cadherins in collective cell migration, specifically focusing on four in vivo model systems in development: the Drosophila border cells, zebrafish mesendodermal cells, Drosophila follicle rotation, and Xenopus neural crest cells.
Collapse
Affiliation(s)
- C Luke Messer
- Division of Biology, Kansas State University, Manhattan, KS 66502, U.S.A
| | - Jocelyn A McDonald
- Division of Biology, Kansas State University, Manhattan, KS 66502, U.S.A
| |
Collapse
|
7
|
Emery G. [I lead, follow me! How cells coordinate during collective migrations.]. Med Sci (Paris) 2023; 39:619-624. [PMID: 37695151 DOI: 10.1051/medsci/2023095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
During development and wound healing, cells frequently move in a so-called "collective cell migration" process. The same type of migration is used by some cancer cells during metastasis formation. A powerful model to study collective cell migration is the border cell cluster in Drosophila as it allows the observation and manipulation of a collective cell migration in its normal environment. This review describes the molecular machinery used by the border cells to migrate directionally, focusing on the mechanisms used to detect and reacts to chemoattractants, and to organise the group in leader and follower cells.
Collapse
Affiliation(s)
- Gregory Emery
- Unité de recherche en transport vésiculaire et signalisation cellulaire, Institut pour la recherche en immunologie et en cancérologie de l'université de Montréal (IRIC), Université de Montréal, Montréal, Québec H3C 3J7, Canada - Département de pathologie et biologie cellulaire, Faculté de médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
8
|
Shi H, Kong R, Miao X, Gou L, Yin X, Ding Y, Cao X, Meng Q, Gu M, Suo F. Decreased PPP1R3G in pre-eclampsia impairs human trophoblast invasion and migration via Akt/MMP-9 signaling pathway. Exp Biol Med (Maywood) 2023; 248:1373-1382. [PMID: 37642261 PMCID: PMC10657594 DOI: 10.1177/15353702231182214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/28/2023] [Indexed: 08/31/2023] Open
Abstract
Pre-eclampsia (PE) is a severe pregnancy complication characterized by impaired trophoblast invasion and spiral artery remodeling and can have serious consequences for both mother and child. Protein phosphatase 1 regulatory subunit 3G (PPP1R3G) is involved in numerous tumor-related biological processes. However, the biological action and underlying mechanisms of PPP1R3G in PE progression remain unclear. We used western blotting and immunohistochemistry to investigate PPP1R3G expression in gestational age-matched pre-eclamptic and normal placental tissues. After lentivirus transfection, wound-healing, Transwell, cell-counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), and TdT mediateddUTP Nick End Labeling (TUNEL) assays were used to assess trophoblast migration, invasion, proliferation, and apoptosis, respectively. The relative expression levels of PPP1R3G and the proteins involved in the Akt signaling pathway were determined using western blotting. The results showed that PPP1R3G levels were significantly lower in the placental tissues and GSE74341 microarray of the PE group than those of the healthy control group. We also found that neonatal weight and Apgar score were lower at birth, and peak systolic blood pressure and diastolic blood pressure were higher in the PE group than in the non-PE group. In addition, PPP1R3G knockdown decreased p-Akt/Akt expression and inhibited migration, invasion, and proliferation in HTR-8/SVneo trophoblasts but had no discernible effect on cell apoptosis. Furthermore, PPP1R3G positively regulated matrix metallopeptidase 9 (MMP-9), which was downregulated in placental tissues of pregnant women with PE. These results provided the first evidence that the reduced levels of PPP1R3G might contribute to PE by suppressing the invasion and migration of trophoblasts and targeting the Akt/MMP-9 signaling pathway.
Collapse
Affiliation(s)
- Huimin Shi
- Department of Obstetrics, Xuzhou Cancer Hospital, Xuzhou 221005, Jiangsu Province, China
| | - Renyu Kong
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Xu Miao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Lingshan Gou
- Center for Genetic Medicine, Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, 46 Heping Road, Xuzhou 221009, Jiangsu Province, China
| | - Xin Yin
- Center for Genetic Medicine, Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, 46 Heping Road, Xuzhou 221009, Jiangsu Province, China
| | - Yuning Ding
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiliang Cao
- Department of Urology, Xuzhou No. 1 People’s Hospital, the Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Qingyong Meng
- Department of Obstetrics, Xuzhou Maternal and Child Health Hospital Affiliated to Xuzhou Medical University, Xuzhou 221009, Jiangsu Province, China
| | - Maosheng Gu
- Center for Genetic Medicine, Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, 46 Heping Road, Xuzhou 221009, Jiangsu Province, China
| | - Feng Suo
- Center for Genetic Medicine, Maternity and Child Health Care Hospital Affiliated to Xuzhou Medical University, 46 Heping Road, Xuzhou 221009, Jiangsu Province, China
| |
Collapse
|
9
|
Trivedi S, Bhattacharya M, Starz-Gaiano M. Mind bomb 2 promotes cell migration and epithelial structure by regulating adhesion complexes and the actin cytoskeleton. Dev Biol 2022; 491:94-104. [PMID: 36067835 DOI: 10.1016/j.ydbio.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 07/29/2022] [Accepted: 08/27/2022] [Indexed: 11/03/2022]
Abstract
Cell migration is essential in animal development and co-opted during metastasis and inflammatory diseases. Some cells migrate collectively, which requires them to balance epithelial characteristics such as stable cell-cell adhesions with features of motility like rapid turnover of adhesions and dynamic cytoskeletal structures. How this is regulated is not entirely clear but important to understand. While investigating Drosophila oogenesis, we found that the putative E3 ubiquitin ligase, Mind bomb 2 (Mib2), is required to promote epithelial stability and the collective cell migration of border cells. Through biochemical analysis, we identified components of Mib2 complexes, which include E-cadherin and α- and β-catenins, as well as actin regulators. We also found that three Mib2 interacting proteins, RhoGAP19D, Supervillin, and Myosin heavy chain-like, affect border cell migration. mib2 mutant main body follicle cells have drastically reduced E-cadherin-based adhesion complexes and diminished actin filaments. We conclude that Mib2 acts to stabilize E-cadherin-based adhesion complexes and promote a robust actin cytoskeletal network, which is important for maintenance of epithelial integrity. The interaction with cadherin adhesion complexes and other cytoskeletal regulators contribute to its role in collective cell migration. Since Mib2 is well conserved, it may have similar functional significance in other organisms.
Collapse
Affiliation(s)
- Sunny Trivedi
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Mallika Bhattacharya
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Michelle Starz-Gaiano
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA.
| |
Collapse
|
10
|
Miao G, Guo L, Montell DJ. Border cell polarity and collective migration require the spliceosome component Cactin. J Cell Biol 2022; 221:213245. [PMID: 35612426 PMCID: PMC9136304 DOI: 10.1083/jcb.202202146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/22/2022] [Accepted: 05/09/2022] [Indexed: 01/07/2023] Open
Abstract
Border cells are an in vivo model for collective cell migration. Here, we identify the gene cactin as essential for border cell cluster organization, delamination, and migration. In Cactin-depleted cells, the apical proteins aPKC and Crumbs (Crb) become abnormally concentrated, and overall cluster polarity is lost. Apically tethering excess aPKC is sufficient to cause delamination defects, and relocalizing apical aPKC partially rescues delamination. Cactin is conserved from yeast to humans and has been implicated in diverse processes. In border cells, Cactin's evolutionarily conserved spliceosome function is required. Whole transcriptome analysis revealed alterations in isoform expression in Cactin-depleted cells. Mutations in two affected genes, Sec23 and Sec24CD, which traffic Crb to the apical cell surface, partially rescue border cell cluster organization and migration. Overexpression of Rab5 or Rab11, which promote Crb and aPKC recycling, similarly rescues. Thus, a general splicing factor is specifically required for coordination of cluster polarity and migration, and migrating border cells are particularly sensitive to splicing and cell polarity disruptions.
Collapse
Affiliation(s)
- Guangxia Miao
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA,Guangxia Miao:
| | - Li Guo
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA
| | - Denise J. Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, Santa Barbara, CA,Correspondence to Denise Montell:
| |
Collapse
|
11
|
Oslin K, Reho JJ, Lu Y, Khanal S, Kenchegowda D, Prior SJ, Fisher SA. Tissue-specific expression of myosin phosphatase subunits and isoforms in smooth muscle of mice and humans. Am J Physiol Regul Integr Comp Physiol 2022; 322:R281-R291. [PMID: 35107022 PMCID: PMC8917933 DOI: 10.1152/ajpregu.00196.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 11/22/2022]
Abstract
Alternative splicing of exon24 (E24) of myosin phosphatase targeting subunit 1 (Mypt1) by setting sensitivity to nitric oxide (NO)/cGMP-mediated relaxation is a key determinant of smooth muscle function. Here we defined expression of myosin phosphatase (MP) subunits and isoforms by creation of new genetic mouse models, assay of human and mouse tissues, and query of public databases. A Mypt1-LacZ reporter mouse revealed that Mypt1 transcription is turned on early in development during smooth muscle differentiation. Mypt1 is not as tightly restricted in its expression as smooth muscle myosin heavy chain (Myh11) and its E6 splice variant. Mypt1 is enriched in mature smooth versus nonmuscle cells. The E24 splice variant and leucine zipper minus protein isoform that it encodes is enriched in phasic versus tonic smooth muscle. In the vascular system, E24 splicing increases as vessel size decreases. In the gastrointestinal system, E24 splicing is most predominant in smooth muscle of the small intestine. Tissue-specific expression of MP subunits and Mypt1 E24 splicing is conserved in humans, whereas a splice variant of the inhibitory subunit (CPI-17) is unique to humans. A Mypt1 E24 mini-gene splicing reporter mouse generated to define patterns of E24 splicing in smooth muscle cells (SMCs) dispersed throughout the organ systems was unsuccessful. In summary, expression of Mypt1 and splicing of E24 is part of the program of smooth muscle differentiation, is further enhanced in phasic smooth muscle, and is conserved in humans. Its low-level expression in nonmuscle cells may confound its measurement in tissue samples.
Collapse
Affiliation(s)
- Kimberly Oslin
- University of Maryland-Baltimore Scholars Program, Baltimore, Maryland
| | - John J Reho
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yuan Lu
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Sunita Khanal
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Doreswamy Kenchegowda
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Steven J Prior
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland
- Baltimore Veterans Affairs Geriatric Research Education and Clinical Center, and Research and Development Service, Baltimore, Maryland
| | - Steven A Fisher
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
12
|
Zhao AJ, Montes-Laing J, Perry WMG, Shiratori M, Merfeld E, Rogers SL, Applewhite DA. The Drosophila spectraplakin Short stop regulates focal adhesion dynamics by crosslinking microtubules and actin. Mol Biol Cell 2022; 33:ar19. [PMID: 35235367 PMCID: PMC9282009 DOI: 10.1091/mbc.e21-09-0434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The spectraplakin family of proteins includes ACF7/MACF1 and BPAG1/dystonin in mammals, VAB-10 in Caenorhabditis elegans, Magellan in zebrafish, and Short stop (Shot), the sole Drosophila member. Spectraplakins are giant cytoskeletal proteins that cross-link actin, microtubules, and intermediate filaments, coordinating the activity of the entire cytoskeleton. We examined the role of Shot during cell migration using two systems: the in vitro migration of Drosophila tissue culture cells and in vivo through border cell migration. RNA interference (RNAi) depletion of Shot increases the rate of random cell migration in Drosophila tissue culture cells as well as the rate of wound closure during scratch-wound assays. This increase in cell migration prompted us to analyze focal adhesion dynamics. We found that the rates of focal adhesion assembly and disassembly were faster in Shot-depleted cells, leading to faster adhesion turnover that could underlie the increased migration speeds. This regulation of focal adhesion dynamics may be dependent on Shot being in an open confirmation. Using Drosophila border cells as an in vivo model for cell migration, we found that RNAi depletion led to precocious border cell migration. Collectively, these results suggest that spectraplakins not only function to cross-link the cytoskeleton but may regulate cell–matrix adhesion.
Collapse
Affiliation(s)
- Andrew J Zhao
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Julia Montes-Laing
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Wick M G Perry
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Mari Shiratori
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Emily Merfeld
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Stephen L Rogers
- Department of Biology & Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Campus Box 3280, 422 Fordham Hall, Chapel Hill, NC 27599-3280, USA
| | - Derek A Applewhite
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| |
Collapse
|
13
|
Kotian N, Troike KM, Curran KN, Lathia JD, McDonald JA. A Drosophila RNAi screen reveals conserved glioblastoma-related adhesion genes that regulate collective cell migration. G3 GENES|GENOMES|GENETICS 2022; 12:6388037. [PMID: 34849760 PMCID: PMC8728034 DOI: 10.1093/g3journal/jkab356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/06/2021] [Indexed: 11/14/2022]
Abstract
Abstract
Migrating cell collectives are key to embryonic development but also contribute to invasion and metastasis of a variety of cancers. Cell collectives can invade deep into tissues, leading to tumor progression and resistance to therapies. Collective cell invasion is also observed in the lethal brain tumor glioblastoma (GBM), which infiltrates the surrounding brain parenchyma leading to tumor growth and poor patient outcomes. Drosophila border cells, which migrate as a small cell cluster in the developing ovary, are a well-studied and genetically accessible model used to identify general mechanisms that control collective cell migration within native tissue environments. Most cell collectives remain cohesive through a variety of cell–cell adhesion proteins during their migration through tissues and organs. In this study, we first identified cell adhesion, cell matrix, cell junction, and associated regulatory genes that are expressed in human brain tumors. We performed RNAi knockdown of the Drosophila orthologs in border cells to evaluate if migration and/or cohesion of the cluster was impaired. From this screen, we identified eight adhesion-related genes that disrupted border cell collective migration upon RNAi knockdown. Bioinformatics analyses further demonstrated that subsets of the orthologous genes were elevated in the margin and invasive edge of human GBM patient tumors. These data together show that conserved cell adhesion and adhesion regulatory proteins with potential roles in tumor invasion also modulate collective cell migration. This dual screening approach for adhesion genes linked to GBM and border cell migration thus may reveal conserved mechanisms that drive collective tumor cell invasion.
Collapse
Affiliation(s)
- Nirupama Kotian
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Katie M Troike
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kristen N Curran
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | |
Collapse
|
14
|
Halder D, Mallick D, Chatterjee A, Jana SS. Nonmuscle Myosin II in cancer cell migration and mechanotransduction. Int J Biochem Cell Biol 2021; 139:106058. [PMID: 34400319 DOI: 10.1016/j.biocel.2021.106058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/16/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022]
Abstract
Cell migration is a key step of cancer metastasis, immune-cell navigation, homing of stem cells and development. What adds complexity to it is the heterogeneity of the tissue environment that gives rise to a vast diversity of migratory mechanisms utilized by cells. A majority of cell motility mechanisms reported elsewhere largely converge in depicting the importance of the activity and complexity of actomyosin networks in the cell. In this review, we highlight the less discussed functional diversity of these actomyosin complexes and describe in detail how the major cellular actin-binding molecular motor proteins, nonmuscle myosin IIs are regulated and how they participate and mechanically reciprocate to changes in the microenvironment during cancer cell migration and tumor progression. Understanding the role of nonmuscle myosin IIs in the cancer cell is important for designing efficient therapeutic strategies to prevent cancer metastasis.
Collapse
Affiliation(s)
- Debdatta Halder
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel(2)
| | - Ditipriya Mallick
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Ananya Chatterjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Siddhartha S Jana
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India.
| |
Collapse
|
15
|
Baeza V, Cifuentes M, Martínez F, Ramírez E, Nualart F, Ferrada L, Oviedo MJ, De Lima I, Troncoso N, Saldivia N, Salazar K. IIIG9 inhibition in adult ependymal cells changes adherens junctions structure and induces cellular detachment. Sci Rep 2021; 11:18537. [PMID: 34535732 PMCID: PMC8448829 DOI: 10.1038/s41598-021-97948-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022] Open
Abstract
Ependymal cells have multiple apical cilia that line the ventricular surfaces and the central canal of spinal cord. In cancer, the loss of ependymal cell polarity promotes the formation of different types of tumors, such as supratentorial anaplastic ependymomas, which are highly aggressive in children. IIIG9 (PPP1R32) is a protein restricted to adult ependymal cells located in cilia and in the apical cytoplasm and has unknown function. In this work, we studied the expression and localization of IIIG9 in the adherens junctions (cadherin/β-catenin-positive junctions) of adult brain ependymal cells using confocal and transmission electron microscopy. Through in vivo loss-of-function studies, ependymal denudation (single-dose injection experiments of inhibitory adenovirus) was observed, inducing the formation of ependymal cells with a "balloon-like" morphology. These cells had reduced cadherin expression (and/or delocalization) and cleavage of the cell death marker caspase-3, with "cilia rigidity" morphology (probably vibrational beating activity) and ventriculomegaly occurring prior to these events. Finally, after performing continuous infusions of adenovirus for 14 days, we observed total cell denudation and reactive parenchymal astrogliosis. Our data confirmed that IIIG9 is essential for the maintenance of adherens junctions of polarized ependymal cells. Eventually, altered levels of this protein in ependymal cell differentiation may increase ventricular pathologies, such as hydrocephalus or neoplastic transformation.
Collapse
Affiliation(s)
- Victor Baeza
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, 4030000, Concepcion, Chile
| | - Manuel Cifuentes
- Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, Malaga, Spain
- Andalusian Center for Nanomedicine and Biotechnology, BIONAND, Malaga, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, Malaga, Spain
| | - Fernando Martínez
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, 4030000, Concepcion, Chile
| | - Eder Ramírez
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, 4030000, Concepcion, Chile
| | - Francisco Nualart
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, 4030000, Concepcion, Chile
- Faculty of Biological Sciences, Center for Advanced Microscopy CMA BIOBIO, University of Concepcion, Concepcion, Chile
| | - Luciano Ferrada
- Faculty of Biological Sciences, Center for Advanced Microscopy CMA BIOBIO, University of Concepcion, Concepcion, Chile
| | - María José Oviedo
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, 4030000, Concepcion, Chile
| | - Isabelle De Lima
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, 4030000, Concepcion, Chile
| | - Ninoschka Troncoso
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, 4030000, Concepcion, Chile
| | - Natalia Saldivia
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, 4030000, Concepcion, Chile
| | - Katterine Salazar
- Laboratory of Neurobiology and Stem Cells, NeuroCellT, Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, 4030000, Concepcion, Chile.
- Faculty of Biological Sciences, Center for Advanced Microscopy CMA BIOBIO, University of Concepcion, Concepcion, Chile.
| |
Collapse
|
16
|
Berez A, Peercy BE, Starz-Gaiano M. Development and Analysis of a Quantitative Mathematical Model of Bistability in the Cross Repression System Between APT and SLBO Within the JAK/STAT Signaling Pathway. Front Physiol 2020; 11:803. [PMID: 32848815 PMCID: PMC7401978 DOI: 10.3389/fphys.2020.00803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/17/2020] [Indexed: 11/21/2022] Open
Abstract
Cell migration is a key component in development, homeostasis, immune function, and pathology. It is important to understand the molecular activity that allows some cells to migrate. Drosophila melanogaster is a useful model system because its genes are largely conserved with humans and it is straightforward to study biologically. The well-conserved transcriptional regulator Signal Transducer and Activator of Transcription (STAT) promotes cell migration, but its signaling is modulated by downstream targets Apontic (APT) and Slow Border Cells (SLBO). Inhibition of STAT activity by APT and cross-repression of APT and SLBO determines whether an epithelial cell in the Drosophila egg chamber becomes motile or remains stationary. Through mathematical modeling and analysis, we examine how the interaction of STAT, APT, and SLBO creates bistability in the Janus Kinase (JAK)/STAT signaling pathway. In this paper, we update and analyze earlier models to represent mechanistically the processes of the JAK/STAT pathway. We utilize parameter, bifurcation, and phase portrait analyses, and make reductions to the system to produce a minimal three-variable quantitative model. We analyze the manifold between migratory and stationary steady states in this minimal model and show that when the initial conditions of our model are near this manifold, cell migration can be delayed.
Collapse
Affiliation(s)
- Alyssa Berez
- Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Bradford E Peercy
- Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Michelle Starz-Gaiano
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States
| |
Collapse
|