1
|
Slater AS, McDonald AG, Hickey RM, Davey GP. Glycosyltransferases: glycoengineers in human milk oligosaccharide synthesis and manufacturing. Front Mol Biosci 2025; 12:1587602. [PMID: 40370521 PMCID: PMC12074965 DOI: 10.3389/fmolb.2025.1587602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/11/2025] [Indexed: 05/16/2025] Open
Abstract
Human milk oligosaccharides (HMOs) are a diverse group of complex carbohydrates that play crucial roles in infant health, promoting a beneficial gut microbiota, modulating immune responses, and protecting against pathogens. Central to the synthesis of HMOs are glycosyltransferases, a specialized class of enzymes that catalyse the transfer of sugar moieties to form the complex glycan structures characteristic of HMOs. This review provides an in-depth analysis of glycosyltransferases, beginning with their classification based on structural and functional characteristics. The catalytic activity of these enzymes is explored, highlighting the mechanisms by which they facilitate the precise addition of monosaccharides in HMO biosynthesis. Structural insights into glycosyltransferases are also discussed, shedding light on how their conformational features enable specific glycosidic bond formations. This review maps out the key biosynthetic pathways involved in HMO production, including the synthesis of lactose, and subsequent fucosylation and sialylation processes, all of which are intricately regulated by glycosyltransferases. Industrial methods for HMO synthesis, including chemical, enzymatic, and microbial approaches, are examined, emphasizing the role of glycosyltransferases in these processes. Finally, the review discusses future directions in glycosyltransferase research, particularly in enhancing the efficiency of HMO synthesis and developing advanced analytical techniques to better understand the structural complexity and biological functions of HMOs.
Collapse
Affiliation(s)
- Alanna S. Slater
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Andrew G. McDonald
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Rita M. Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Gavin P. Davey
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
De Marco M, Rai SR, Scietti L, Mattoteia D, Liberi S, Moroni E, Pinnola A, Vetrano A, Iacobucci C, Santambrogio C, Colombo G, Forneris F. Molecular structure and enzymatic mechanism of the human collagen hydroxylysine galactosyltransferase GLT25D1/COLGALT1. Nat Commun 2025; 16:3624. [PMID: 40240392 PMCID: PMC12003778 DOI: 10.1038/s41467-025-59017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 04/08/2025] [Indexed: 04/18/2025] Open
Abstract
During collagen biosynthesis, lysine residues undergo extensive post-translational modifications through the alternate action of two distinct metal ion-dependent enzyme families (i.e., LH/PLODs and GLT25D/COLGALT), ultimately producing the highly conserved α-(1,2)-glucosyl-β-(1,O)-galactosyl-5-hydroxylysine pattern. Malfunctions in these enzymes are linked to developmental pathologies and extracellular matrix alterations associated to enhanced aggressiveness of solid tumors. Here, we characterized human GLT25D1/COLGALT1, revealing an elongated head-to-head homodimeric assembly. Each monomer encompasses two domains (named GT1 and GT2), both unexpectedly capable of binding metal ion cofactors and UDP-α-galactose donor substrates, resulting in four candidate catalytic sites per dimer. We identify the catalytic site in GT2, featuring an unusual Glu-Asp-Asp motif critical for Mn2+ binding, ruling out direct catalytic roles for the GT1 domain, but showing that in this domain the unexpectedly bound Ca2+ and UDP-α-galactose cofactors are critical for folding stability. Dimerization, albeit not essential for GLT25D1/COLGALT1 activity, provides a critical molecular contact site for multi-enzyme assembly interactions with partner multifunctional LH/PLOD lysyl hydroxylase-glycosyltransferase enzymes.
Collapse
Grants
- MFAG 20075, BRIDGE 27004 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- Rarer Types EDS Grant 2022 Ehlers-Danlos Society (EDS)
- CDA 2013 Giovanni Armenise-Harvard Foundation
- NextGeneration-EU PNRR MUR M4C2 PE00000007 INF-ACT Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN PNRR 2022 P20224WAME Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN PNRR 2022 P20224WAME Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- Piano Operativo Salute, IMMUNO-HUB Ministero della Salute (Ministry of Health, Italy)
- regional law n° 9/2020, resolution n° 3776/2020 Regione Lombardia (Region of Lombardy)
- Please update "Ministero dell'Istruzione, dell'Università e della Ricerca" with "Ministero dell'Università e della Ricerca (MUR)"
Collapse
Affiliation(s)
- Matteo De Marco
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100, Pavia, Italy
| | - Sristi Raj Rai
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100, Pavia, Italy
| | - Luigi Scietti
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100, Pavia, Italy
- Biochemistry and Structural Biology Unit, Department of Experimental Oncology, IRCCS European Institute of Oncology (IEO), Via Adamello 16, 20139, Milan, Italy
| | - Daiana Mattoteia
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100, Pavia, Italy
| | - Stefano Liberi
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100, Pavia, Italy
| | | | - Alberta Pinnola
- BioPhotoLab, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100, Pavia, Italy
| | - Alice Vetrano
- Department of Physical and Chemical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Claudio Iacobucci
- Department of Physical and Chemical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, Via Taramelli 12, Pavia, Italy
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9A, 27100, Pavia, Italy.
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
3
|
Patel DH, Karimullina E, Guo Y, Semper C, Patel DT, Emde T, Borek D, Savchenko A. Cryo-EM SPR structures of Salmonella typhimurium ArnC; the key enzyme in lipid-A modification conferring polymyxin resistance. Protein Sci 2025; 34:e70037. [PMID: 39865303 PMCID: PMC11761694 DOI: 10.1002/pro.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/05/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
Polymyxins are last-resort antimicrobial peptides administered clinically against multi-drug resistant bacteria, specifically in the case of Gram-negative species. However, an increasing number of these pathogens employ a defense strategy that involves a relay of enzymes encoded by the pmrE (ugd) loci and the arnBCDTEF operon. The pathway modifies the lipid-A component of the outer membrane (OM) lipopolysaccharide (LPS) by adding a 4-amino-4-deoxy-l-arabinose (L-Ara4N) headgroup, which renders polymyxins ineffective. Here, we report the cryo-EM SPR structures of glycosyltransferase ArnC from Salmonella typhimurium determined in apo and UDP-bound forms at resolutions 2.75 Å and 3.8 Å, respectively. The structure of the ArnC protomer comprises three distinct regions: an N-terminal glycosyltransferase domain, transmembrane region, and the interface helices (IHs). ArnC forms a tetramer with C2 symmetry, where the C-terminal strand inserts into the adjacent protomer. This tetrameric state is further stabilized by two distinct interfaces formed by ArnC that form a network of hydrogen bonds and salt bridges. The binding of UDP induces conformational changes that stabilize the loop between residues H201 to S213, and part of the putative catalytic pocket formed by IH1 and IH2. The surface property analysis revealed a hydrophobic cavity formed by TM1 and TM2 in the apo state, which is disrupted upon UDP binding. The comparison of ArnC structures to their homologs GtrB and DPMS suggests the key residues involved in ArnC catalytic activity.
Collapse
Affiliation(s)
- Dhruvin H. Patel
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryAlbertaCanada
| | - Elina Karimullina
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryAlbertaCanada
| | - Yirui Guo
- Ligo AnalyticsDallasTexasUSA
- Department of BiophysicsThe University of Texas Southwestern Medical CenterDallasTexasUSA
| | - Cameron Semper
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryAlbertaCanada
| | - Deepak T. Patel
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryAlbertaCanada
| | - Tabitha Emde
- Department of BiophysicsThe University of Texas Southwestern Medical CenterDallasTexasUSA
| | - Dominika Borek
- Department of BiophysicsThe University of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiochemistryThe University of Texas Southwestern Medical CenterDallasTexasUSA
| | - Alexei Savchenko
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
4
|
Majeed HN, Shaheen S, Saleem S, Aleem S, Sattar N, Zahoor MK, Ahmad A. Structure Analysis and Site-Directed Mutagenesis of the Glycosyltransferase UGT71B8 Leads to Increased Stability and Substrate Activity in Arabidopsis thaliana. Crit Rev Eukaryot Gene Expr 2025; 35:1-12. [PMID: 39957589 DOI: 10.1615/critreveukaryotgeneexpr.2024054550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The uridine diphosphate-glycosyltransferase (UGT) family catalyses the glucuronidation of the glycosyl group of a nucleotide sugar to an acceptor compound (substrate), it serves as controlling reaction for bioactivity, storage and decrease toxicity of different compounds in living organisms. UGT71B8 belongs to 71B family of UGTs and its donor sugars are UDP glucose, UDP galactose and UDP 5S glucose, respectively. The current study was designed to induce site-directed mutagenesis (SDM) to investigate the activity in UGT71B8 enzyme. During first step, in silico conformational change through 3D structure model was drawn and it was found that all the amino acids of mutation site were found in allowed region. The relative surface accessibility (RSA) and absolute surface accessibility (ASA) of UGT71B8 were found as 0.042-0.037 and 7.424, respectively, which shows that UGT71B8 T138M remains stable after SDM. This prediction model thus led to the efficacious mutation of UGT71B8 enzyme. Mass spectrometric analysis of UGT71B8T138M showed reduced activity with its substrate UDP glucose and kaempherol as acceptor molecule. Moreover, no new substrate activity of UGT71B8 was found. This data would direct future endeavors to engineer more glycosyltransferases of plants to augment its activity with different substrates and provide a basis for more exploration of UGT71B8 as an active compound for potential anti-cancer therapeutics.
Collapse
Affiliation(s)
| | - Sumera Shaheen
- Department of Biochemistry, Government College Women University, Faisalabad, Pakistan
| | - Sadaf Saleem
- Department of Biochemistry, Government College Women University, Faisalabad, Pakistan
| | - Sobia Aleem
- Department of Biochemistry, Government College Women University, Faisalabad, Pakistan
| | - Naila Sattar
- Department of Biochemistry, Government College Women University, Faisalabad, Pakistan
| | | | - Aftab Ahmad
- Department of Biochemistry/US-Pakistan Centre for Advance Studies in Agriculture and Food Security (USPCAS-AFS), University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
5
|
Patel DT, Stogios PJ, Jaroszewski L, Urbanus ML, Sedova M, Semper C, Le C, Takkouche A, Ichii K, Innabi J, Patel DH, Ensminger AW, Godzik A, Savchenko A. Global atlas of predicted functional domains in Legionella pneumophila Dot/Icm translocated effectors. Mol Syst Biol 2025; 21:59-89. [PMID: 39562741 PMCID: PMC11696984 DOI: 10.1038/s44320-024-00076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
Legionella pneumophila utilizes the Dot/Icm type IVB secretion system to deliver hundreds of effector proteins inside eukaryotic cells to ensure intracellular replication. Our understanding of the molecular functions of the largest pathogenic arsenal known to the bacterial world remains incomplete. By leveraging advancements in 3D protein structure prediction, we provide a comprehensive structural analysis of 368 L. pneumophila effectors, representing a global atlas of predicted functional domains summarized in a database ( https://pathogens3d.org/legionella-pneumophila ). Our analysis identified 157 types of diverse functional domains in 287 effectors, including 159 effectors with no prior functional annotations. Furthermore, we identified 35 cryptic domains in 30 effector models that have no similarity with experimentally structurally characterized proteins, thus, hinting at novel functionalities. Using this analysis, we demonstrate the activity of thirteen functional domains, including three cryptic domains, predicted in L. pneumophila effectors to cause growth defects in the Saccharomyces cerevisiae model system. This illustrates an emerging strategy of exploring synergies between predictions and targeted experimental approaches in elucidating novel effector activities involved in infection.
Collapse
Affiliation(s)
- Deepak T Patel
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Peter J Stogios
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Lukasz Jaroszewski
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Malene L Urbanus
- Department of Biochemistry, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Mayya Sedova
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Cameron Semper
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Cathy Le
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Abraham Takkouche
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Keita Ichii
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Julie Innabi
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA
| | - Dhruvin H Patel
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Alexander W Ensminger
- Department of Biochemistry, University of Toronto, Toronto, ON, M5G 1M1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada.
| | - Adam Godzik
- University of California, Riverside, School of Medicine, Biosciences Division, Riverside, CA, USA.
| | - Alexei Savchenko
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 1A4, Canada.
| |
Collapse
|
6
|
Górniak I, Stephens Z, Erramilli SK, Gawda T, Kossiakoff AA, Zimmer J. Structural insights into translocation and tailored synthesis of hyaluronan. Nat Struct Mol Biol 2025; 32:161-171. [PMID: 39322765 PMCID: PMC11750622 DOI: 10.1038/s41594-024-01389-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/14/2024] [Indexed: 09/27/2024]
Abstract
Hyaluronan (HA) is an essential component of the vertebrate extracellular matrix. It is a heteropolysaccharide of N-acetylglucosamine (GlcNAc) and glucuronic acid (GlcA) reaching several megadaltons in healthy tissues. HA is synthesized and translocated in a coupled reaction by HA synthase (HAS). Here, structural snapshots of HAS provide insights into HA biosynthesis, from substrate recognition to HA elongation and translocation. We monitor the extension of a GlcNAc primer with GlcA, reveal the coordination of the uridine diphosphate product by a conserved gating loop and capture the opening of a translocation channel to coordinate a translocating HA polymer. Furthermore, we identify channel-lining residues that modulate HA product lengths. Integrating structural and biochemical analyses suggests an avenue for polysaccharide engineering based on finely tuned enzymatic activity and HA coordination.
Collapse
Affiliation(s)
- Ireneusz Górniak
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Zachery Stephens
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Tomasz Gawda
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Jochen Zimmer
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
7
|
Jagadeesh J, Vembar SS. Evolution of sequence, structural and functional diversity of the ubiquitous DNA/RNA-binding Alba domain. Sci Rep 2024; 14:30363. [PMID: 39638848 PMCID: PMC11621453 DOI: 10.1038/s41598-024-79937-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
The DNA/RNA-binding Alba domain is prevalent across all kingdoms of life. First discovered in archaea, this protein domain has evolved from RNA- to DNA-binding, with a concomitant expansion in the range of cellular processes that it regulates. Despite its widespread presence, the full extent of its sequence, structural, and functional diversity remains unexplored. In this study, we employed iterative searches in PSI-BLAST to identify 15,161 unique Alba domain-containing proteins from the NCBI non-redundant protein database. Sequence similarity network (SSN) analysis clustered them into 13 distinct subgroups, including the archaeal Alba and eukaryotic Rpp20/Pop7 and Rpp25/Pop6 groups, as well as novel fungal and Plasmodium-specific Albas. Sequence and structural conservation analysis of the subgroups indicated high preservation of the dimer interface, with Alba domains from unicellular eukaryotes notably exhibiting structural deviations towards their C-terminal end. Finally, phylogenetic analysis, while supporting SSN clustering, revealed the evolutionary branchpoint at which the eukaryotic Rpp20- and Rpp25-like clades emerged from archaeal Albas, and the subsequent taxonomic lineage-based divergence within each clade. Taken together, this comprehensive analysis enhances our understanding of the evolutionary history of Alba domain-containing proteins across diverse organisms.
Collapse
Affiliation(s)
- Jaiganesh Jagadeesh
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
| | | |
Collapse
|
8
|
Laugieri ME, Speciale I, Gimeno A, Lin S, Byers BW, Poveda A, Núñez‐Franco R, Iturrioz I, Moure MJ, Jiménez‐Osés G, Russo‐Krauss I, Notaro A, Van Etten JL, Lowary TL, Jimenez‐Barbero J, De Castro C, Tonetti M, Rojas AL. Unveiling the GT114 family: Structural characterization of A075L, a glycosyltransferase from Paramecium bursaria chlorella virus-1 (PBCV-1). Protein Sci 2024; 33:e5196. [PMID: 39555664 PMCID: PMC11571054 DOI: 10.1002/pro.5196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/28/2024] [Accepted: 10/10/2024] [Indexed: 11/19/2024]
Abstract
Protein A075L is a β-xylosyltransferase that participates in producing the core of the N-glycans found in VP54, the major viral capsid protein of Paramecium bursaria chlorella virus-1 (PBCV-1). In this study, we present an X-ray crystallographic analysis of the apo form of A075L, along with its complexes with the sugar donor and with a trisaccharide acceptor. The protein structure shows a typical GT-B folding, with two Rossmann-like fold domains, in which the acceptor substrate binds to the N-terminal region, and the nucleotide-sugar donor binds to the C-terminal region. We propose that the catalytic mechanism follows a direct displacement SN2-like reaction, where Asp73 serves as a catalytic base that deprotonates the incoming nucleophile of the acceptor, facilitating direct displacement of the UDP with the inversion of the anomeric configuration of the acceptor without metal ion dependence, while the interactions with side chains of Arg158 and Arg208 stabilize the developing negative charge. Using isothermal titration calorimetry, nuclear magnetic resonance spectroscopy, high-performance liquid chromatography, and molecular dynamics simulations, the catalytic activity and specificity of this enzyme have been unraveled.
Collapse
Affiliation(s)
| | | | - Ana Gimeno
- Basque Research and Technology Alliance (BRTA)Center for Cooperative Research in Biosciences (CIC bioGUNE)DerioSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| | - Sicheng Lin
- Department of ChemistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Brock W. Byers
- Department of ChemistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Ana Poveda
- Basque Research and Technology Alliance (BRTA)Center for Cooperative Research in Biosciences (CIC bioGUNE)DerioSpain
| | - Reyes Núñez‐Franco
- Basque Research and Technology Alliance (BRTA)Center for Cooperative Research in Biosciences (CIC bioGUNE)DerioSpain
| | - Idoia Iturrioz
- Basque Research and Technology Alliance (BRTA)Center for Cooperative Research in Biosciences (CIC bioGUNE)DerioSpain
| | - María J. Moure
- Basque Research and Technology Alliance (BRTA)Center for Cooperative Research in Biosciences (CIC bioGUNE)DerioSpain
| | - Gonzalo Jiménez‐Osés
- Basque Research and Technology Alliance (BRTA)Center for Cooperative Research in Biosciences (CIC bioGUNE)DerioSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| | - Irene Russo‐Krauss
- Department of Chemical SciencesUniversità di Napoli Federico IINaplesItaly
| | - Anna Notaro
- Department of Agricultural SciencesUniversità di Napoli Federico IIPorticiItaly
| | - James L. Van Etten
- Nebraska Centre for Virology and Department of Plant PathologyUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Todd L. Lowary
- Department of ChemistryUniversity of AlbertaEdmontonAlbertaCanada
- Institute of Biological ChemistryTaipeiTaiwan
- Institute of Biochemical SciencesNational Taiwan UniversityTaipeiTaiwan
| | - Jesús Jimenez‐Barbero
- Basque Research and Technology Alliance (BRTA)Center for Cooperative Research in Biosciences (CIC bioGUNE)DerioSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| | - Cristina De Castro
- Department of Chemical SciencesUniversità di Napoli Federico IINaplesItaly
| | | | - Adriana L. Rojas
- Basque Research and Technology Alliance (BRTA)Center for Cooperative Research in Biosciences (CIC bioGUNE)DerioSpain
| |
Collapse
|
9
|
Harding-Larsen D, Funk J, Madsen NG, Gharabli H, Acevedo-Rocha CG, Mazurenko S, Welner DH. Protein representations: Encoding biological information for machine learning in biocatalysis. Biotechnol Adv 2024; 77:108459. [PMID: 39366493 DOI: 10.1016/j.biotechadv.2024.108459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/19/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Enzymes offer a more environmentally friendly and low-impact solution to conventional chemistry, but they often require additional engineering for their application in industrial settings, an endeavour that is challenging and laborious. To address this issue, the power of machine learning can be harnessed to produce predictive models that enable the in silico study and engineering of improved enzymatic properties. Such machine learning models, however, require the conversion of the complex biological information to a numerical input, also called protein representations. These inputs demand special attention to ensure the training of accurate and precise models, and, in this review, we therefore examine the critical step of encoding protein information to numeric representations for use in machine learning. We selected the most important approaches for encoding the three distinct biological protein representations - primary sequence, 3D structure, and dynamics - to explore their requirements for employment and inductive biases. Combined representations of proteins and substrates are also introduced as emergent tools in biocatalysis. We propose the division of fixed representations, a collection of rule-based encoding strategies, and learned representations extracted from the latent spaces of large neural networks. To select the most suitable protein representation, we propose two main factors to consider. The first one is the model setup, which is influenced by the size of the training dataset and the choice of architecture. The second factor is the model objectives such as consideration about the assayed property, the difference between wild-type models and mutant predictors, and requirements for explainability. This review is aimed at serving as a source of information and guidance for properly representing enzymes in future machine learning models for biocatalysis.
Collapse
Affiliation(s)
- David Harding-Larsen
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Bygning 220, 2800 Kgs. Lyngby, Denmark
| | - Jonathan Funk
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Bygning 220, 2800 Kgs. Lyngby, Denmark
| | - Niklas Gesmar Madsen
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Bygning 220, 2800 Kgs. Lyngby, Denmark
| | - Hani Gharabli
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Bygning 220, 2800 Kgs. Lyngby, Denmark
| | - Carlos G Acevedo-Rocha
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Bygning 220, 2800 Kgs. Lyngby, Denmark
| | - Stanislav Mazurenko
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Ditte Hededam Welner
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Bygning 220, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
10
|
Vuong TV, Aghajohari M, Feng X, Woodstock AK, Nambiar DM, Sleiman ZC, Urbanowicz BR, Master ER. Enzymatic Routes to Designer Hemicelluloses for Use in Biobased Materials. JACS AU 2024; 4:4044-4065. [PMID: 39610758 PMCID: PMC11600177 DOI: 10.1021/jacsau.4c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 11/30/2024]
Abstract
Various enzymes can be used to modify the structure of hemicelluloses directly in vivo or following extraction from biomass sources, such as wood and agricultural residues. Generally, these enzymes can contribute to designer hemicelluloses through four main strategies: (1) enzymatic hydrolysis such as selective removal of side groups by glycoside hydrolases (GH) and carbohydrate esterases (CE), (2) enzymatic cross-linking, for instance, the selective addition of side groups by glycosyltransferases (GT) with activated sugars, (3) enzymatic polymerization by glycosynthases (GS) with activated glycosyl donors or transglycosylation, and (4) enzymatic functionalization, particularly via oxidation by carbohydrate oxidoreductases and via amination by amine transaminases. Thus, this Perspective will first highlight enzymes that play a role in regulating the degree of polymerization and side group composition of hemicelluloses, and subsequently, it will explore enzymes that enhance cross-linking capabilities and incorporate novel chemical functionalities into saccharide structures. These enzymatic routes offer a precise way to tailor the properties of hemicelluloses for specific applications in biobased materials, contributing to the development of renewable alternatives to conventional materials derived from fossil fuels.
Collapse
Affiliation(s)
- Thu V. Vuong
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Mohammad Aghajohari
- Department
of Textiles, Merchandising, and Interiors, University of Georgia, 305 Sanford Drive, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| | - Xuebin Feng
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Amanda K. Woodstock
- Department
of Biochemistry and Molecular Biology, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| | - Deepti M. Nambiar
- Department
of Biochemistry and Molecular Biology, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| | - Zeina C. Sleiman
- Department
of Biochemistry and Molecular Biology, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| | - Breeanna R. Urbanowicz
- Department
of Biochemistry and Molecular Biology, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| | - Emma R. Master
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Department
of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| |
Collapse
|
11
|
Promubon K, Tathiya K, Panya A, Pathom-Aree W, Sattayawat P. Computational-guided discovery of UDP-glycosyltransferases for lauryl glucoside production using engineered E. coli. BIORESOUR BIOPROCESS 2024; 11:103. [PMID: 39537908 PMCID: PMC11561197 DOI: 10.1186/s40643-024-00820-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Defining suitable enzymes for reaction steps in novel synthetic pathways is crucial for developing microbial cell factories for non-natural products. Here, we developed a computational workflow to identify C12 alcohol-active UDP-glycosyltransferases. The workflow involved three steps: (1) assembling initial candidates of putative UDP-glycosyltransferases, (2) refining selection by examining conserved regions, and (3) 3D structure prediction and molecular docking. Genomic sequences from Candida, Pichia, Rhizopus, and Thermotoga, known for lauryl glucoside synthesis via whole-cell biocatalysis, were screened. Out of 240 predicted glycosyltransferases, 8 candidates annotated as glycosyltransferases were selected after filtering out those with signal peptides and identifying conserved UDP-glycosyltransferase regions. These proteins underwent 3D structure prediction and molecular docking with 1-dodecanol. RO3G, a candidate from Rhizopus delemar RA 99-880 with a relatively high ChemPLP fitness score, was selected and expressed in Escherichia coli BL21 (DE3). It was further characterized using a feeding experiment with 1-dodecanol. Results confirmed that the RO3G-expressing strain could convert 1-dodecanol to lauryl glucoside, as quantified by HPLC and identified by targeted LC-MS. Monitoring the growth and fermentation profiles of the engineered strain revealed that RO3G expression did not affect cell growth. Interestingly, acetate, a major fermentation product, was reduced in the RO3G-expressing strain compared to the GFP-expressing strain, suggesting a redirection of flux from acetate to other pathways. Overall, this work presents a successful workflow for discovering UDP-glycosyltransferase enzymes with confirmed activity toward 1-dodecanol for lauryl glucoside production.
Collapse
Affiliation(s)
- Kasimaporn Promubon
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Master of Science Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kritsada Tathiya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Aussara Panya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cell Engineering for Cancer Therapy Research Group, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Cell Engineering for Cancer Therapy Research Group, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
12
|
Li H, Doray B, Jennings BC, Lee WS, Liu L, Kornfeld S, Li H. Structure of a truncated human GlcNAc-1-phosphotransferase variant reveals the basis for its hyperactivity. J Biol Chem 2024; 300:107706. [PMID: 39178950 PMCID: PMC11418123 DOI: 10.1016/j.jbc.2024.107706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
Mutations that cause loss of function of GlcNAc-1-phosphotransferase (PTase) lead to the lysosomal storage disorder mucolipidosis II. PTase is the key enzyme of the mannose 6-phosphate (M6P) targeting system that is responsible for tagging lysosomal hydrolases with the M6P moiety for their delivery to the lysosome. We had previously generated a truncated hyperactive form of PTase termed S1S3 which was shown to notably increase the phosphorylation level of secreted lysosomal enzymes and enhance their uptake by cells. Here, we report the 3.4 Å cryo-EM structure of soluble S1S3 lacking both transmembrane domains and cytosolic tails. The structure reveals a high degree of conservation of the catalytic core to full-length PTase. In this dimeric structure, the EF-hand of one protomer is observed interacting with the conserved region four of the other. In addition, we present a high-quality EM 3D map of the UDP-GlcNAc bound form of the full-length soluble protein showing the key molecular interactions between the nucleotide sugar donor and side chain amino acids of the protein. Finally, although the domain organization of S1S3 is very similar to that of the Drosophila melanogaster (fruit fly) PTase homolog, we establish that the latter does not act on lysosomal hydrolases.
Collapse
Affiliation(s)
- Hua Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Balraj Doray
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Benjamin C Jennings
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wang-Sik Lee
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lin Liu
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stuart Kornfeld
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA.
| |
Collapse
|
13
|
Pyle JD, Lund SR, O'Toole KH, Saleh L. Virus-encoded glycosyltransferases hypermodify DNA with diverse glycans. Cell Rep 2024; 43:114631. [PMID: 39154342 DOI: 10.1016/j.celrep.2024.114631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024] Open
Abstract
Enzymatic modification of DNA nucleobases can coordinate gene expression, nuclease protection, or mutagenesis. We recently discovered a clade of phage-specific cytosine methyltransferase (MT) and 5-methylpyrimidine dioxygenase (5mYOX) enzymes that produce 5-hydroxymethylcytosine (5hmC) as a precursor for enzymatic hypermodifications on viral genomes. Here, we identify phage MT- and 5mYOX-associated glycosyltransferases (GTs) that catalyze linkage of diverse sugars to 5hmC nucleobase substrates. Metavirome mining revealed thousands of biosynthetic gene clusters containing enzymes with predicted roles in cytosine sugar hypermodification. We developed a platform for high-throughput screening of GT-containing pathways, relying on the Escherichia coli metabolome as a substrate pool. We successfully reconstituted several pathways and isolated diverse sugar modifications appended to cytosine, including mono-, di-, or tri-saccharides comprised of hexoses, N-acetylhexosamines, or heptose. These findings expand our knowledge of hypermodifications on nucleic acids and the origins of corresponding sugar-installing enzymes.
Collapse
Affiliation(s)
- Jesse D Pyle
- Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Sean R Lund
- Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Katherine H O'Toole
- Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Lana Saleh
- Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA.
| |
Collapse
|
14
|
Kelly SD, Allas MJ, Goodridge LD, Lowary TL, Whitfield C. Structure, biosynthesis and regulation of the T1 antigen, a phase-variable surface polysaccharide conserved in many Salmonella serovars. Nat Commun 2024; 15:6504. [PMID: 39090110 PMCID: PMC11294581 DOI: 10.1038/s41467-024-50957-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
The bacterial genus Salmonella includes diverse isolates with multiple variations in the structure of the main polysaccharide component (O antigen) of membrane lipopolysaccharides. In addition, some isolates produce a transient (T) antigen, such as the T1 polysaccharide identified in the 1960s in an isolate of Salmonella enterica Paratyphi B. The structure and biosynthesis of the T1 antigen have remained enigmatic. Here, we use biophysical, biochemical and genetic methods to show that the T1 antigen is a complex linear glycan containing tandem homopolymeric domains of galactofuranose and ribofuranose, linked to lipid A-core, like a typical O antigen. T1 is a phase-variable antigen, regulated by recombinational inversion of the promoter upstream of the T1 genetic locus through a mechanism not observed for other bacterial O antigens. The T1 locus is conserved across many Salmonella isolates, but is mutated or absent in most typhoidal serovars and in serovar Enteritidis.
Collapse
Affiliation(s)
- Steven D Kelly
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Mikel Jason Allas
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei, Taiwan
| | | | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada.
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
15
|
Kelly SD, Williams DM, Zhu S, Kim T, Jana M, Nothof J, Thota VN, Lowary TL, Whitfield C. Klebsiella pneumoniae O-polysaccharide biosynthesis highlights the diverse organization of catalytic modules in ABC transporter-dependent glycan assembly. J Biol Chem 2024; 300:107420. [PMID: 38815868 PMCID: PMC11231755 DOI: 10.1016/j.jbc.2024.107420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/10/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024] Open
Abstract
Klebsiella pneumoniae provides influential prototypes for lipopolysaccharide O antigen (OPS) biosynthesis in Gram-negative bacteria. Sequences of OPS-biosynthesis gene clusters in serotypes O4 and O7 suggest fundamental differences in the organization of required enzyme modules compared to other serotypes. Furthermore, some required activities were not assigned by homology shared with characterized enzymes. The goal of this study was therefore to resolve the serotype O4 and O7 pathways to expand our broader understanding of glycan polymerization and chain termination processes. The O4 and O7 antigens were produced from cloned genetic loci in recombinant Escherichia coli. Systematic in vivo and in vitro approaches were then applied to assign each enzyme in each of the pathways, defining the necessary components for polymerization and chain termination. OPS assembly is accomplished by multiprotein complexes formed by interactions between polymerase components variably distributed in single and multimodule proteins. In each complex, a terminator function is present in a protein containing a characteristic coiled-coil molecular ruler, which determines glycan chain length. In serotype O4, we discovered a CMP-α-3-deoxy-ᴅ-manno-octulosonic acid-dependent chain-terminating glycosyltransferase that is the founding member of a new glycosyltransferase family (GT137) and potentially identifies a new glycosyltransferase fold. The O7 OPS is terminated by a methylphosphate moiety, like the K. pneumoniae O3 antigen, but the methyltransferase-kinase enzyme pairs responsible for termination in these serotypes differ in sequence and predicted structures. Together, the characterization of O4 and O7 has established unique enzyme activities and provided new insight into glycan-assembly strategies that are widely distributed in bacteria.
Collapse
Affiliation(s)
- Steven D Kelly
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Danielle M Williams
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Shawna Zhu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Taeok Kim
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Manas Jana
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jeremy Nothof
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada; Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
16
|
Harding-Larsen D, Madsen CD, Teze D, Kittilä T, Langhorn MR, Gharabli H, Hobusch M, Otalvaro FM, Kırtel O, Bidart GN, Mazurenko S, Travnik E, Welner DH. GASP: A Pan-Specific Predictor of Family 1 Glycosyltransferase Acceptor Specificity Enabled by a Pipeline for Substrate Feature Generation and Large-Scale Experimental Screening. ACS OMEGA 2024; 9:27278-27288. [PMID: 38947828 PMCID: PMC11209901 DOI: 10.1021/acsomega.4c01583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024]
Abstract
Glycosylation represents a major chemical challenge; while it is one of the most common reactions in Nature, conventional chemistry struggles with stereochemistry, regioselectivity, and solubility issues. In contrast, family 1 glycosyltransferase (GT1) enzymes can glycosylate virtually any given nucleophilic group with perfect control over stereochemistry and regioselectivity. However, the appropriate catalyst for a given reaction needs to be identified among the tens of thousands of available sequences. Here, we present the glycosyltransferase acceptor specificity predictor (GASP) model, a data-driven approach to the identification of reactive GT1:acceptor pairs. We trained a random forest-based acceptor predictor on literature data and validated it on independent in-house generated data on 1001 GT1:acceptor pairs, obtaining an AUROC of 0.79 and a balanced accuracy of 72%. The performance was stable even in the case of completely new GT1s and acceptors not present in the training data set, highlighting the pan-specificity of GASP. Moreover, the model is capable of parsing all known GT1 sequences, as well as all chemicals, the latter through a pipeline for the generation of 153 chemical features for a given molecule taking the CID or SMILES as input (freely available at https://github.com/degnbol/GASP). To investigate the power of GASP, the model prediction probability scores were compared to GT1 substrate conversion yields from a newly published data set, with the top 50% of GASP predictions corresponding to reactions with >50% synthetic yields. The model was also tested in two comparative case studies: glycosylation of the antihelminth drug niclosamide and the plant defensive compound DIBOA. In the first study, the model achieved an 83% hit rate, outperforming a hit rate of 53% from a random selection assay. In the second case study, the hit rate of GASP was 50%, and while being lower than the hit rate of 83% using expert-selected enzymes, it provides a reasonable performance for the cases when an expert opinion is unavailable. The hierarchal importance of the generated chemical features was investigated by negative feature selection, revealing properties related to cyclization and atom hybridization status to be the most important characteristics for accurate prediction. Our study provides a GT1:acceptor predictor which can be trained on other data sets enabled by the automated feature generation pipelines. We also release the new in-house generated data set used for testing of GASP to facilitate the future development of GT1 activity predictors and their robust benchmarking.
Collapse
Affiliation(s)
- David Harding-Larsen
- DTU
Biosustain, Technical University of Denmark, Kemitorvet 220, Lyngby, Denmark 2800
| | - Christian Degnbol Madsen
- DTU
Biosustain, Technical University of Denmark, Kemitorvet 220, Lyngby, Denmark 2800
- The
University of Melbourne Faculty of Science, Melbourne Integrative
Genomics, University of Melbourne, Building 184, Royal Parade, Parkville
3010, Melbourne, VIC 3052, Australia
| | - David Teze
- DTU
Biosustain, Technical University of Denmark, Kemitorvet 220, Lyngby, Denmark 2800
| | - Tiia Kittilä
- DTU
Biosustain, Technical University of Denmark, Kemitorvet 220, Lyngby, Denmark 2800
| | | | - Hani Gharabli
- DTU
Biosustain, Technical University of Denmark, Kemitorvet 220, Lyngby, Denmark 2800
| | - Mandy Hobusch
- DTU
Biosustain, Technical University of Denmark, Kemitorvet 220, Lyngby, Denmark 2800
| | - Felipe Mejia Otalvaro
- DTU
Biosustain, Technical University of Denmark, Kemitorvet 220, Lyngby, Denmark 2800
| | - Onur Kırtel
- DTU
Biosustain, Technical University of Denmark, Kemitorvet 220, Lyngby, Denmark 2800
| | - Gonzalo Nahuel Bidart
- DTU
Biosustain, Technical University of Denmark, Kemitorvet 220, Lyngby, Denmark 2800
| | - Stanislav Mazurenko
- Department
of Experimental Biology and RECETOX, Faculty of Science, Masarykova Univerzita, Kamenice 5/A4, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Evelyn Travnik
- DTU
Biosustain, Technical University of Denmark, Kemitorvet 220, Lyngby, Denmark 2800
| | - Ditte Hededam Welner
- DTU
Biosustain, Technical University of Denmark, Kemitorvet 220, Lyngby, Denmark 2800
| |
Collapse
|
17
|
Schneider S, Wirth C, Jank T, Hunte C, Aktories K. Tyrosine-modifying glycosylation by Yersinia effectors. J Biol Chem 2024; 300:107331. [PMID: 38703997 PMCID: PMC11152714 DOI: 10.1016/j.jbc.2024.107331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 05/06/2024] Open
Abstract
Mono-O-glycosylation of target proteins by bacterial toxins or effector proteins is a well-known mechanism by which bacteria interfere with essential functions of host cells. The respective glycosyltransferases are important virulence factors such as the Clostridioides difficile toxins A and B. Here, we describe two glycosyltransferases of Yersinia species that have a high sequence identity: YeGT from the zoonotic pathogen Yersinia enterocolitica and YkGT from the murine pathogen Yersinia kristensenii. We show that both modify Rho family proteins by attachment of GlcNAc at tyrosine residues (Tyr-34 in RhoA). Notably, the enzymes differed in their target protein specificity. While YeGT modified RhoA, B, and C, YkGT possessed a broader substrate spectrum and glycosylated not only Rho but also Rac and Cdc42 subfamily proteins. Mutagenesis studies indicated that residue 177 is important for this broader target spectrum. We determined the crystal structure of YeGT shortened by 16 residues N terminally (sYeGT) in the ligand-free state and bound to UDP, the product of substrate hydrolysis. The structure assigns sYeGT to the GT-A family. It shares high structural similarity to glycosyltransferase domains from toxins. We also demonstrated that the 16 most N-terminal residues of YeGT and YkGT are important for the mediated translocation into the host cell using the pore-forming protective antigen of anthrax toxin. Mediated introduction into HeLa cells or ectopic expression of YeGT and YkGT caused morphological changes and redistribution of the actin cytoskeleton. The data suggest that YeGT and YkGT are likely bacterial effectors belonging to the family of tyrosine glycosylating bacterial glycosyltransferases.
Collapse
Affiliation(s)
- Silvia Schneider
- Faculty of Medicine, Institute for Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Christophe Wirth
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Freiburg, Germany.
| | - Thomas Jank
- Faculty of Medicine, Institute for Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Carola Hunte
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Freiburg, Germany; Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Klaus Aktories
- Faculty of Medicine, Institute for Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany; Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
18
|
Gharabli H, Welner DH. The sugar donor specificity of plant family 1 glycosyltransferases. Front Bioeng Biotechnol 2024; 12:1396268. [PMID: 38756413 PMCID: PMC11096472 DOI: 10.3389/fbioe.2024.1396268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Plant family 1 glycosyltransferases (UGTs) represent a formidable tool to produce valuable natural and novel glycosides. Their regio- and stereo-specific one-step glycosylation mechanism along with their inherent wide acceptor scope are desirable traits in biotechnology. However, their donor scope and specificity are not well understood. Since different sugars have different properties in vivo and in vitro, the ability to easily glycodiversify target acceptors is desired, and this depends on our improved understanding of the donor binding site. In the aim to unlock the full potential of UGTs, studies have attempted to elucidate the structure-function relationship governing their donor specificity. These efforts have revealed a complex phenomenon, and general principles valid for multiple enzymes are elusive. Here, we review the studies of UGT donor specificity, and attempt to group the information into key concepts which can help shape future research. We zoom in on the family-defining PSPG motif, on two loop residues reported to interact with the C6 position of the sugar, and on the role of active site arginines in donor specificity. We continue to discuss attempts to alter and expand the donor specificity by enzyme engineering, and finally discuss future research directions.
Collapse
Affiliation(s)
| | - Ditte Hededam Welner
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
19
|
Katz M, Diskin R. The underlying mechanisms of arenaviral entry through matriglycan. Front Mol Biosci 2024; 11:1371551. [PMID: 38516183 PMCID: PMC10955480 DOI: 10.3389/fmolb.2024.1371551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Matriglycan, a recently characterized linear polysaccharide, is composed of alternating xylose and glucuronic acid subunits bound to the ubiquitously expressed protein α-dystroglycan (α-DG). Pathogenic arenaviruses, like the Lassa virus (LASV), hijack this long linear polysaccharide to gain cellular entry. Until recently, it was unclear through what mechanisms LASV engages its matriglycan receptor to initiate infection. Additionally, how matriglycan is synthesized onto α-DG by the Golgi-resident glycosyltransferase LARGE1 remained enigmatic. Recent structural data for LARGE1 and for the LASV spike complex informs us about the synthesis of matriglycan as well as its usage as an entry receptor by arenaviruses. In this review, we discuss structural insights into the system of matriglycan generation and eventual recognition by pathogenic viruses. We also highlight the unique usage of matriglycan as a high-affinity host receptor compared with other polysaccharides that decorate cells.
Collapse
Affiliation(s)
| | - Ron Diskin
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
20
|
Lundstrøm J, Bojar D. The evolving world of milk oligosaccharides: Biochemical diversity understood by computational advances. Carbohydr Res 2024; 537:109069. [PMID: 38402731 DOI: 10.1016/j.carres.2024.109069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Milk oligosaccharides, complex carbohydrates unique to mammalian milk, play crucial roles in infant nutrition and immune development. This review explores their biochemical diversity, tracing the evolutionary paths that have led to their variation across different species. We highlight the intersection of nutrition, biology, and chemistry in understanding these compounds. Additionally, we discuss the latest computational methods and analytical techniques that have revolutionized the study of milk oligosaccharides, offering insights into their structural complexity and functional roles. This brief but essential review not only aims to provide a deeper understanding of milk oligosaccharides but also discuss the road toward their potential applications.
Collapse
Affiliation(s)
- Jon Lundstrøm
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Daniel Bojar
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 41390, Gothenburg, Sweden.
| |
Collapse
|
21
|
Zhuang J, Midgley AC, Wei Y, Liu Q, Kong D, Huang X. Machine-Learning-Assisted Nanozyme Design: Lessons from Materials and Engineered Enzymes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210848. [PMID: 36701424 DOI: 10.1002/adma.202210848] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/03/2023] [Indexed: 05/11/2023]
Abstract
Nanozymes are nanomaterials that exhibit enzyme-like biomimicry. In combination with intrinsic characteristics of nanomaterials, nanozymes have broad applicability in materials science, chemical engineering, bioengineering, biochemistry, and disease theranostics. Recently, the heterogeneity of published results has highlighted the complexity and diversity of nanozymes in terms of consistency of catalytic capacity. Machine learning (ML) shows promising potential for discovering new materials, yet it remains challenging for the design of new nanozymes based on ML approaches. Alternatively, ML is employed to promote optimization of intelligent design and application of catalytic materials and engineered enzymes. Incorporation of the successful ML algorithms used in the intelligent design of catalytic materials and engineered enzymes can concomitantly facilitate the guided development of next-generation nanozymes with desirable properties. Here, recent progress in ML, its utilization in the design of catalytic materials and enzymes, and how emergent ML applications serve as promising strategies to circumvent challenges associated with time-expensive and laborious testing in nanozyme research and development are summarized. The potential applications of successful examples of ML-aided catalytic materials and engineered enzymes in nanozyme design are also highlighted, with special focus on the unified aims in enhancing design and recapitulation of substrate selectivity and catalytic activity.
Collapse
Affiliation(s)
- Jie Zhuang
- School of Medicine, and State, Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Adam C Midgley
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers, Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Yonghua Wei
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers, Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Qiqi Liu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers, Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers, Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers, Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| |
Collapse
|
22
|
Vicente JB, Guerreiro ACL, Felgueiras B, Chapla D, Tehrani D, Moremen KW, Costa J. Glycosyltransferase 8 domain-containing protein 1 (GLT8D1) is a UDP-dependent galactosyltransferase. Sci Rep 2023; 13:21684. [PMID: 38066107 PMCID: PMC10709319 DOI: 10.1038/s41598-023-48605-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Glycosyltransferases (GTs) are enzymes that catalyze the formation of glycosidic bonds and hundreds of GTs have been identified so far in humans. Glycosyltransferase 8 domain-containing protein 1 (GLT8D1) has been associated with central nervous system diseases and cancer. However, evidence on its enzymatic properties, including its substrates, has been scarcely described. In this paper, we have produced and purified recombinant secretory GLT8D1. The enzyme was found to be N-glycosylated. Differential scanning fluorimetry was employed to analyze the stabilization of GLT8D1 by Mn2+ and nucleotides, revealing UDP as the most stabilizing nucleotide scaffold. GLT8D1 displayed glycosyltransferase activity from UDP-galactose onto N-acetylgalactosamine but with a low efficiency. Modeling of the structure revealed similarities with other GT-A fold enzymes in CAZy family GT8 and glycosyltransferases in other families with galactosyl-, glucosyl-, and xylosyltransferase activities, each with retaining catalytic mechanisms. Our study provides novel structural and functional insights into the properties of GLT8D1 with implications in pathological processes.
Collapse
Affiliation(s)
- João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Ana Catarina L Guerreiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - Beatriz Felgueiras
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Digantkumar Chapla
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Daniel Tehrani
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Júlia Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal.
| |
Collapse
|
23
|
Su T, Chua WZ, Liu Y, Fan J, Tan SY, Yang DW, Sham LT. Rewiring the pneumococcal capsule pathway for investigating glycosyltransferase specificity and genetic glycoengineering. SCIENCE ADVANCES 2023; 9:eadi8157. [PMID: 37672581 PMCID: PMC10482335 DOI: 10.1126/sciadv.adi8157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023]
Abstract
Virtually all living cells are covered with glycans. Their structures are primarily controlled by the specificities of glycosyltransferases (GTs). GTs typically adopt one of the three folds, namely, GT-A, GT-B, and GT-C. However, what defines their specificities remain poorly understood. Here, we developed a genetic glycoengineering platform by reprogramming the capsular polysaccharide pathways in Streptococcus pneumoniae to interrogate GT specificity and manipulate glycan structures. Our findings suggest that the central cleft of GT-B enzymes is important for determining acceptor specificity. The constraint of the glycoengineering platform was partially alleviated when the specificity of the precursor transporter was reduced, indicating that the transporter contributes to the overall fidelity of glycan synthesis. We also modified the pneumococcal capsule to produce several medically important mammalian glycans, as well as demonstrated the importance of regiochemistry in a glycosidic linkage on binding lung epithelial cells. Our work provided mechanistic insights into GT specificity and an approach for investigating glycan functions.
Collapse
Affiliation(s)
- Tong Su
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Wan-Zhen Chua
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Yao Liu
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Jingsong Fan
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117545, Singapore
| | - Si-Yin Tan
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Dai-wen Yang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117545, Singapore
| | - Lok-To Sham
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| |
Collapse
|
24
|
Thomès L, Karlsson V, Lundstrøm J, Bojar D. Mammalian milk glycomes: Connecting the dots between evolutionary conservation and biosynthetic pathways. Cell Rep 2023; 42:112710. [PMID: 37379211 DOI: 10.1016/j.celrep.2023.112710] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/09/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023] Open
Abstract
Milk oligosaccharides (MOs) are among the most abundant constituents of breast milk and are essential for health and development. Biosynthesized from monosaccharides into complex sequences, MOs differ considerably between taxonomic groups. Even human MO biosynthesis is insufficiently understood, hampering evolutionary and functional analyses. Using a comprehensive resource of all published MOs from >100 mammals, we develop a pipeline for generating and analyzing MO biosynthetic networks. We then use evolutionary relationships and inferred intermediates of these networks to discover (1) systematic glycome biases, (2) biosynthetic restrictions, such as reaction path preference, and (3) conserved biosynthetic modules. This allows us to prune and pinpoint biosynthetic pathways despite missing information. Machine learning and network analysis cluster species by their milk glycome, identifying characteristic sequence relationships and evolutionary gains/losses of motifs, MOs, and biosynthetic modules. These resources and analyses will advance our understanding of glycan biosynthesis and the evolution of breast milk.
Collapse
Affiliation(s)
- Luc Thomès
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Viktoria Karlsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jon Lundstrøm
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Bojar
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
25
|
Spiers AJ, Dorfmueller HC, Jerdan R, McGregor J, Nicoll A, Steel K, Cameron S. Bioinformatics characterization of BcsA-like orphan proteins suggest they form a novel family of pseudomonad cyclic-β-glucan synthases. PLoS One 2023; 18:e0286540. [PMID: 37267309 PMCID: PMC10237404 DOI: 10.1371/journal.pone.0286540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
Bacteria produce a variety of polysaccharides with functional roles in cell surface coating, surface and host interactions, and biofilms. We have identified an 'Orphan' bacterial cellulose synthase catalytic subunit (BcsA)-like protein found in four model pseudomonads, P. aeruginosa PA01, P. fluorescens SBW25, P. putida KT2440 and P. syringae pv. tomato DC3000. Pairwise alignments indicated that the Orphan and BcsA proteins shared less than 41% sequence identity suggesting they may not have the same structural folds or function. We identified 112 Orphans among soil and plant-associated pseudomonads as well as in phytopathogenic and human opportunistic pathogenic strains. The wide distribution of these highly conserved proteins suggest they form a novel family of synthases producing a different polysaccharide. In silico analysis, including sequence comparisons, secondary structure and topology predictions, and protein structural modelling, revealed a two-domain transmembrane ovoid-like structure for the Orphan protein with a periplasmic glycosyl hydrolase family GH17 domain linked via a transmembrane region to a cytoplasmic glycosyltransferase family GT2 domain. We suggest the GT2 domain synthesises β-(1,3)-glucan that is transferred to the GH17 domain where it is cleaved and cyclised to produce cyclic-β-(1,3)-glucan (CβG). Our structural models are consistent with enzymatic characterisation and recent molecular simulations of the PaPA01 and PpKT2440 GH17 domains. It also provides a functional explanation linking PaPAK and PaPA14 Orphan (also known as NdvB) transposon mutants with CβG production and biofilm-associated antibiotic resistance. Importantly, cyclic glucans are also involved in osmoregulation, plant infection and induced systemic suppression, and our findings suggest this novel family of CβG synthases may provide similar range of adaptive responses for pseudomonads.
Collapse
Affiliation(s)
- Andrew J. Spiers
- School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | - Helge C. Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Robyn Jerdan
- School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | - Jessica McGregor
- Nuffield Research Placement Students, School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | - Abbie Nicoll
- Nuffield Research Placement Students, School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | - Kenzie Steel
- Nuffield Research Placement Students, School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | - Scott Cameron
- School of Applied Sciences, Abertay University, Dundee, United Kingdom
| |
Collapse
|
26
|
Vasina M, Kovar D, Damborsky J, Ding Y, Yang T, deMello A, Mazurenko S, Stavrakis S, Prokop Z. In-depth analysis of biocatalysts by microfluidics: An emerging source of data for machine learning. Biotechnol Adv 2023; 66:108171. [PMID: 37150331 DOI: 10.1016/j.biotechadv.2023.108171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Nowadays, the vastly increasing demand for novel biotechnological products is supported by the continuous development of biocatalytic applications which provide sustainable green alternatives to chemical processes. The success of a biocatalytic application is critically dependent on how quickly we can identify and characterize enzyme variants fitting the conditions of industrial processes. While miniaturization and parallelization have dramatically increased the throughput of next-generation sequencing systems, the subsequent characterization of the obtained candidates is still a limiting process in identifying the desired biocatalysts. Only a few commercial microfluidic systems for enzyme analysis are currently available, and the transformation of numerous published prototypes into commercial platforms is still to be streamlined. This review presents the state-of-the-art, recent trends, and perspectives in applying microfluidic tools in the functional and structural analysis of biocatalysts. We discuss the advantages and disadvantages of available technologies, their reproducibility and robustness, and readiness for routine laboratory use. We also highlight the unexplored potential of microfluidics to leverage the power of machine learning for biocatalyst development.
Collapse
Affiliation(s)
- Michal Vasina
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, 656 91 Brno, Czech Republic
| | - David Kovar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, 656 91 Brno, Czech Republic
| | - Yun Ding
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Tianjin Yang
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland; Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Andrew deMello
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Stanislav Mazurenko
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, 656 91 Brno, Czech Republic.
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland.
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, 656 91 Brno, Czech Republic.
| |
Collapse
|
27
|
van der Wel H, Garcia AM, Gas-Pascual E, Willis MM, Kim HW, Bandini G, Gaye MM, Costello CE, Samuelson J, West CM. Spindly is a nucleocytosolic O-fucosyltransferase in Dictyostelium and related proteins are widespread in protists and bacteria. Glycobiology 2023; 33:225-244. [PMID: 36250576 PMCID: PMC10114647 DOI: 10.1093/glycob/cwac071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 11/15/2022] Open
Abstract
O-GlcNAcylation is a prominent modification of nuclear and cytoplasmic proteins in animals and plants and is mediated by a single O-GlcNAc transferase (OGT). Spindly (Spy), a paralog of OGT first discovered in higher plants, has an ortholog in the apicomplexan parasite Toxoplasma gondii, and both enzymes are now recognized as O-fucosyltransferases (OFTs). Here we investigate the evolution of spy-like genes and experimentally confirm OFT activity in the social amoeba Dictyostelium-a protist that is more related to fungi and metazoa. Immunofluorescence probing with the fucose-specific Aleuria aurantia lectin (AAL) and biochemical cell fractionation combined with western blotting suggested the occurrence of nucleocytoplasmic fucosylation. The absence of reactivity in mutants deleted in spy or gmd (unable to synthesize GDP-Fuc) suggested monofucosylation mediated by Spy. Genetic ablation of the modE locus, previously predicted to encode a GDP-fucose transporter, confirmed its necessity for fucosylation in the secretory pathway but not for the nucleocytoplasmic proteins. Affinity capture of these proteins combined with mass spectrometry confirmed monofucosylation of Ser and Thr residues of several known nucleocytoplasmic proteins. As in Toxoplasma, the Spy OFT was required for optimal proliferation of Dictyostelium under laboratory conditions. These findings support a new phylogenetic analysis of OGT and OFT evolution that indicates their occurrence in the last eukaryotic common ancestor but mostly complementary presence in its eukaryotic descendants with the notable exception that both occur in red algae and plants. Their generally exclusive expression, high degree of conservation, and shared monoglycosylation targets suggest overlapping roles in physiological regulation.
Collapse
Affiliation(s)
- Hanke van der Wel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Ana Maria Garcia
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Obstetrics and Gynecology (OBGYN), 1951 SW 172nd Ave, Hollywood, FL 33029, USA
| | - Elisabet Gas-Pascual
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Macy M Willis
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Hyun W Kim
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Giulia Bandini
- Department of Molecular and Cell Biology, Boston University Henry Goldman School of Dental Medicine, Boston, MA 02118, USA
- Clarivate Analytics (UK) Ltd., 70 St. Mary Axe, London, EC3A 8BE
| | - Maissa Mareme Gaye
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118, USA
- Chemistry Technology Center, Waters Corporation, Milford, MA 01757, USA
| | - Catherine E Costello
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA 02118, USA
| | - John Samuelson
- Department of Molecular and Cell Biology, Boston University Henry Goldman School of Dental Medicine, Boston, MA 02118, USA
| | - Christopher M West
- Department of Biochemistry and Molecular Biology, Center for Tropical and Emerging Global Diseases, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
28
|
Gerloff DL, Ilina EI, Cialini C, Mata Salcedo U, Mittelbronn M, Müller T. Prediction and verification of glycosyltransferase activity by bioinformatics analysis and protein engineering. STAR Protoc 2023; 4:101905. [PMID: 36528856 PMCID: PMC9792956 DOI: 10.1016/j.xpro.2022.101905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/01/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022] Open
Abstract
A significant number of proteins are annotated as functionally uncharacterized proteins. Within this protocol, we describe how to use protein family multiple sequence alignments and structural bioinformatics resources to design loss-of-function mutations of previously uncharacterized proteins within the glycosyltransferase family. We detail approaches to determine target protein active sites using three-dimensional modeling. We generate active site mutants and quantify any changes in enzymatic function by a glycosyltransferase assay. With modifications, this protocol could be applied to other metal-dependent enzymes. For complete details on the use and execution of this protocol, please refer to Ilina et al. (2022).1.
Collapse
Affiliation(s)
- Dietlind L Gerloff
- Foundation for Applied Molecular Evolution (FfAME), Alachua, FL 32615, USA
| | - Elena I Ilina
- Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), 1526 Luxembourg, Luxembourg; Luxembourg Centre of Neuropathology (LCNP), 1526 Luxembourg, Luxembourg
| | - Camille Cialini
- Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), 1526 Luxembourg, Luxembourg; Luxembourg Centre of Neuropathology (LCNP), 1526 Luxembourg, Luxembourg
| | - Uxue Mata Salcedo
- Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), 1526 Luxembourg, Luxembourg; Luxembourg Centre of Neuropathology (LCNP), 1526 Luxembourg, Luxembourg
| | - Michel Mittelbronn
- Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), 1526 Luxembourg, Luxembourg; Luxembourg Centre of Neuropathology (LCNP), 1526 Luxembourg, Luxembourg; National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg; Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4365 Esch sur Alzette, Luxembourg; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Tanja Müller
- Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), 1526 Luxembourg, Luxembourg; Luxembourg Centre of Neuropathology (LCNP), 1526 Luxembourg, Luxembourg.
| |
Collapse
|
29
|
Fukunaga T, Watanabe M, Nakamichi Y, Morita T, Higuchi Y, Maekawa H, Takegawa K. Mechanistic insights into Schizosaccharomyces pombe GT-A family protein Pvg3 in the biosynthesis of pyruvylated β1,3-galactose of N-linked oligosaccharides. J Biosci Bioeng 2023; 135:423-432. [DOI: 10.1016/j.jbiosc.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/24/2023] [Accepted: 03/04/2023] [Indexed: 03/31/2023]
|
30
|
Prabhakar PK, Pereira JH, Taujale R, Shao W, Bharadwaj VS, Chapla D, Yang JY, Bomble YJ, Moremen KW, Kannan N, Hammel M, Adams PD, Scheller HV, Urbanowicz BR. Structural and biochemical insight into a modular β-1,4-galactan synthase in plants. NATURE PLANTS 2023; 9:486-500. [PMID: 36849618 PMCID: PMC10115243 DOI: 10.1038/s41477-023-01358-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/25/2023] [Indexed: 05/18/2023]
Abstract
Rhamnogalacturonan I (RGI) is a structurally complex pectic polysaccharide with a backbone of alternating rhamnose and galacturonic acid residues substituted with arabinan and galactan side chains. Galactan synthase 1 (GalS1) transfers galactose and arabinose to either extend or cap the β-1,4-galactan side chains of RGI, respectively. Here we report the structure of GalS1 from Populus trichocarpa, showing a modular protein consisting of an N-terminal domain that represents the founding member of a new family of carbohydrate-binding module, CBM95, and a C-terminal glycosyltransferase family 92 (GT92) catalytic domain that adopts a GT-A fold. GalS1 exists as a dimer in vitro, with stem domains interacting across the chains in a 'handshake' orientation that is essential for maintaining stability and activity. In addition to understanding the enzymatic mechanism of GalS1, we gained insight into the donor and acceptor substrate binding sites using deep evolutionary analysis, molecular simulations and biochemical studies. Combining all the results, a mechanism for GalS1 catalysis and a new model for pectic galactan side-chain addition are proposed.
Collapse
Affiliation(s)
- Pradeep Kumar Prabhakar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oakridge, TN, USA
| | - Jose Henrique Pereira
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rahil Taujale
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Wanchen Shao
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Vivek S Bharadwaj
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Digantkumar Chapla
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Yannick J Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Kelley W Moremen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Paul D Adams
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Henrik V Scheller
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Breeanna R Urbanowicz
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oakridge, TN, USA.
| |
Collapse
|
31
|
Chakraborty C, Bhattacharya M, Chatterjee S, Sharma AR, Saha RP, Dhama K, Agoramoorthy G. Integrative Bioinformatics Approaches Indicate a Particular Pattern of Some SARS-CoV-2 and Non-SARS-CoV-2 Proteins. Vaccines (Basel) 2022; 11:vaccines11010038. [PMID: 36679883 PMCID: PMC9864461 DOI: 10.3390/vaccines11010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Pattern recognition plays a critical role in integrative bioinformatics to determine the structural patterns of proteins of viruses such as SARS-CoV-2. This study identifies the pattern of SARS-CoV-2 proteins to depict the structure-function relationships of the protein alphabets of SARS-CoV-2 and COVID-19. The assembly enumeration algorithm, Anisotropic Network Model, Gaussian Network Model, Markovian Stochastic Model, and image comparison protein-like alphabets were used. The distance score was the lowest with 22 for "I" and highest with 40 for "9". For post-processing and decision, two protein alphabets "C" (PDB ID: 6XC3) and "S" (PDB ID: 7OYG) were evaluated to understand the structural, functional, and evolutionary relationships, and we found uniqueness in the functionality of proteins. Here, models were constructed using "SARS-CoV-2 proteins" (12 numbers) and "non-SARS-CoV-2 proteins" (14 numbers) to create two words, "SARS-CoV-2" and "COVID-19". Similarly, we developed two slogans: "Vaccinate the world against COVID-19" and "Say no to SARS-CoV-2", which were made with the proteins structure. It might generate vaccine-related interest to broad reader categories. Finally, the evolutionary process appears to enhance the protein structure smoothly to provide suitable functionality shaped by natural selection.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata 700126, West Bengal, India
- Correspondence:
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Srijan Chatterjee
- Institute for Skeletal Aging and Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging and Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Rudra P. Saha
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata 700126, West Bengal, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | | |
Collapse
|
32
|
Leisico F, Omeiri J, Le Narvor C, Beaudouin J, Hons M, Fenel D, Schoehn G, Couté Y, Bonnaffé D, Sadir R, Lortat-Jacob H, Wild R. Structure of the human heparan sulfate polymerase complex EXT1-EXT2. Nat Commun 2022; 13:7110. [PMID: 36402845 PMCID: PMC9675754 DOI: 10.1038/s41467-022-34882-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022] Open
Abstract
Heparan sulfates are complex polysaccharides that mediate the interaction with a broad range of protein ligands at the cell surface. A key step in heparan sulfate biosynthesis is catalyzed by the bi-functional glycosyltransferases EXT1 and EXT2, which generate the glycan backbone consisting of repeating N-acetylglucosamine and glucuronic acid units. The molecular mechanism of heparan sulfate chain polymerization remains, however, unknown. Here, we present the cryo-electron microscopy structure of human EXT1-EXT2, which reveals the formation of a tightly packed hetero-dimeric complex harboring four glycosyltransferase domains. A combination of in vitro and in cellulo mutational studies is used to dissect the functional role of the four catalytic sites. While EXT1 can catalyze both glycosyltransferase reactions, our results indicate that EXT2 might only have N-acetylglucosamine transferase activity. Our findings provide mechanistic insight into heparan sulfate chain elongation as a nonprocessive process and lay the foundation for future studies on EXT1-EXT2 function in health and disease.
Collapse
Affiliation(s)
- Francisco Leisico
- grid.457348.90000 0004 0630 1517Institut de Biologie Structurale, UMR 5075, University Grenoble Alpes, CNRS, CEA, 38000 Grenoble, France
| | - Juneina Omeiri
- grid.457348.90000 0004 0630 1517Institut de Biologie Structurale, UMR 5075, University Grenoble Alpes, CNRS, CEA, 38000 Grenoble, France
| | - Christine Le Narvor
- grid.462047.30000 0004 0382 4005Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d’Orsay, 91405 Orsay, France
| | - Joël Beaudouin
- grid.457348.90000 0004 0630 1517Institut de Biologie Structurale, UMR 5075, University Grenoble Alpes, CNRS, CEA, 38000 Grenoble, France
| | - Michael Hons
- grid.418923.50000 0004 0638 528XEuropean Molecular Biology Laboratory (EMBL), Grenoble Outstation, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Daphna Fenel
- grid.457348.90000 0004 0630 1517Institut de Biologie Structurale, UMR 5075, University Grenoble Alpes, CNRS, CEA, 38000 Grenoble, France
| | - Guy Schoehn
- grid.457348.90000 0004 0630 1517Institut de Biologie Structurale, UMR 5075, University Grenoble Alpes, CNRS, CEA, 38000 Grenoble, France
| | - Yohann Couté
- grid.457348.90000 0004 0630 1517University Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - David Bonnaffé
- grid.462047.30000 0004 0382 4005Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d’Orsay, 91405 Orsay, France
| | - Rabia Sadir
- grid.457348.90000 0004 0630 1517Institut de Biologie Structurale, UMR 5075, University Grenoble Alpes, CNRS, CEA, 38000 Grenoble, France
| | - Hugues Lortat-Jacob
- grid.457348.90000 0004 0630 1517Institut de Biologie Structurale, UMR 5075, University Grenoble Alpes, CNRS, CEA, 38000 Grenoble, France
| | - Rebekka Wild
- grid.457348.90000 0004 0630 1517Institut de Biologie Structurale, UMR 5075, University Grenoble Alpes, CNRS, CEA, 38000 Grenoble, France
| |
Collapse
|
33
|
Amos RA, Atmodjo MA, Huang C, Gao Z, Venkat A, Taujale R, Kannan N, Moremen KW, Mohnen D. Polymerization of the backbone of the pectic polysaccharide rhamnogalacturonan I. NATURE PLANTS 2022; 8:1289-1303. [PMID: 36357524 PMCID: PMC10115348 DOI: 10.1038/s41477-022-01270-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/05/2022] [Indexed: 06/10/2023]
Abstract
Rhamnogalacturonan I (RG-I) is a major plant cell wall pectic polysaccharide defined by its repeating disaccharide backbone structure of [4)-α-D-GalA-(1,2)-α-L-Rha-(1,]. A family of RG-I:Rhamnosyltransferases (RRT) has previously been identified, but synthesis of the RG-I backbone has not been demonstrated in vitro because the identity of Rhamnogalacturonan I:Galaturonosyltransferase (RG-I:GalAT) was unknown. Here a putative glycosyltransferase, At1g28240/MUCI70, is shown to be an RG-I:GalAT. The name RGGAT1 is proposed to reflect the catalytic activity of this enzyme. When incubated together with the rhamnosyltransferase RRT4, the combined activities of RGGAT1 and RRT4 result in elongation of RG-I acceptors in vitro into a polymeric product. RGGAT1 is a member of a new GT family categorized as GT116, which does not group into existing GT-A clades and is phylogenetically distinct from the GALACTURONOSYLTRANSFERASE (GAUT) family of GalA transferases that synthesize the backbone of the pectin homogalacturonan. RGGAT1 has a predicted GT-A fold structure but employs a metal-independent catalytic mechanism that is rare among glycosyltransferases with this fold type. The identification of RGGAT1 and the 8-member Arabidopsis GT116 family provides a new avenue for studying the mechanism of RG-I synthesis and the function of RG-I in plants.
Collapse
Affiliation(s)
- Robert A Amos
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Melani A Atmodjo
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Chin Huang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Zhongwei Gao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Aarya Venkat
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Rahil Taujale
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Kelley W Moremen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Debra Mohnen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
| |
Collapse
|
34
|
Abstract
Artificial intelligence (AI) methods have been and are now being increasingly integrated in prediction software implemented in bioinformatics and its glycoscience branch known as glycoinformatics. AI techniques have evolved in the past decades, and their applications in glycoscience are not yet widespread. This limited use is partly explained by the peculiarities of glyco-data that are notoriously hard to produce and analyze. Nonetheless, as time goes, the accumulation of glycomics, glycoproteomics, and glycan-binding data has reached a point where even the most recent deep learning methods can provide predictors with good performance. We discuss the historical development of the application of various AI methods in the broader field of glycoinformatics. A particular focus is placed on shining a light on challenges in glyco-data handling, contextualized by lessons learnt from related disciplines. Ending on the discussion of state-of-the-art deep learning approaches in glycoinformatics, we also envision the future of glycoinformatics, including development that need to occur in order to truly unleash the capabilities of glycoscience in the systems biology era.
Collapse
Affiliation(s)
- Daniel Bojar
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg 41390, Sweden
- Wallenberg
Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg 41390, Sweden
| | - Frederique Lisacek
- Proteome
Informatics Group, Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland
- Computer
Science Department & Section of Biology, University of Geneva, route de Drize 7, CH-1227, Geneva, Switzerland
| |
Collapse
|
35
|
Common and unique features of glycosylation and glycosyltransferases in African trypanosomes. Biochem J 2022; 479:1743-1758. [PMID: 36066312 PMCID: PMC9472816 DOI: 10.1042/bcj20210778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022]
Abstract
Eukaryotic protein glycosylation is mediated by glycosyl- and oligosaccharyl-transferases. Here, we describe how African trypanosomes exhibit both evolutionary conservation and significant divergence compared with other eukaryotes in how they synthesise their glycoproteins. The kinetoplastid parasites have conserved components of the dolichol-cycle and oligosaccharyltransferases (OSTs) of protein N-glycosylation, and of glycosylphosphatidylinositol (GPI) anchor biosynthesis and transfer to protein. However, some components are missing, and they process and decorate their N-glycans and GPI anchors in unique ways. To do so, they appear to have evolved a distinct and functionally flexible glycosyltransferases (GT) family, the GT67 family, from an ancestral eukaryotic β3GT gene. The expansion and/or loss of GT67 genes appears to be dependent on parasite biology. Some appear to correlate with the obligate passage of parasites through an insect vector, suggesting they were acquired through GT67 gene expansion to assist insect vector (tsetse fly) colonisation. Others appear to have been lost in species that subsequently adopted contaminative transmission. We also highlight the recent discovery of a novel and essential GT11 family of kinetoplastid parasite fucosyltransferases that are uniquely localised to the mitochondria of Trypanosoma brucei and Leishmania major. The origins of these kinetoplastid FUT1 genes, and additional putative mitochondrial GT genes, are discussed.
Collapse
|
36
|
Boland AW, Gas-Pascual E, Nottingham BL, van der Wel H, Daniel NG, Sheikh MO, Schafer CM, West CM. Oxygen-dependent regulation of E3(SCF)ubiquitin ligases and a Skp1-associated JmjD6 homolog in development of the social amoeba Dictyostelium. J Biol Chem 2022; 298:102305. [PMID: 35933019 PMCID: PMC9485057 DOI: 10.1016/j.jbc.2022.102305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/01/2022] Open
Abstract
E3-SCF (Skp1/cullin-1/F-box protein) polyubiquitin ligases activate the proteasomal degradation of over a thousand proteins, but the evolutionary diversification of the F-box protein (FBP) family of substrate receptor subunits has challenged their elucidation in protists. Here, we expand the FBP candidate list in the social amoeba Dictyostelium and show that the Skp1 interactome is highly remodeled as cells transition from growth to multicellular development. Importantly, a subset of candidate FBPs was less represented when the posttranslational hydroxylation and glycosylation of Skp1 was abrogated by deletion of the O2-sensing Skp1 prolyl hydroxylase PhyA. A role for this Skp1 modification for SCF activity was indicated by partial rescue of development, which normally depends on high O2 and PhyA, of phyA-KO cells by proteasomal inhibitors. Further examination of two FBPs, FbxwD and the Jumonji C protein JcdI, suggested that Skp1 was substituted by other factors in phyA-KO cells. Although a double-KO of jcdI and its paralog jcdH did not affect development, overexpression of JcdI increased its sensitivity to O2. JcdI, a nonheme dioxygenase shown to have physiological O2 dependence, is conserved across protists with its F-box and other domains, and is related to the human oncogene JmjD6. Sensitization of JcdI-overexpression cells to O2 depended on its dioxygenase activity and other domains, but not its F-box, which may however be the mediator of its reduced levels in WT relative to Skp1 modification mutant cells. The findings suggest that activation of JcdI by O2 is tempered by homeostatic downregulation via PhyA and association with Skp1.
Collapse
Affiliation(s)
- Andrew W Boland
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA; Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Elisabet Gas-Pascual
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA; Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Braxton L Nottingham
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Hanke van der Wel
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA; Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Nitin G Daniel
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - M Osman Sheikh
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Christopher M Schafer
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Christopher M West
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA; Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA; Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
37
|
Venkat A, Tehrani D, Taujale R, Yeung W, Gravel N, Moremen KW, Kannan N. Modularity of the hydrophobic core and evolution of functional diversity in fold A glycosyltransferases. J Biol Chem 2022; 298:102212. [PMID: 35780833 PMCID: PMC9364030 DOI: 10.1016/j.jbc.2022.102212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 11/28/2022] Open
Abstract
Hydrophobic cores are fundamental structural properties of proteins typically associated with protein folding and stability; however, how the hydrophobic core shapes protein evolution and function is poorly understood. Here, we investigated the role of conserved hydrophobic cores in fold-A glycosyltransferases (GT-As), a large superfamily of enzymes that catalyze formation of glycosidic linkages between diverse donor and acceptor substrates through distinct catalytic mechanisms (inverting versus retaining). Using hidden Markov models and protein structural alignments, we identify similarities in the phosphate-binding cassette (PBC) of GT-As and unrelated nucleotide-binding proteins, such as UDP-sugar pyrophosphorylases. We demonstrate that GT-As have diverged from other nucleotide-binding proteins through structural elaboration of the PBC and its unique hydrophobic tethering to the F-helix, which harbors the catalytic base (xED-Asp). While the hydrophobic tethering is conserved across diverse GT-A fold enzymes, some families, such as B3GNT2, display variations in tethering interactions and core packing. We evaluated the structural and functional impact of these core variations through experimental mutational analysis and molecular dynamics simulations and find that some of the core mutations (T336I in B3GNT2) increase catalytic efficiency by modulating the conformational occupancy of the catalytic base between “D-in” and acceptor-accessible “D-out” conformation. Taken together, our studies support a model of evolution in which the GT-A core evolved progressively through elaboration upon an ancient PBC found in diverse nucleotide-binding proteins, and malleability of this core provided the structural framework for evolving new catalytic and substrate-binding functions in extant GT-A fold enzymes.
Collapse
Affiliation(s)
- Aarya Venkat
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Daniel Tehrani
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA; Complex Carbohydrate Research Center (CCRC), Athens, GA, USA
| | - Rahil Taujale
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Wayland Yeung
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Nathan Gravel
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Kelley W Moremen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA; Complex Carbohydrate Research Center (CCRC), Athens, GA, USA
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA; Institute of Bioinformatics, University of Georgia, Athens, GA, USA.
| |
Collapse
|
38
|
Vibhute AM, Tanaka HN, Mishra SK, Osuka RF, Nagae M, Yonekawa C, Korekane H, Doerksen RJ, Ando H, Kizuka Y. Structure-based design of UDP-GlcNAc analogs as candidate GnT-V inhibitors. Biochim Biophys Acta Gen Subj 2022; 1866:130118. [PMID: 35248671 PMCID: PMC9947920 DOI: 10.1016/j.bbagen.2022.130118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND N-Glycan branching regulates various functions of glycoproteins. N-Acetylglucosaminyltransferase V (GnT-V) is a GlcNAc transferase that acts on N-glycans and the GnT-V-producing branch is highly related to cancer progression. This indicates that specific GnT-V inhibitors may be drug candidates for cancer treatment. To design novel GnT-V inhibitors, we focused on the unique and weak recognition of the donor substrate UDP-GlcNAc by GnT-V. On the basis of the catalytic pocket structure, we hypothesized that UDP-GlcNAc analogs with increasing hydrophobicity may be GnT-V inhibitors. METHODS We chemically synthesized 10 UDP-GlcNAc analogs in which one or two phosphate groups were replaced with hydrophobic groups. To test these compounds, we set up an HPLC-based enzyme assay system for all N-glycan-branching GlcNAc transferases in which GnT-I-V activity was measured using purified truncated enzymes. Using this system, we assessed the inhibitory effects of the synthesized compounds on GnT-V and their specificity. RESULTS Several UDP-GlcNAc analogs inhibited GnT-V activity, although the inhibition potency was modest. Compared with other GnTs, these compounds showed a preference for GnT-V, which suggested that GnT-V was relatively tolerant of hydrophobicity in the donor substrate. Docking models of the inhibitory compounds with GnT-V suggested the mechanisms of how these compounds interacted with GnT-V and inhibited its action. CONCLUSIONS Chemical modification of the donor substrate may be a promising strategy to develop selective inhibitors of GnT-V. GENERAL SIGNIFICANCE Our findings provide new insights into the design of GnT inhibitors and how GnTs recognize the donor substrate.
Collapse
Affiliation(s)
- Amol M Vibhute
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Hide-Nori Tanaka
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan.
| | - Sushil K Mishra
- Glycoscience Center of Research Excellence, Department of BioMolecular Sciences, University of Mississippi, MS 38677, USA
| | - Reina F Osuka
- Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan
| | - Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan
| | - Chizuko Yonekawa
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Hiroaki Korekane
- Disease Glycomics Team, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, Wako 351-0198, Japan
| | - Robert J Doerksen
- Glycoscience Center of Research Excellence, Department of BioMolecular Sciences, University of Mississippi, MS 38677, USA
| | - Hiromune Ando
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Yasuhiko Kizuka
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan.
| |
Collapse
|
39
|
Hsu YP, Verma D, Sun S, McGregor C, Mangion I, Mann BF. Successive remodeling of IgG glycans using a solid-phase enzymatic platform. Commun Biol 2022; 5:328. [PMID: 35393560 PMCID: PMC8990068 DOI: 10.1038/s42003-022-03257-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/11/2022] [Indexed: 12/02/2022] Open
Abstract
The success of glycoprotein-based drugs in various disease treatments has become widespread. Frequently, therapeutic glycoproteins exhibit a heterogeneous array of glycans that are intended to mimic human glycopatterns. While immunogenic responses to biologic drugs are uncommon, enabling exquisite control of glycosylation with minimized microheterogeneity would improve their safety, efficacy and bioavailability. Therefore, close attention has been drawn to the development of glycoengineering strategies to control the glycan structures. With the accumulation of knowledge about the glycan biosynthesis enzymes, enzymatic glycan remodeling provides a potential strategy to construct highly ordered glycans with improved efficiency and biocompatibility. In this study, we quantitatively evaluate more than 30 enzymes for glycoengineering immobilized immunoglobulin G, an impactful glycoprotein class in the pharmaceutical field. We demonstrate successive glycan remodeling in a solid-phase platform, which enabled IgG glycan harmonization into a series of complex-type N-glycoforms with high yield and efficiency while retaining native IgG binding affinity. A solid-phase glycan remodeling (SPGR) platform is presented. Over thirty enzymes were evaluated for successive glycoengineering of immobilized antibodies with outstanding performance in several SPGR reactions.
Collapse
Affiliation(s)
- Yen-Pang Hsu
- Analytical Research and Development, Merck & Co., Inc, Rahway, NJ, 07065, USA.,Exploratory Science Center, Merck & Co., Inc, Cambridge, MA, 02141, USA
| | - Deeptak Verma
- Computational and Structural Chemistry, Discovery Chemistry, Merck & Co., Inc, Rahway, NJ, 07065, USA
| | - Shuwen Sun
- Analytical Research and Development, Merck & Co., Inc, Rahway, NJ, 07065, USA
| | - Caroline McGregor
- Process Research & Development, Merck & Co., Inc, Rahway, NJ, 07065, USA
| | - Ian Mangion
- Analytical Research and Development, Merck & Co., Inc, Rahway, NJ, 07065, USA
| | - Benjamin F Mann
- Analytical Research and Development, Merck & Co., Inc, Rahway, NJ, 07065, USA.
| |
Collapse
|
40
|
Ilina EI, Cialini C, Gerloff DL, Garcia-Escudero MD, Janty C, Thézénas ML, Lesur A, Puard V, Bernardin F, Moter A, Schuster A, Dieterle M, Golebiewska A, Gérardy JJ, Dittmar G, Niclou SP, Müller T, Mittelbronn M. Enzymatic activity of glycosyltransferase GLT8D1 promotes human glioblastoma cell migration. iScience 2022; 25:103842. [PMID: 35198895 PMCID: PMC8850796 DOI: 10.1016/j.isci.2022.103842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/27/2021] [Accepted: 01/27/2022] [Indexed: 11/15/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor characterized by infiltrative growth of malignant glioma cells into the surrounding brain parenchyma. In this study, our analysis of GBM patient cohorts revealed a significantly higher expression of Glycosyltransferase 8 domain containing 1 (GLT8D1) compared to normal brain tissue and could be associated with impaired patient survival. Increased in vitro expression of GLT8D1 significantly enhanced migration of two different sphere-forming GBM cell lines. By in silico analysis we predicted the 3D-structure as well as the active site residues of GLT8D1. The introduction of point mutations in the predicted active site reduced its glycosyltransferase activity in vitro and consequently impaired GBM tumor cell migration. Examination of GLT8D1 interaction partners by LC-MS/MS implied proteins associated with cytoskeleton and intracellular transport as potential substrates. In conclusion, we demonstrated that the enzymatic activity of glycosyltransferase GLT8D1 promotes GBM cell migration. The glycosyltransferase GLT8D1 is enriched in GBM tissue and cells In silico analysis predicts the 3D structure and the active site of GLT8D1 Enzymatically active GLT8D1 promotes GBM migration Manipulation of GLT8D1 enzymatic activity decreases GBM migration
Collapse
|
41
|
Deng JQ, Lu Z, Liu J, Zhao Y, Hou XB, Guo XP, Jiang WJ, Wang FS, Sheng JZ. Heparosan oligosaccharide synthesis using engineered single-function glycosyltransferases. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02061g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 24-fold increase in GlcNAc-transferase ability through KfiA screening and engineering. An approach for heparosan oligosaccharide synthesis relying on single-function glycosyltransferases.
Collapse
Affiliation(s)
- Jian-Qun Deng
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhen Lu
- Bloomage BioTechnology Corp., Ltd., Jinan 250010, China
| | - Juan Liu
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yan Zhao
- Bloomage BioTechnology Corp., Ltd., Jinan 250010, China
| | - Xu-Ben Hou
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xue-Ping Guo
- Bloomage BioTechnology Corp., Ltd., Jinan 250010, China
| | - Wen-Jie Jiang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- National Glycoengineering Research Center, Shandong University, Jinan 250012, China
| | - Feng-Shan Wang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- National Glycoengineering Research Center, Shandong University, Jinan 250012, China
| | - Ju-Zheng Sheng
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- National Glycoengineering Research Center, Shandong University, Jinan 250012, China
| |
Collapse
|
42
|
Nothaft H, Bian X, Shajahan A, Miller WG, Bolick DT, Guerrant RL, Azadi P, Ng KKS, Szymanski CM. Detecting Glucose Fluctuations in the Campylobacter jejuni N-Glycan Structure. ACS Chem Biol 2021; 16:2690-2701. [PMID: 34726367 DOI: 10.1021/acschembio.1c00498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Campylobacter jejuni is a significant cause of human gastroenteritis worldwide, and all strains express an N-glycan that is added to at least 80 different proteins. We characterized 98 C. jejuni isolates from infants from 7 low- and middle-income countries and identified 4 isolates unreactive with our N-glycan-specific antiserum that was raised against the C. jejuni heptasaccharide composed of GalNAc-GalNAc-GalNAc(Glc)-GalNAc-GalNAc-diNAcBac. Mass spectrometric analyses indicated these isolates express a hexasaccharide lacking the glucose branch. Although all 4 strains encode the PglI glucosyltransferase (GlcTF), one aspartate in the DXDD motif was missing, an alteration also present in ∼4% of all available PglI sequences. Deleting this residue from an active PglI resulted in a nonfunctional GlcTF when the protein glycosylation system was reconstituted in E. coli, while replacement with Glu/Ala was not deleterious. Molecular modeling proposed a mechanism for how the DXDD residues and the structure/length beyond the motif influence activity. Mouse vaccination with an E. coli strain expressing the full-length heptasaccharide produced N-glycan-specific antibodies and a corresponding reduction in Campylobacter colonization and weight loss following challenge. However, the antibodies did not recognize the hexasaccharide and were unable to opsonize C. jejuni isolates lacking glucose, suggesting this should be considered when designing N-glycan-based vaccines to prevent campylobacteriosis.
Collapse
Affiliation(s)
- Harald Nothaft
- Department of Medical Microbiology and Immunology, University of Alberta, Katz Group Centre, Edmonton, Alberta T6G 2E9, Canada
| | - Xiaoming Bian
- Department of Microbiology, University of Georgia, 527 Biological Sciences Building, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - William G. Miller
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - David T. Bolick
- Center for Global Health Equity, Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Richard L. Guerrant
- Center for Global Health Equity, Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Kenneth K. S. Ng
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | - Christine M. Szymanski
- Department of Medical Microbiology and Immunology, University of Alberta, Katz Group Centre, Edmonton, Alberta T6G 2E9, Canada
- Department of Microbiology, University of Georgia, 527 Biological Sciences Building, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
43
|
Zhou Y, Zhang Y, Lian X, Li F, Wang C, Zhu F, Qiu Y, Chen Y. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res 2021; 50:D1398-D1407. [PMID: 34718717 PMCID: PMC8728281 DOI: 10.1093/nar/gkab953] [Citation(s) in RCA: 376] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 11/14/2022] Open
Abstract
Drug discovery relies on the knowledge of not only drugs and targets, but also the comparative agents and targets. These include poor binders and non-binders for developing discovery tools, prodrugs for improved therapeutics, co-targets of therapeutic targets for multi-target strategies and off-target investigations, and the collective structure-activity and drug-likeness landscapes of enhanced drug feature. However, such valuable data are inadequately covered by the available databases. In this study, a major update of the Therapeutic Target Database, previously featured in NAR, was therefore introduced. This update includes (a) 34 861 poor binders and 12 683 non-binders of 1308 targets; (b) 534 prodrug-drug pairs for 121 targets; (c) 1127 co-targets of 672 targets regulated by 642 approved and 624 clinical trial drugs; (d) the collective structure-activity landscapes of 427 262 active agents of 1565 targets; (e) the profiles of drug-like properties of 33 598 agents of 1102 targets. Moreover, a variety of additional data and function are provided, which include the cross-links to the target structure in PDB and AlphaFold, 159 and 1658 newly emerged targets and drugs, and the advanced search function for multi-entry target sequences or drug structures. The database is accessible without login requirement at: https://idrblab.org/ttd/.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, China
| | - Yintao Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xichen Lian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaoxin Wang
- Department of Computer Science, Kansas State University, Manhattan 66506, USA
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, China
| | - Yuzong Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
44
|
Taujale R, Zhou Z, Yeung W, Moremen KW, Li S, Kannan N. Mapping the glycosyltransferase fold landscape using interpretable deep learning. Nat Commun 2021; 12:5656. [PMID: 34580305 PMCID: PMC8476585 DOI: 10.1038/s41467-021-25975-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/31/2021] [Indexed: 12/28/2022] Open
Abstract
Glycosyltransferases (GTs) play fundamental roles in nearly all cellular processes through the biosynthesis of complex carbohydrates and glycosylation of diverse protein and small molecule substrates. The extensive structural and functional diversification of GTs presents a major challenge in mapping the relationships connecting sequence, structure, fold and function using traditional bioinformatics approaches. Here, we present a convolutional neural network with attention (CNN-attention) based deep learning model that leverages simple secondary structure representations generated from primary sequences to provide GT fold prediction with high accuracy. The model learns distinguishing secondary structure features free of primary sequence alignment constraints and is highly interpretable. It delineates sequence and structural features characteristic of individual fold types, while classifying them into distinct clusters that group evolutionarily divergent families based on shared secondary structural features. We further extend our model to classify GT families of unknown folds and variants of known folds. By identifying families that are likely to adopt novel folds such as GT91, GT96 and GT97, our studies expand the GT fold landscape and prioritize targets for future structural studies.
Collapse
Affiliation(s)
- Rahil Taujale
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Zhongliang Zhou
- Department of Computer Science, University of Georgia, Athens, GA, USA
| | - Wayland Yeung
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Sheng Li
- Department of Computer Science, University of Georgia, Athens, GA, USA
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA.
- Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
45
|
Mindler K, Ostertag E, Stehle T. The polyfunctional polysialic acid: A structural view. Carbohydr Res 2021; 507:108376. [PMID: 34273862 DOI: 10.1016/j.carres.2021.108376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022]
Abstract
Polysialic acid (polySia), a homopolymer of α2,8-linked sialic acid residues, modifies a small number of proteins and has central functions in vertebrate signalling. Here, we review the regulatory functions of polySia in signalling processes and the immune system of adult humans, as well as functions based on their chemical properties. The main focus will be on the structure-function relationship of polySia with its interaction partners in humans. Recent studies have indicated that the degree of polymerisation is an important parameter that can guide the regulatory effect of polySia in addition to its binding to target proteins. Therefore, the structures of polySia in solution and bound to interaction partners are compared in order to identify the key factors that define binding specificity.
Collapse
Affiliation(s)
- Katja Mindler
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076, Tübingen, Germany
| | - Elena Ostertag
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076, Tübingen, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
46
|
Taujale R, Soleymani S, Priyadarshi A, Venkat A, Yeung W, Kochut KJ, Kannan N. GTXplorer: A portal to navigate and visualize the evolutionary information encoded in fold a glycosyltransferases. Glycobiology 2021; 31:1472-1477. [PMID: 34351427 DOI: 10.1093/glycob/cwab082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 11/12/2022] Open
Abstract
Glycosyltransferases (GTs) play a central role in sustaining all forms of life through the biosynthesis of complex carbohydrates. Despite significant strides made in recent years to establish computational resources, databases, and tools to understand the nature and role of carbohydrates and related glycoenzymes, a data analytics framework that connects the sequence-structure-function relationships to the evolution of GTs is currently lacking. This hinders the characterization of understudied GTs and the synthetic design of GTs for medical and biotechnology applications. Here, we present GTXplorer as an integrated platform that presents evolutionary information of GTs adopting a GT-A fold in an intuitive format enabling in silico investigation through comparative sequence analysis to derive informed hypotheses about their function. The tree view mode provides an overview of the evolutionary relationships of GT-A families and allows users to select phylogenetically relevant families for comparisons. The selected families can then be compared in the alignment view at the residue level using annotated weblogo stacks of the GT-A core specific to the selected clade, family, or subfamily. All data are easily accessible and can be downloaded for further analysis. GTXplorer can be accessed at https://vulcan.cs.uga.edu/gtxplorer/ or from GitHub at https://github.com/esbgkannan/GTxplorer to deploy locally. By packaging multiple data streams into an accessible, user-friendly format, GTXplorer presents the first evolutionary data analytics platform for comparative glycomics.
Collapse
Affiliation(s)
- Rahil Taujale
- Institute of Bioinformatics.,Complex Carbohydrate Research Center
| | | | | | - Aarya Venkat
- Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| | | | | | - Natarajan Kannan
- Institute of Bioinformatics.,Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| |
Collapse
|
47
|
Zhang A, Venkat A, Taujale R, Mull JL, Ito A, Kannan N, Haltiwanger RS. Peters plus syndrome mutations affect the function and stability of human β1,3-glucosyltransferase. J Biol Chem 2021; 297:100843. [PMID: 34058199 PMCID: PMC8233153 DOI: 10.1016/j.jbc.2021.100843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/04/2023] Open
Abstract
Peters Plus Syndrome (PTRPLS OMIM #261540) is a severe congenital disorder of glycosylation where patients have multiple structural anomalies, including Peters anomaly of the eye (anterior segment dysgenesis), disproportionate short stature, brachydactyly, dysmorphic facial features, developmental delay, and variable additional abnormalities. PTRPLS patients and some Peters Plus-like (PTRPLS-like) patients (who only have a subset of PTRPLS phenotypes, have mutations in the gene encoding β1,3-glucosyltransferase [B3GLCT]). B3GLCT catalyzes the transfer of glucose to O-linked fucose on thrombospondin type-1 repeats. Most B3GLCT substrate proteins belong to the ADAMTS superfamily and play critical roles in extracellular matrix. We sought to determine whether the PTRPLS or PTRPLS-like mutations abrogated B3GLCT activity. B3GLCT has two putative active sites, one in the N-terminal region and the other in the C-terminal glycosyltransferase domain. Using sequence analysis and in vitro activity assays, we demonstrated that the C-terminal domain catalyzes transfer of glucose to O-linked fucose. We also generated a homology model of B3GLCT and identified D421 as the catalytic base. PTRPLS and PTRPLS-like mutations were individually introduced into B3GLCT, and the mutated enzymes were evaluated using in vitro enzyme assays and cell-based functional assays. Our results demonstrated that PTRPLS mutations caused loss of B3GLCT enzymatic activity and/or significantly reduced protein stability. In contrast, B3GLCT with PTRPLS-like mutations retained enzymatic activity, although some showed a minor destabilizing effect. Overall, our data supports the hypothesis that loss of glucose from B3GLCT substrate proteins is responsible for the defects observed in PTRPLS patients, but not for those observed in PTRPLS-like patients.
Collapse
Affiliation(s)
- Ao Zhang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Aarya Venkat
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Rahil Taujale
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - James L Mull
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Atsuko Ito
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA; Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Robert S Haltiwanger
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
48
|
Narciso JO, Zeng W, Ford K, Lampugnani ER, Humphries J, Austarheim I, van de Meene A, Bacic A, Doblin MS. Biochemical and Functional Characterization of GALT8, an Arabidopsis GT31 β-(1,3)-Galactosyltransferase That Influences Seedling Development. FRONTIERS IN PLANT SCIENCE 2021; 12:678564. [PMID: 34113372 PMCID: PMC8186459 DOI: 10.3389/fpls.2021.678564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/21/2021] [Indexed: 05/31/2023]
Abstract
Arabinogalactan-proteins (AGPs) are members of the hydroxyproline-rich glycoprotein (HRGP) superfamily, a group of highly diverse proteoglycans that are present in the cell wall, plasma membrane as well as secretions of almost all plants, with important roles in many developmental processes. The role of GALT8 (At1g22015), a Glycosyltransferase-31 (GT31) family member of the Carbohydrate-Active Enzyme database (CAZy), was examined by biochemical characterization and phenotypic analysis of a galt8 mutant line. To characterize its catalytic function, GALT8 was heterologously expressed in tobacco leaves and its enzymatic activity tested. GALT8 was shown to be a β-(1,3)-galactosyltransferase (GalT) that catalyzes the synthesis of a β-(1,3)-galactan, similar to the in vitro activity of KNS4/UPEX1 (At1g33430), a homologous GT31 member previously shown to have this activity. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) confirmed the products were of 2-6 degree of polymerisation (DP). Previous reporter studies showed that GALT8 is expressed in the central and synergid cells, from whence the micropylar endosperm originates after the fertilization of the central cell of the ovule. Homozygous mutants have multiple seedling phenotypes including significantly shorter hypocotyls and smaller leaf area compared to wild type (WT) that are attributable to defects in female gametophyte and/or endosperm development. KNS4/UPEX1 was shown to partially complement the galt8 mutant phenotypes in genetic complementation assays suggesting a similar but not identical role compared to GALT8 in β-(1,3)-galactan biosynthesis. Taken together, these data add further evidence of the important roles GT31 β-(1,3)-GalTs play in elaborating type II AGs that decorate AGPs and pectins, thereby imparting functional consequences on plant growth and development.
Collapse
Affiliation(s)
- Joan Oñate Narciso
- ARC Centre of Excellence on Plant Cell Walls, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Wei Zeng
- ARC Centre of Excellence on Plant Cell Walls, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Kris Ford
- ARC Centre of Excellence on Plant Cell Walls, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Edwin R. Lampugnani
- ARC Centre of Excellence on Plant Cell Walls, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - John Humphries
- ARC Centre of Excellence on Plant Cell Walls, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Ingvild Austarheim
- ARC Centre of Excellence on Plant Cell Walls, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Allison van de Meene
- ARC Centre of Excellence on Plant Cell Walls, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Antony Bacic
- ARC Centre of Excellence on Plant Cell Walls, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Monika S. Doblin
- ARC Centre of Excellence on Plant Cell Walls, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
49
|
Mikolajczyk K, Bereznicka A, Szymczak-Kulus K, Haczkiewicz-Lesniak K, Szulc B, Olczak M, Rossowska J, Majorczyk E, Kapczynska K, Bovin N, Lisowska M, Kaczmarek R, Miazek A, Czerwinski M. Missing the sweet spot: one of the two N-glycans on human Gb3/CD77 synthase is expendable. Glycobiology 2021; 31:1145-1162. [PMID: 33978735 DOI: 10.1093/glycob/cwab041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
N-glycosylation is a ubiquitous posttranslational modification that may influence folding, subcellular localization, secretion, solubility and oligomerization of proteins. In this study, we examined the effects of N-glycans on the activity of human Gb3/CD77 synthase, which catalyzes the synthesis of glycosphingolipids with terminal Galα1 → 4Gal (Gb3 and the P1 antigen) and Galα1 → 4GalNAc disaccharides (the NOR antigen). The human Gb3/CD77 synthase contains two occupied N-glycosylation sites at positions N121 and N203. Intriguingly, we found that while the N-glycan at N203 is essential for activity and correct subcellular localization, the N-glycan at N121 is dispensable and its absence did not reduce, but, surprisingly, even increased the activity of the enzyme. The fully N-glycosylated human Gb3/CD77 synthase and its glycoform missing the N121 glycan correctly localized in the Golgi, whereas a glycoform without the N203 site partially mislocalized in the endoplasmic reticulum. A double mutein missing both N-glycans was inactive and accumulated in the endoplasmic reticulum. Our results suggest that the decreased specific activity of human Gb3/CD77 synthase glycovariants results from their improper subcellular localization and, to a smaller degree, a decrease in enzyme solubility. Taken together, our findings show that the two N-glycans of human Gb3/CD77 synthase have opposing effects on its properties, revealing a dual nature of N-glycosylation and potentially a novel regulatory mechanism controlling the biological activity of proteins.
Collapse
Affiliation(s)
- Krzysztof Mikolajczyk
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla St. 12, 53-114 Wroclaw, Poland
| | - Anna Bereznicka
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla St. 12, 53-114 Wroclaw, Poland
| | - Katarzyna Szymczak-Kulus
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla St. 12, 53-114 Wroclaw, Poland
| | - Katarzyna Haczkiewicz-Lesniak
- Department of Ultrastructural Research, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego St. 6a, 50-368, Wroclaw, Poland
| | - Bozena Szulc
- Faculty of Biotechnology, University of Wroclaw, Joliot-Curie St. 14A, 50-383 Wroclaw, Poland
| | - Mariusz Olczak
- Faculty of Biotechnology, University of Wroclaw, Joliot-Curie St. 14A, 50-383 Wroclaw, Poland
| | - Joanna Rossowska
- Flow Cytometry Core Facility, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla St. 12, 53-114 Wroclaw, Poland
| | - Edyta Majorczyk
- Faculty of Physiotherapy and Physical Education, Opole University of Technology, Proszkowska St. 76, 45-758 Opole, Poland
| | - Katarzyna Kapczynska
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla St. 12, 53-114 Wroclaw, Poland
| | - Nicolai Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Miklukho-Maklaya St 16/10, Moscow 117997 Russia
| | - Marta Lisowska
- Department of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla St. 12, 53-114 Wroclaw, Poland
| | - Radoslaw Kaczmarek
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla St. 12, 53-114 Wroclaw, Poland
| | - Arkadiusz Miazek
- Department of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla St. 12, 53-114 Wroclaw, Poland
| | - Marcin Czerwinski
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla St. 12, 53-114 Wroclaw, Poland
| |
Collapse
|
50
|
Na L, Li R, Chen X. Recent progress in synthesis of carbohydrates with sugar nucleotide-dependent glycosyltransferases. Curr Opin Chem Biol 2021. [PMID: 33310623 DOI: 10.1186/10.1016/j.cbpa.2020.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Sugar nucleotide-dependent glycosyltransferases (GTs) are key enzymes that catalyze the formation of glycosidic bonds in nature. They have been increasingly applied in the synthesis of complex carbohydrates and glycoconjugates with or without in situ generation of sugar nucleotides. Human GTs are becoming more accessible and new bacterial GTs have been identified and characterized. An increasing number of crystal structures elucidated for GTs from mammalian and bacterial sources facilitate structure-based design of mutants as improved catalysts for synthesis. Automated platforms have also been developed for chemoenzymatic synthesis of carbohydrates. Recent progress in applying sugar nucleotide-dependent GTs in enzymatic and chemoenzymatic synthesis of mammalian glycans and glycoconjugates, bacterial surface glycans, and glycosylated natural products from bacteria and plants are reviewed.
Collapse
Affiliation(s)
- Lan Na
- Department of Chemistry, University of California Davis, Davis, CA, USA
| | - Riyao Li
- Department of Chemistry, University of California Davis, Davis, CA, USA
| | - Xi Chen
- Department of Chemistry, University of California Davis, Davis, CA, USA.
| |
Collapse
|