1
|
Morimoto J, Pietras Z. Proteome Size Is Positively Correlated with Lifespan in Mammals but Negatively Correlated with Lifespan in Birds. Adv Biol (Weinh) 2025; 9:e2400633. [PMID: 39957468 PMCID: PMC12001000 DOI: 10.1002/adbi.202400633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/08/2025] [Indexed: 02/18/2025]
Abstract
The central dogma describes the unidirectional flow of genetic information from DNA to proteins, leading to an underappreciation of the potential for the information contained in proteomes (the full set of proteins in an organism) to reflect broader biological processes such as lifespan. Here, this is addressed by examining how the size and composition of 276 proteomes from four vertebrate classes are related to lifespan. After accounting for the relationship between body weight and lifespan, lifespan is negatively correlated with proteome size in birds and, to a weaker extent, in fish, and positively correlated with lifespan in mammals. Proteome composition varies amongst the four vertebrate classes, but there is no evidence that any specific amino acid correlated with lifespan. The findings in relation to the role of dietary amino acid restriction are discussed on lifespan extension and raise questions about evolutionary and structural forces shaping proteome composition across species.
Collapse
Affiliation(s)
- Juliano Morimoto
- Institute of MathematicsSchool of Natural and Computing SciencesUniversity of AberdeenFraser Noble BuildingAberdeenAB24 3UEUK
- Programa de Pós‐graduação em Ecologia e ConservaçãoUniversidade Federal do ParanáCuritiba82590‐300Brazil
| | - Zuzanna Pietras
- Department of PhysicsChemistry and Biology (IFM)Linköping UniversityLinköping581 83Sweden
| |
Collapse
|
2
|
Winterhalter PR, Simm A. Beneficial death: A substantial element of evolution? Biogerontology 2025; 26:39. [PMID: 39826039 DOI: 10.1007/s10522-024-10176-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/24/2024] [Indexed: 01/20/2025]
Abstract
If a shortened lifespan is evolutionarily advantageous, it becomes more likely that nature will strive to change it accordingly, affecting how we understand aging. Premature mortality because of aging would seem detrimental to the individual, but under what circumstances can it be of value? Based on a relative incremental increase in fitness, simulations were performed to reveal the benefit of death. This modification allows for continuous evolution in the model and establishes an optimal lifespan even under challenging conditions. As a result, shorter-lived individuals achieve faster adaptation through more frequent generational turnover, displacing longer-lived ones and likely providing a competitive advantage between species. Contrary to previous assumptions, this work proposes a mechanism by which early death, e.g., due to aging, may contribute to evolution.
Collapse
Affiliation(s)
- Patrick R Winterhalter
- Clinic for Heart Surgery (UMH), Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120, Halle (Saale), Germany.
| | - Andreas Simm
- Clinic for Heart Surgery (UMH), Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120, Halle (Saale), Germany
| |
Collapse
|
3
|
Leow CJ, Piller KR. Life in the fastlane? A comparative analysis of gene expression profiles across annual, semi-annual, and non-annual killifishes (Cyprinodontiformes: Nothobranchiidae). PLoS One 2024; 19:e0308855. [PMID: 39255288 PMCID: PMC11386455 DOI: 10.1371/journal.pone.0308855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 08/01/2024] [Indexed: 09/12/2024] Open
Abstract
The Turquoise Killifish is an important vertebrate for the study of aging and age-related diseases due to its short lifespan. Within Nothobranchiidae, species possess annual, semi-annual, or non-annual life-histories. We took a comparative approach and examined gene expression profiles (QuantSeq) from 62 individuals from eleven nothobranchid species that span three life-histories. Our results show significant differences in differentially expressed genes (DEGs) across life-histories with non-annuals and semi-annuals being most similar, and annuals being the most distinct. At finer scales, we recovered significant differences in DEGs for DNA repair genes and show that non-annual and semi-annuals share similar gene expression profiles, while annuals are distinct. Most of the GO terms enriched in annuals are related to metabolic processes. However, GO terms, including translation, protein transport, and DNA replication initiation also are enriched in annuals. Non-annuals are enriched in Notch signaling pathway genes and downregulated in the canonical Wnt signaling pathway compared to annual species, which suggests that non-annuals have stronger regulation in cellular processes. This study provides support for congruency in DEGs involved in these life-histories and provides strong evidence that a particular set of candidate genes may be worthy of study to investigate their role in the aging process.
Collapse
Affiliation(s)
- Chi Jing Leow
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, United States of America
| | - Kyle R Piller
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, United States of America
| |
Collapse
|
4
|
Jackson TK, Rhode C. Comparative genomics of dusky kob (Argyrosomus japonicus, Sciaenidae) conspecifics: Evidence for speciation and the genetic mechanisms underlying traits. JOURNAL OF FISH BIOLOGY 2024; 105:841-857. [PMID: 38885946 DOI: 10.1111/jfb.15844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/17/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
Dusky kob (Argyrosomus japonicus) is a commercially important finfish, indigenous to South Africa, Australia, and China. Previous studies highlighted differences in genetic composition, life history, and morphology of the species across geographic regions. A draft genome sequence of 0.742 Gb (N50 = 5.49 Mb; BUSCO completeness = 97.8%) and 22,438 predicted protein-coding genes was generated for the South African (SA) conspecific. A comparison with the Chinese (CN) conspecific revealed a core set of 32,068 orthologous protein clusters across both genomes. The SA genome exhibited 440 unique clusters compared to 1928 unique clusters in the CN genome. Transportation and immune response processes were overrepresented among the SA accessory genome, whereas the CN accessory genome was enriched for immune response, DNA transposition, and sensory detection (FDR-adjusted p < 0.01). These unique clusters may represent an adaptive component of the species' pangenome that could explain population divergence due to differential environmental specialisation. Furthermore, 700 single-copy orthologues (SCOs) displayed evidence of positive selection between the SA and CN genomes, and globally these genomes shared only 92% similarity, suggesting they might be distinct species. These genes primarily play roles in metabolism and digestion, illustrating the evolutionary pathways that differentiate the species. Understanding these genomic mechanisms underlying adaptation and evolution within and between species provides valuable insights into growth and maturation of kob, traits that are particularly relevant to commercial aquaculture.
Collapse
Affiliation(s)
- Tassin Kim Jackson
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Clint Rhode
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
5
|
Beichman AC, Zhu L, Harris K. The Evolutionary Interplay of Somatic and Germline Mutation Rates. Annu Rev Biomed Data Sci 2024; 7:83-105. [PMID: 38669515 DOI: 10.1146/annurev-biodatasci-102523-104225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Novel sequencing technologies are making it increasingly possible to measure the mutation rates of somatic cell lineages. Accurate germline mutation rate measurement technologies have also been available for a decade, making it possible to assess how this fundamental evolutionary parameter varies across the tree of life. Here, we review some classical theories about germline and somatic mutation rate evolution that were formulated using principles of population genetics and the biology of aging and cancer. We find that somatic mutation rate measurements, while still limited in phylogenetic diversity, seem consistent with the theory that selection to preserve the soma is proportional to life span. However, germline and somatic theories make conflicting predictions regarding which species should have the most accurate DNA repair. Resolving this conflict will require carefully measuring how mutation rates scale with time and cell division and achieving a better understanding of mutation rate pleiotropy among cell types.
Collapse
Affiliation(s)
- Annabel C Beichman
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA;
| | - Luke Zhu
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Kelley Harris
- Computational Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
6
|
Morabito G, Ryabova A, Valenzano DR. Immune aging in annual killifish. Immun Ageing 2024; 21:18. [PMID: 38459521 PMCID: PMC10921792 DOI: 10.1186/s12979-024-00418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/12/2024] [Indexed: 03/10/2024]
Abstract
Turquoise killifish (Nothobranchius furzeri) evolved a naturally short lifespan of about six months and exhibit aging hallmarks that affect multiple organs. These hallmarks include protein aggregation, telomere shortening, cellular senescence, and systemic inflammation. Turquoise killifish possess the full spectrum of vertebrate-specific innate and adaptive immune system. However, during their recent evolutionary history, they lost subsets of mucosal-specific antibody isoforms that are present in other teleosts. As they age, the immune system of turquoise killifish undergoes dramatic cellular and systemic changes. These changes involve increased inflammation, reduced antibody diversity, an increased prevalence of pathogenic microbes in the intestine, and extensive DNA damage in immune progenitor cell clusters. Collectively, the wide array of age-related changes occurring in turquoise killifish suggest that, despite an evolutionary separation spanning hundreds of millions of years, teleosts and mammals share common features of immune system aging. Hence, the spontaneous aging observed in the killifish immune system offers an excellent opportunity for discovering fundamental and conserved aspects associated with immune system aging across vertebrates. Additionally, the species' naturally short lifespan of only a few months, along with its experimental accessibility, offers a robust platform for testing interventions to improve age-related dysfunctions in the whole organism and potentially inform the development of immune-based therapies for human aging-related diseases.
Collapse
Affiliation(s)
| | - Alina Ryabova
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Dario Riccardo Valenzano
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany.
- Friedrich Schiller University, Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
7
|
Boos F, Chen J, Brunet A. The African Turquoise Killifish: A Scalable Vertebrate Model for Aging and Other Complex Phenotypes. Cold Spring Harb Protoc 2024; 2024:107737. [PMID: 37100468 PMCID: PMC10890783 DOI: 10.1101/pdb.over107737] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The African turquoise killifish Nothobranchius furzeri is currently the shortest-lived vertebrate that can be bred in captivity. Because of its short life span of only 4-6 months, rapid generation time, high fecundity, and low cost of maintenance, the African turquoise killifish has emerged as an attractive model organism that combines the scalability of invertebrate models with the unique features of vertebrate organisms. A growing community of researchers is using the African turquoise killifish for studies in diverse fields, including aging, organ regeneration, development, "suspended animation," evolution, neuroscience, and disease. A wide range of techniques is now available for killifish research, from genetic manipulations and genomic tools to specialized assays for studying life span, organ biology, response to injury, etc. This protocol collection provides detailed descriptions of the methods that are generally applicable to all killifish laboratories and those that are limited to specific disciplines. Here, we give an overview of the features that render the African turquoise killifish a unique fast-track vertebrate model organism.
Collapse
Affiliation(s)
- Felix Boos
- Department of Genetics, Stanford, California 94305, USA
| | - Jingxun Chen
- Department of Genetics, Stanford, California 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford, California 94305, USA
- Glenn Laboratories for the Biology of Aging at Stanford, Stanford, California 94305, USA
| |
Collapse
|
8
|
Lukšíková K, Pavlica T, Altmanová M, Štundlová J, Pelikánová Š, Simanovsky SA, Krysanov EY, Jankásek M, Hiřman M, Reichard M, Ráb P, Sember A. Conserved satellite DNA motif and lack of interstitial telomeric sites in highly rearranged African Nothobranchius killifish karyotypes. JOURNAL OF FISH BIOLOGY 2023; 103:1501-1514. [PMID: 37661806 DOI: 10.1111/jfb.15550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Using African annual killifishes of the genus Nothobranchius from temporary savannah pools with rapid karyotype and sex chromosome evolution, we analysed the chromosomal distribution of telomeric (TTAGGG)n repeat and Nfu-SatC satellite DNA (satDNA; isolated from Nothobranchius furzeri) in 15 species across the Nothobranchius killifish phylogeny, and with Fundulosoma thierryi as an out-group. Our fluorescence in situ hybridization experiments revealed that all analysed taxa share the presence of Nfu-SatC repeat but with diverse organization and distribution on chromosomes. Nfu-SatC landscape was similar in conspecific populations of Nothobranchius guentheri and Nothobranchius melanospilus but slightly-to-moderately differed between populations of Nothobranchius pienaari, and between closely related Nothobranchius kuhntae and Nothobranchius orthonotus. Inter-individual variability in Nfu-SatC patterns was found in N. orthonotus and Nothobranchius krysanovi. We revealed mostly no sex-linked patterns of studied repetitive DNA distribution. Only in Nothobranchius brieni, possessing multiple sex chromosomes, Nfu-SatC repeat occupied a substantial portion of the neo-Y chromosome, similarly as formerly found in the XY sex chromosome system of turquoise killifish N. furzeri and its sister species Nothobranchius kadleci-representatives not closely related to N. brieni. All studied species further shared patterns of expected telomeric repeats at the ends of all chromosomes and no additional interstitial telomeric sites. In summary, we revealed (i) the presence of conserved satDNA class in Nothobranchius clades (a rare pattern among ray-finned fishes); (ii) independent trajectories of Nothobranchius sex chromosome differentiation, with recurrent and convergent accumulation of Nfu-SatC on the Y chromosome in some species; and (iii) genus-wide shared tendency to loss of telomeric repeats during interchromosomal rearrangements. Collectively, our findings advance our understanding of genome structure, mechanisms of karyotype reshuffling, and sex chromosome differentiation in Nothobranchius killifishes from the genus-wide perspective.
Collapse
Affiliation(s)
- Karolína Lukšíková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Pavlica
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marie Altmanová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jana Štundlová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- University of South Bohemia, Faculty of Science, České Budějovice, Czech Republic
| | - Šárka Pelikánová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Sergey A Simanovsky
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Eugene Yu Krysanov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Marek Jankásek
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Matyáš Hiřman
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Reichard
- Institute of Vertebrate Biology, Czech Academy of Sciences, Czech Republic
- Department of Ecology and Vertebrate Zoology, University of Łódź, Łódź, Poland
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Ráb
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Alexandr Sember
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| |
Collapse
|
9
|
Voleníková A, Lukšíková K, Mora P, Pavlica T, Altmanová M, Štundlová J, Pelikánová Š, Simanovsky SA, Jankásek M, Reichard M, Nguyen P, Sember A. Fast satellite DNA evolution in Nothobranchius annual killifishes. Chromosome Res 2023; 31:33. [PMID: 37985497 PMCID: PMC10661780 DOI: 10.1007/s10577-023-09742-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/04/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023]
Abstract
Satellite DNA (satDNA) is a rapidly evolving class of tandem repeats, with some monomers being involved in centromere organization and function. To identify repeats associated with (peri)centromeric regions, we investigated satDNA across Southern and Coastal clades of African annual killifishes of the genus Nothobranchius. Molecular cytogenetic and bioinformatic analyses revealed that two previously identified satellites, designated here as NkadSat01-77 and NfurSat01-348, are associated with (peri)centromeres only in one lineage of the Southern clade. NfurSat01-348 was, however, additionally detected outside centromeres in three members of the Coastal clade. We also identified a novel satDNA, NrubSat01-48, associated with (peri)centromeres in N. foerschi, N. guentheri, and N. rubripinnis. Our findings revealed fast turnover of satDNA associated with (peri)centromeres and different trends in their evolution in two clades of the genus Nothobranchius.
Collapse
Affiliation(s)
- Anna Voleníková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Karolína Lukšíková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pablo Mora
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Department of Experimental Biology, Genetics Area, University of Jaén, Jaén, Spain
| | - Tomáš Pavlica
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marie Altmanová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jana Štundlová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Šárka Pelikánová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Sergey A Simanovsky
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Marek Jankásek
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Reichard
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Department of Ecology and Vertebrate Zoology, University of Łódź, Łódź, Poland
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Nguyen
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic.
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| | - Alexandr Sember
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic.
| |
Collapse
|
10
|
Li S, Vazquez JM, Sudmant PH. The evolution of aging and lifespan. Trends Genet 2023; 39:830-843. [PMID: 37714733 PMCID: PMC11147682 DOI: 10.1016/j.tig.2023.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023]
Abstract
Aging is a nearly inescapable trait among organisms yet lifespan varies tremendously across different species and spans several orders of magnitude in vertebrates alone. This vast phenotypic diversity is driven by distinct evolutionary trajectories and tradeoffs that are reflected in patterns of diversification and constraint in organismal genomes. Age-specific impacts of selection also shape allele frequencies in populations, thus impacting disease susceptibility and environment-specific mortality risk. Further, the mutational processes that spawn this genetic diversity in both germline and somatic cells are strongly influenced by age and life history. We discuss recent advances in our understanding of the evolution of aging and lifespan at organismal, population, and cellular scales, and highlight outstanding questions that remain unanswered.
Collapse
Affiliation(s)
- Stacy Li
- Department of Integrative Biology, University of California, Berkeley, CA, USA; Center for Computational Biology, University of California, Berkeley, CA. USA
| | - Juan Manuel Vazquez
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, CA, USA; Center for Computational Biology, University of California, Berkeley, CA. USA.
| |
Collapse
|
11
|
Xu A, Teefy BB, Lu RJ, Nozownik S, Tyers AM, Valenzano DR, Benayoun BA. Transcriptomes of aging brain, heart, muscle, and spleen from female and male African turquoise killifish. Sci Data 2023; 10:695. [PMID: 37828039 PMCID: PMC10570339 DOI: 10.1038/s41597-023-02609-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
The African turquoise killifish is an emerging vertebrate model organism with great potential for aging research due to its naturally short lifespan. Thus far, turquoise killifish aging 'omic' studies have examined a single organ, single sex and/or evaluated samples from non-reference strains. Here, we describe a resource dataset of ribosomal RNA-depleted RNA-seq libraries generated from the brain, heart, muscle, and spleen from both sexes, as well as young and old animals, in the reference GRZ turquoise killifish strain. We provide basic quality control steps and demonstrate the utility of our dataset by performing differential gene expression and gene ontology analyses by age and sex. Importantly, we show that age has a greater impact than sex on transcriptional landscapes across probed tissues. Finally, we confirm transcription of transposable elements (TEs), which are highly abundant and increase in expression with age in brain tissue. This dataset will be a useful resource for exploring gene and TE expression as a function of both age and sex in a powerful naturally short-lived vertebrate model.
Collapse
Affiliation(s)
- Alan Xu
- Quantitative & Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA, 90089, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Bryan B Teefy
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ryan J Lu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Graduate Program in the Biology of Aging, University of Southern California, Los Angeles, CA, USA
| | - Séverine Nozownik
- Unit of Forensic Genetics, University Center of Legal Medicine, Lausanne, Switzerland
| | - Alexandra M Tyers
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann Strasse 9b, 50931, Cologne, Germany
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Vairão, Portugal
| | - Dario R Valenzano
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann Strasse 9b, 50931, Cologne, Germany
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA, 90089, USA.
- Biochemistry and Molecular Medicine Department, USC Keck School of Medicine, Los Angeles, CA, 90089, USA.
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA, 90089, USA.
- USC Stem Cell Initiative, Los Angeles, CA, 90089, USA.
| |
Collapse
|
12
|
Cochella L, Chaker Z. Development, regeneration and aging: a bizarre love triangle. Development 2023; 150:dev202086. [PMID: 37791585 DOI: 10.1242/dev.202086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The Jacques Monod Conference on 'Growth and regeneration during development and aging' was organized by Claude Desplan and Allison Bardin in May 2023. The conference took place in Roscoff, France, where participants shared recent conceptual advances under the general motto that developmental processes do not end with embryogenesis. The meeting covered various aspects of how development relates to fitness, regeneration and aging across a refreshing diversity of evolutionarily distant organisms.
Collapse
Affiliation(s)
- Luisa Cochella
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zayna Chaker
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
13
|
de Bakker DEM, Valenzano DR. Turquoise killifish: A natural model of age-dependent brain degeneration. Ageing Res Rev 2023; 90:102019. [PMID: 37482345 DOI: 10.1016/j.arr.2023.102019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
Turquoise killifish (Nothobranchius furzeri) are naturally short-lived vertebrates that display a wide range of spontaneous age-related changes, including onset of cancer, reduced mobility, and cognitive decline. Here, we focus on describing the phenotypic spectrum of the aging killifish brain. As turquoise killifish age, their dopaminergic and noradrenergic neurons undergo a significant decline in number. Furthermore, brain aging in turquoise killifish is associated with several glial-specific changes, such as an increase in the astrocyte-covered surface area and an increase in the numbers of microglial cells, i.e. the brain-specific macrophage population. Killifish brains undergo age-dependent reduced proteasome activity and increased protein aggregation, including the aggregation of the Parkinson's disease marker α-synuclein. Parallel to brain degeneration, turquoise killifish develop spontaneous age-related gut dysbiosis, which has been proposed to affect human neurodegenerative disease. Finally, aged turquoise killifish display declined learning capacity. We argue that, taken together, the molecular, cellular and functional changes that spontaneously take place during aging in killifish brains are consistent with a robust degenerative process that shares remarkable similarities with human neurodegenerative diseases. Hence, we propose that turquoise killifish represent a powerful model of spontaneous brain degeneration which can be effectively used to explore the causal mechanisms underlying neurodegenerative diseases.
Collapse
Affiliation(s)
- Dennis E M de Bakker
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, D-07745, Jena, Germany
| | - Dario R Valenzano
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, D-07745, Jena, Germany.
| |
Collapse
|
14
|
Bedbrook CN, Nath RD, Nagvekar R, Deisseroth K, Brunet A. Rapid and precise genome engineering in a naturally short-lived vertebrate. eLife 2023; 12:e80639. [PMID: 37191291 PMCID: PMC10188113 DOI: 10.7554/elife.80639] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
The African turquoise killifish is a powerful vertebrate system to study complex phenotypes at scale, including aging and age-related disease. Here, we develop a rapid and precise CRISPR/Cas9-mediated knock-in approach in the killifish. We show its efficient application to precisely insert fluorescent reporters of different sizes at various genomic loci in order to drive cell-type- and tissue-specific expression. This knock-in method should allow the establishment of humanized disease models and the development of cell-type-specific molecular probes for studying complex vertebrate biology.
Collapse
Affiliation(s)
- Claire N Bedbrook
- Department of Genetics, Stanford UniversityStanfordUnited States
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Ravi D Nath
- Department of Genetics, Stanford UniversityStanfordUnited States
| | - Rahul Nagvekar
- Department of Genetics, Stanford UniversityStanfordUnited States
| | - Karl Deisseroth
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Department of Psychiatry and Behavioral Sciences, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Anne Brunet
- Department of Genetics, Stanford UniversityStanfordUnited States
- Glenn Laboratories for the Biology of Aging at StanfordStanfordUnited States
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
15
|
Součková K, Jasík M, Sovadinová I, Sember A, Sychrová E, Konieczna A, Bystrý V, Dyková I, Blažek R, Lukšíková K, Pavlica T, Jankásek M, Altmanová M, Žák J, Zbončáková A, Reichard M, Slabý O. From fish to cells: Establishment of continuous cell lines from embryos of annual killifish Nothobranchius furzeri and N. kadleci. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106517. [PMID: 37087860 DOI: 10.1016/j.aquatox.2023.106517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
There is a growing need of alternative experimental models that avoid or minimize the use of animals due to ethical, economical, and scientific reasons. Surprisingly, the stable embryonic cell lines representing Nothobranchius spp., emerging vertebrate models in aging research, regenerative medicine, ecotoxicology, or genomics, have been not derived so far. This paper reports establishment and deep characterization of ten continuous cell lines from annual killifish embryos of N. furzeri and N. kadleci. The established cell lines exhibited mostly fibroblast- and epithelial-like morphology and steady growth rates with cell doubling time ranging from 27 to 40 h. All cell lines retained very similar characteristics even after continuous subcultivation (more than 100 passages) and extended storage in liquid nitrogen (∼3 years). The cytogenetic analysis of the cell lines revealed a diploid chromosome number mostly equal to 38 elements (i.e., the native chromosome count for both killifish species), with minor but diverse line/passage-specific karyotype changes compared to the patterns observed in non-cultured N. furzeri and N. kadleci somatic cells. Based on transcriptional analysis of marker genes, the cell lines displayed features of an undifferentiated state without signs of senescence even in advanced passages. We confirmed that the cell lines are transfectable and can form viable 3-D spheroids. The applicability of the cell lines for (eco)toxicological surveys was confirmed by assessing the effect of cytotoxic and growth inhibitory agents. Properties of established Nothobranchius embryonic cell lines open new possibilities for the application of this model in various fields of life sciences including molecular mechanisms of aging, karyotype (in)stability or differences in lifespan.
Collapse
Affiliation(s)
- Kamila Součková
- Ondřej Slabý Group, Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.
| | - Matej Jasík
- Ondřej Slabý Group, Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Iva Sovadinová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno 602 00, Czech Republic
| | - Alexandr Sember
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov 277 21, Czech Republic
| | - Eliška Sychrová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno 602 00, Czech Republic
| | - Anna Konieczna
- Ondřej Slabý Group, Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Vojtěch Bystrý
- Ondřej Slabý Group, Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Iva Dyková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno 611 37, Czech Republic
| | - Radim Blažek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno 611 37, Czech Republic; Institute of Vertebrate Biology, Czech Academy of Sciences, Brno 603 00, Czech Republic
| | - Karolína Lukšíková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov 277 21, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague 128 44, Czech Republic
| | - Tomáš Pavlica
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov 277 21, Czech Republic; Department of Zoology, Faculty of Science, Charles University, Prague 128 44, Czech Republic
| | - Marek Jankásek
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov 277 21, Czech Republic; Department of Zoology, Faculty of Science, Charles University, Prague 128 44, Czech Republic
| | - Marie Altmanová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov 277 21, Czech Republic; Department of Ecology, Faculty of Science, Charles University, Prague 128 44, Czech Republic
| | - Jakub Žák
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno 611 37, Czech Republic; Institute of Vertebrate Biology, Czech Academy of Sciences, Brno 603 00, Czech Republic
| | - Adriana Zbončáková
- Ondřej Slabý Group, Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Martin Reichard
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno 611 37, Czech Republic; Institute of Vertebrate Biology, Czech Academy of Sciences, Brno 603 00, Czech Republic; Department of Ecology and Vertebrate Zoology, University of Łódź, Łódź 90-237, Poland
| | - Ondřej Slabý
- Ondřej Slabý Group, Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic; Department of Biology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
| |
Collapse
|
16
|
Ramasamy U, Elizur A, Subramanian S. Deleterious mutation load in the admixed mice population. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1084502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Deleterious mutation loads are known to correlate negatively with effective population size (Ne). Due to this reason, previous studies observed a higher proportion of harmful mutations in small populations than that in large populations. However, the mutational load in an admixed population that derived from introgression between individuals from two populations with vastly different Ne is not known. We investigated this using the whole genome data from two subspecies of the mouse (Mus musculus castaneus and Mus musculus musculus) with significantly different Ne. We used the ratio of diversities at nonsynonymous and synonymous sites (dN/dS) to measure the harmful mutation load. Our results showed that this ratio observed for the admixed population was intermediate between those of the parental populations. The dN/dS ratio of the hybrid population was significantly higher than that of M. m. castaneus but lower than that of M. m. musculus. Our analysis revealed a significant positive correlation between the proportion of M. m. musculus ancestry in admixed individuals and their dN/dS ratio. This suggests that the admixed individuals with high proportions of M. m. musculus ancestry have large dN/dS ratios. We also used the proportion of deleterious nonsynonymous SNVs as a proxy for deleterious mutation load, which also produced similar results. The observed results were in concordance with those expected by theory. We also show a shift in the distribution of fitness effects of nonsynonymous SNVs in the admixed genomes compared to the parental populations. These findings suggest that the deleterious mutation load of the admixed population is determined by the proportion of the ancestries of the subspecies. Therefore, it is important to consider the status and the level of genetic admixture of the populations whilst estimating the mutation loads.
Collapse
|
17
|
Teefy B, Malone M, Benayoun BA. Differential Expression Analysis of Nothobranchius furzeri Transposable Elements from RNA-seq Data. Cold Spring Harb Protoc 2023; 2023:35-47. [PMID: 36223994 PMCID: PMC9812909 DOI: 10.1101/pdb.prot107748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transposable elements (TEs) comprise large fractions of eukaryotic genomes, but their repetitive nature and high copy number makes bioinformatic analyses more complex. Here, we report three robust pipelines to analyze TE expression from RNA-seq data in a non-model organism, the African turquoise killifish Nothobranchius furzeri Our protocol can be run with either a genomic or transcriptomic reference depending on available computational resources, with options both for limited memory usage and for more computationally intensive analyses. Our protocol leverages both standard software for classical RNA-seq analysis pipelines as well as software specialized for TEs. This protocol uses input RNA-seq data from Illumina reads and can use data in either single-end or paired-end layout. Here, we show how to start from input RNA-seq data from aging killifish tissues using a publicly available data set from which we take single and paired reads, trim adapters, align and count trimmed reads, and perform differential expression analyses for TEs.
Collapse
Affiliation(s)
- Bryan Teefy
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California 90089, USA
| | - Matthew Malone
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California 90089, USA
- Master's program in Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California 90089, USA
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, California 90089, USA
- Biochemistry and Molecular Medicine Department, USC Keck School of Medicine, Los Angeles, California 90089, USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, California 90089, USA
- USC Stem Cell Initiative, Los Angeles, California 90089, USA
| |
Collapse
|
18
|
Teefy BB, Adler A, Xu A, Hsu K, Singh PP, Benayoun BA. Dynamic regulation of gonadal transposon control across the lifespan of the naturally short-lived African turquoise killifish. Genome Res 2023; 33:141-153. [PMID: 36577520 PMCID: PMC9977155 DOI: 10.1101/gr.277301.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022]
Abstract
Although germline cells are considered to be functionally "immortal," both the germline and supporting somatic cells in the gonad within an organism experience aging. With increased age at parenthood, the age-related decline in reproductive success has become an important biological issue for an aging population. However, molecular mechanisms underlying reproductive aging across sexes in vertebrates remain poorly understood. To decipher molecular drivers of vertebrate gonadal aging across sexes, we perform longitudinal characterization of the gonadal transcriptome throughout the lifespan in the naturally short-lived African turquoise killifish (Nothobranchius furzeri). By combining mRNA-seq and small RNA-seq from 26 individuals, we characterize the aging gonads of young-adult, middle-aged, and old female and male fish. We analyze changes in transcriptional patterns of genes, transposable elements (TEs), and piRNAs. We find that testes seem to undergo only marginal changes during aging. In contrast, in middle-aged ovaries, the time point associated with peak female fertility in this strain, PIWI pathway components are transiently down-regulated, TE transcription is elevated, and piRNA levels generally decrease, suggesting that egg quality may already be declining at middle-age. Furthermore, we show that piRNA ping-pong biogenesis declines steadily with age in ovaries, whereas it is maintained in aging testes. To our knowledge, this data set represents the most comprehensive transcriptomic data set for vertebrate gonadal aging. This resource also highlights important pathways that are regulated during reproductive aging in either ovaries or testes, which could ultimately be leveraged to help restore aspects of youthful reproductive function.
Collapse
Affiliation(s)
- Bryan B Teefy
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California 90089, USA
| | - Ari Adler
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California 90089, USA
| | - Alan Xu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California 90089, USA.,Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, California 90089, USA
| | - Katelyn Hsu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California 90089, USA.,Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, California 90089, USA
| | - Param Priya Singh
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California 90089, USA.,Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, California 90089, USA.,Biochemistry and Molecular Medicine Department, USC Keck School of Medicine, Los Angeles, California 90089, USA.,USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, California 90089, USA.,USC Stem Cell Initiative, Los Angeles, California 90089, USA
| |
Collapse
|
19
|
Sex chromosome differentiation via changes in the Y chromosome repeat landscape in African annual killifishes Nothobranchius furzeri and N. kadleci. Chromosome Res 2022; 30:309-333. [PMID: 36208359 DOI: 10.1007/s10577-022-09707-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/25/2023]
Abstract
Homomorphic sex chromosomes and their turnover are common in teleosts. We investigated the evolution of nascent sex chromosomes in several populations of two sister species of African annual killifishes, Nothobranchius furzeri and N. kadleci, focusing on their under-studied repetitive landscape. We combined bioinformatic analyses of the repeatome with molecular cytogenetic techniques, including comparative genomic hybridization, fluorescence in situ hybridization with satellite sequences, ribosomal RNA genes (rDNA) and bacterial artificial chromosomes (BACs), and immunostaining of SYCP3 and MLH1 proteins to mark lateral elements of synaptonemal complexes and recombination sites, respectively. Both species share the same heteromorphic XY sex chromosome system, which thus evolved prior to their divergence. This was corroborated by sequence analysis of a putative master sex determining (MSD) gene gdf6Y in both species. Based on their divergence, differentiation of the XY sex chromosome pair started approximately 2 million years ago. In all populations, the gdf6Y gene mapped within a region rich in satellite DNA on the Y chromosome long arms. Despite their heteromorphism, X and Y chromosomes mostly pair regularly in meiosis, implying synaptic adjustment. In N. kadleci, Y-linked paracentric inversions like those previously reported in N. furzeri were detected. An inversion involving the MSD gene may suppress occasional recombination in the region, which we otherwise evidenced in the N. furzeri population MZCS-121 of the Limpopo clade lacking this inversion. Y chromosome centromeric repeats were reduced compared with the X chromosome and autosomes, which points to a role of relaxed meiotic drive in shaping the Y chromosome repeat landscape. We speculate that the recombination rate between sex chromosomes was reduced due to heterochiasmy. The observed differences between the repeat accumulations on the X and Y chromosomes probably result from high repeat turnover and may not relate closely to the divergence inferred from earlier SNP analyses.
Collapse
|
20
|
Reichard M, Giannetti K, Ferreira T, Maouche A, Vrtílek M, Polačik M, Blažek R, Ferreira MG. Lifespan and telomere length variation across populations of wild-derived African killifish. Mol Ecol 2022; 31:5979-5992. [PMID: 34826177 DOI: 10.1111/mec.16287] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 01/31/2023]
Abstract
Telomeres and telomerase prevent the continuous erosion of chromosome-ends caused by lifelong cell division. Shortened telomeres are associated with age-related pathologies. While short telomere length is positively correlated with increased lethality at the individual level, in comparisons across species short telomeres are associated with long (and not short) lifespans. Here, we tested this contradiction between individual and evolutionary patterns in telomere length using African annual killifish. We analysed lifespan and telomere length in a set of captive strains derived from well-defined wild populations of Nothobranchius furzeri and its sister species, N. kadleci, from sites along a strong gradient of aridity which ultimately determines maximum natural lifespan. Overall, males were shorter-lived than females, and also had shorter telomeres. Male lifespan (measured in controlled laboratory conditions) was positively associated with the amount of annual rainfall in the site of strain origin. However, fish from wetter climates had shorter telomeres. In addition, individual fish which grew largest over the juvenile period possessed shorter telomeres at the onset of adulthood. This demonstrates that individual condition and environmentally-driven selection indeed modulate the relationship between telomere length and lifespan in opposite directions, validating the existence of inverse trends within a single taxon. Intraindividual heterogeneity of telomere length (capable to detect very short telomeres) was not associated with mean telomere length, suggesting that the shortest telomeres are controlled by regulatory pathways other than those that determine mean telomere length. The substantial variation in telomere length between strains from different environments identifies killifish as a powerful system in understanding the adaptive value of telomere length.
Collapse
Affiliation(s)
- Martin Reichard
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic.,Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | | | - Ahmed Maouche
- Institute for Research on Cancer and Aging of Nice (IRCAN), UMR7284 U1081 Université Côte d'Azur, Nice, France
| | - Milan Vrtílek
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| | - Matej Polačik
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| | - Radim Blažek
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| | - Miguel Godinho Ferreira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Institute for Research on Cancer and Aging of Nice (IRCAN), UMR7284 U1081 Université Côte d'Azur, Nice, France
| |
Collapse
|
21
|
Genetic load: genomic estimates and applications in non-model animals. Nat Rev Genet 2022; 23:492-503. [PMID: 35136196 DOI: 10.1038/s41576-022-00448-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 12/11/2022]
Abstract
Genetic variation, which is generated by mutation, recombination and gene flow, can reduce the mean fitness of a population, both now and in the future. This 'genetic load' has been estimated in a wide range of animal taxa using various approaches. Advances in genome sequencing and computational techniques now enable us to estimate the genetic load in populations and individuals without direct fitness estimates. Here, we review the classic and contemporary literature of genetic load. We describe approaches to quantify the genetic load in whole-genome sequence data based on evolutionary conservation and annotations. We show that splitting the load into its two components - the realized load (or expressed load) and the masked load (or inbreeding load) - can improve our understanding of the population genetics of deleterious mutations.
Collapse
|
22
|
Son JM, Lee C. Aging: All roads lead to mitochondria. Semin Cell Dev Biol 2021; 116:160-168. [PMID: 33741252 PMCID: PMC9774040 DOI: 10.1016/j.semcdb.2021.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
Mitochondria were described as early as 1890 as ubiquitous intracellular structures by Ernster and Schatz (1981) [1]. Since then, the accretion of knowledge in the past century has revealed much of the molecular details of mitochondria, ranging from mitochondrial origin, structure, metabolism, genetics, and signaling, and their implications in health and disease. We now know that mitochondria are remarkably multifunctional and deeply intertwined with many vital cellular processes. They are quasi-self organelles that still possess remnants of its bacterial ancestry, including an independent genome. The mitochondrial free radical theory of aging (MFRTA), which postulated that aging is a product of oxidative damage to mitochondrial DNA, provided a conceptual framework that put mitochondria on the map of aging research. However, several studies have more recently challenged the general validity of the theory, favoring novel ideas based on emerging evidence to understand how mitochondria contribute to aging and age-related diseases. One prominent topic of investigation lies on the fact that mitochondria are not only production sites for bioenergetics and macromolecules, but also regulatory hubs that communicate and coordinate many vital physiological processes at the cellular and organismal level. The bi-directional communication and coordination between the co-evolved mitochondrial and nuclear genomes is especially interesting in terms of cellular regulation. Mitochondria are dynamic and adaptive, rendering their function sensitive to cellular context. Tissues with high energy demands, such as the brain, seem to be uniquely affected by age-dependent mitochondrial dysfunction, providing a foundation for the development of novel mitochondrial-based therapeutics and diagnostics.
Collapse
Affiliation(s)
- Jyung Mean Son
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA,USC Norris Comprehensive Cancer Center, Los Angeles, CA 90089, USA,Biomedical Sciences, Graduate School, Ajou University, Suwon 16499, South Korea,Corresponding author at: Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
23
|
Chak STC, Harris SE, Hultgren KM, Jeffery NW, Rubenstein DR. Eusociality in snapping shrimps is associated with larger genomes and an accumulation of transposable elements. Proc Natl Acad Sci U S A 2021; 118:e2025051118. [PMID: 34099551 PMCID: PMC8214670 DOI: 10.1073/pnas.2025051118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite progress uncovering the genomic underpinnings of sociality, much less is known about how social living affects the genome. In different insect lineages, for example, eusocial species show both positive and negative associations between genome size and structure, highlighting the dynamic nature of the genome. Here, we explore the relationship between sociality and genome architecture in Synalpheus snapping shrimps that exhibit multiple origins of eusociality and extreme interspecific variation in genome size. Our goal is to determine whether eusociality leads to an accumulation of repetitive elements and an increase in genome size, presumably due to reduced effective population sizes resulting from a reproductive division of labor, or whether an initial accumulation of repetitive elements leads to larger genomes and independently promotes the evolution of eusociality through adaptive evolution. Using phylogenetically informed analyses, we find that eusocial species have larger genomes with more transposable elements (TEs) and microsatellite repeats than noneusocial species. Interestingly, different TE subclasses contribute to the accumulation in different species. Phylogenetic path analysis testing alternative causal relationships between sociality and genome architecture is most consistent with the hypothesis that TEs modulate the relationship between sociality and genome architecture. Although eusociality appears to influence TE accumulation, ancestral state reconstruction suggests moderate TE abundances in ancestral species could have fueled the initial transitions to eusociality. Ultimately, we highlight a complex and dynamic relationship between genome and social evolution, demonstrating that sociality can influence the evolution of the genome, likely through changes in demography related to patterns of reproductive skew.
Collapse
Affiliation(s)
- Solomon T C Chak
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027;
- Department of Biological Sciences, State University of New York College at Old Westbury, Old Westbury, NY 11568
| | - Stephen E Harris
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027
- Department of Biology, State University of New York Purchase College, Purchase, NY 10577
| | | | - Nicholas W Jeffery
- Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, NS B2Y 4A2, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Dustin R Rubenstein
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027
| |
Collapse
|
24
|
Cui R, Tyers AM, Malubhoy ZJ, Wisotsky S, Valdesalici S, Henriette E, Kosakovsky Pond SL, Valenzano DR. Ancestral transoceanic colonization and recent population reduction in a nonannual killifish from the Seychelles archipelago. Mol Ecol 2021; 30:3610-3623. [PMID: 33998095 DOI: 10.1111/mec.15982] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 12/28/2022]
Abstract
Whether freshwater fish colonize remote islands following tectonic or transoceanic dispersal remains an evolutionary puzzle. Integrating dating of known tectonic events with phylogenomics and current species distribution, we find that killifish species distribution is not explained by species dispersal by tectonic drift only. Investigating the colonization of a nonannual killifish (golden panchax, Pachypanchax playfairii) on the Seychelle islands, we found genetic support for transoceanic dispersal and experimentally discovered an adaptation to complete tolerance to seawater. At the macroevolutionary scale, despite their long-lasting isolation, nonannual golden panchax show stronger genome-wide purifying selection than annual killifishes from continental Africa. However, progressive decline in effective population size over a more recent timescale has probably led to the segregation of slightly deleterious mutations across golden panchax populations, which represents a potential threat for species preservation in the long term.
Collapse
Affiliation(s)
- Rongfeng Cui
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,School of Ecology, Sun Yat-sen University, Guangzhou, China
| | | | | | - Sadie Wisotsky
- Department of Biology, Institute for Genomics and Evolutionary Medicine, Temple University, Temple, CA, USA
| | | | - Elvina Henriette
- Island Biodiversity Conservation Centre, University of Seychelles, Anse Royale, Mahe, Seychelles
| | - Sergei L Kosakovsky Pond
- Department of Biology, Institute for Genomics and Evolutionary Medicine, Temple University, Temple, CA, USA
| | - Dario Riccardo Valenzano
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,CECAD, University of Cologne, Cologne, Germany
| |
Collapse
|
25
|
Holtze S, Gorshkova E, Braude S, Cellerino A, Dammann P, Hildebrandt TB, Hoeflich A, Hoffmann S, Koch P, Terzibasi Tozzini E, Skulachev M, Skulachev VP, Sahm A. Alternative Animal Models of Aging Research. Front Mol Biosci 2021; 8:660959. [PMID: 34079817 PMCID: PMC8166319 DOI: 10.3389/fmolb.2021.660959] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/08/2021] [Indexed: 12/23/2022] Open
Abstract
Most research on mechanisms of aging is being conducted in a very limited number of classical model species, i.e., laboratory mouse (Mus musculus), rat (Rattus norvegicus domestica), the common fruit fly (Drosophila melanogaster) and roundworm (Caenorhabditis elegans). The obvious advantages of using these models are access to resources such as strains with known genetic properties, high-quality genomic and transcriptomic sequencing data, versatile experimental manipulation capabilities including well-established genome editing tools, as well as extensive experience in husbandry. However, this approach may introduce interpretation biases due to the specific characteristics of the investigated species, which may lead to inappropriate, or even false, generalization. For example, it is still unclear to what extent knowledge of aging mechanisms gained in short-lived model organisms is transferable to long-lived species such as humans. In addition, other specific adaptations favoring a long and healthy life from the immense evolutionary toolbox may be entirely missed. In this review, we summarize the specific characteristics of emerging animal models that have attracted the attention of gerontologists, we provide an overview of the available data and resources related to these models, and we summarize important insights gained from them in recent years. The models presented include short-lived ones such as killifish (Nothobranchius furzeri), long-lived ones such as primates (Callithrix jacchus, Cebus imitator, Macaca mulatta), bathyergid mole-rats (Heterocephalus glaber, Fukomys spp.), bats (Myotis spp.), birds, olms (Proteus anguinus), turtles, greenland sharks, bivalves (Arctica islandica), and potentially non-aging ones such as Hydra and Planaria.
Collapse
Affiliation(s)
- Susanne Holtze
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Ekaterina Gorshkova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Stan Braude
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Alessandro Cellerino
- Biology Laboratory, Scuola Normale Superiore, Pisa, Italy
- Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Philip Dammann
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
- Central Animal Laboratory, University Hospital Essen, Essen, Germany
| | - Thomas B. Hildebrandt
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Faculty of Veterinary Medicine, Free University of Berlin, Berlin, Germany
| | - Andreas Hoeflich
- Division Signal Transduction, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Steve Hoffmann
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Philipp Koch
- Core Facility Life Science Computing, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Eva Terzibasi Tozzini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Maxim Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir P. Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Arne Sahm
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| |
Collapse
|
26
|
Sellinger TPP, Abu-Awad D, Tellier A. Limits and convergence properties of the sequentially Markovian coalescent. Mol Ecol Resour 2021; 21:2231-2248. [PMID: 33978324 DOI: 10.1111/1755-0998.13416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
Several methods based on the sequentially Markovian coalescent (SMC) make use of full genome sequence data from samples to infer population demographic history including past changes in population size, admixture, migration events and population structure. More recently, the original theoretical framework has been extended to allow the simultaneous estimation of population size changes along with other life history traits such as selfing or seed banking. The latter developments enhance the applicability of SMC methods to nonmodel species. Although convergence proofs have been given using simulated data in a few specific cases, an in-depth investigation of the limitations of SMC methods is lacking. In order to explore such limits, we first develop a tool inferring the best case convergence of SMC methods assuming the true underlying coalescent genealogies are known. This tool can be used to quantify the amount and type of information that can be confidently retrieved from given data sets prior to the analysis of the real data. Second, we assess the inference accuracy when the assumptions of SMC approaches are violated due to departures from the model, namely the presence of transposable elements, variable recombination and mutation rates along the sequence, and SNP calling errors. Third, we deliver a new interpretation of SMC methods by highlighting the importance of the transition matrix, which we argue can be used as a set of summary statistics in other statistical inference methods, uncoupling the SMC from hidden Markov models (HMMs). We finally offer recommendations to better apply SMC methods and build adequate data sets under budget constraints.
Collapse
Affiliation(s)
| | - Diala Abu-Awad
- Department of Life Science Systems, Technical University of Munich, Munchen, Germany
| | - Aurélien Tellier
- Department of Life Science Systems, Technical University of Munich, Munchen, Germany
| |
Collapse
|
27
|
Thompson CL, Alberti M, Barve S, Battistuzzi FU, Drake JL, Goncalves GC, Govaert L, Partridge C, Yang Y. Back to the future: Reintegrating biology to understand how past eco-evolutionary change can predict future outcomes. Integr Comp Biol 2021; 61:2218-2232. [PMID: 33964141 DOI: 10.1093/icb/icab068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During the last few decades, biologists have made remarkable progress in understanding the fundamental processes that shape life. But despite the unprecedented level of knowledge now available, large gaps still remain in our understanding of the complex interplay of eco-evolutionary mechanisms across scales of life. Rapidly changing environments on Earth provide a pressing need to understand the potential implications of eco-evolutionary dynamics, which can be achieved by improving existing eco-evolutionary models and fostering convergence among the sub-fields of biology. We propose a new, data-driven approach that harnesses our knowledge of the functioning of biological systems to expand current conceptual frameworks and develop corresponding models that can more accurately represent and predict future eco-evolutionary outcomes. We suggest a roadmap toward achieving this goal. This long-term vision will move biology in a direction that can wield these predictive models for scientific applications that benefit humanity and increase the resilience of natural biological systems. We identify short, medium, and long-term key objectives to connect our current state of knowledge to this long-term vision, iteratively progressing across three stages: 1) utilizing knowledge of biological systems to better inform eco-evolutionary models, 2) generating models with more accurate predictions, and 3) applying predictive models to benefit the biosphere. Within each stage, we outline avenues of investigation and scientific applications related to the timescales over which evolution occurs, the parameter space of eco-evolutionary processes, and the dynamic interactions between these mechanisms. The ability to accurately model, monitor, and anticipate eco-evolutionary changes would be transformational to humanity's interaction with the global environment, providing novel tools to benefit human health, protect the natural world, and manage our planet's biosphere.
Collapse
Affiliation(s)
| | - Marina Alberti
- Department of Urban Design and Planning, University of Washington,
| | - Sahas Barve
- Smithsonian National Museum of Natural History,
| | | | - Jeana L Drake
- Department of Earth, Planetary, and Space Sciences, University of California Los Angeles,
| | | | - Lynn Govaert
- Department of Evolutionary Biology and Environmental Studies, University of Zurich; Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, URPP Global Change and Biodiversity, University of Zurich,
| | | | - Ya Yang
- Department of Plant and Microbial Biology, University of Minnesota,
| |
Collapse
|
28
|
Carvajal TM, Amalin DM, Watanabe K. Wing geometry and genetic analyses reveal contrasting spatial structures between male and female Aedes aegypti (L.) (Diptera: Culicidae) populations in metropolitan Manila, Philippines. INFECTION GENETICS AND EVOLUTION 2020; 87:104676. [PMID: 33321226 DOI: 10.1016/j.meegid.2020.104676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 02/01/2023]
Abstract
The population genetic structure of Aedes aegypti (Linnaeus, 1762) has been studied in order to understand its role as an efficient vector. Several studies utilized an integrative approach; to combine genetic and phenotypic data to determine its population structure but these studies have only focused on female populations. To address this particular gap, our study compared the population variability and structuring between its male and female populations using phenotypic and genetic data from a highly-urbanized and dengue-endemic region of the Philippines, Metropolitan Manila. Five mosquito populations comprised of female (n = 137) and male (n = 49) adult mosquitoes were used in this study. All mosquito individuals underwent geometric morphometric (26 landmarks), and genetic (11 microsatellite loci) analyses. Results revealed that FST estimates (genetic) were 0.055 and 0.009 while QST estimates (phenotypic) were 0.318 and 0.309 in in male and female populations, respectively. Wing shape variation plots showed that male populations were distinctly separated from each other while female populations overlapped. Similarly, discriminant analysis of principal components using genetic data revealed that male populations were also distinctly separated from each other while female populations showed near-overlapping populations. Genetic and phenetic dendrograms showed the formation of two groups in male populations but no groups in female populations. Further analysis indicated a significant correlation (r = 0.68, p = 0.02) between the genetic and phenetic distances of male populations. Bayesian analysis using genetic data also detected multiple clusters in male (K = 3) and female (K = 2) populations, while no clusters were detected using the phenotypic data from both sexes. Our results revealed contrasting phenotypic and genetic patterns between male and female Ae. aegypti, indicating that male populations were more spatially structured than female populations.
Collapse
Affiliation(s)
- Thaddeus M Carvajal
- Center for Marine Environmental Studies (CMES) - Ehime University, Matsuyama, Japan; Biological Control Research Unit, Center for Natural Science and Environmental Research - De La Salle University, Taft Ave Manila, Philippines; Biology Department, College of Science - De La Salle University, Taft Ave Manila, Philippines
| | - Divina M Amalin
- Biological Control Research Unit, Center for Natural Science and Environmental Research - De La Salle University, Taft Ave Manila, Philippines; Biology Department, College of Science - De La Salle University, Taft Ave Manila, Philippines.
| | - Kozo Watanabe
- Center for Marine Environmental Studies (CMES) - Ehime University, Matsuyama, Japan; Biological Control Research Unit, Center for Natural Science and Environmental Research - De La Salle University, Taft Ave Manila, Philippines; Biology Department, College of Science - De La Salle University, Taft Ave Manila, Philippines.
| |
Collapse
|
29
|
Žák J, Reichard M. Reproductive senescence in a short-lived fish. J Anim Ecol 2020; 90:492-502. [PMID: 33159690 DOI: 10.1111/1365-2656.13382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Reproductive senescence is an age-associated decline in reproductive performance, which often arises as a trade-off between current and future reproduction. Given that mortality is inevitable, increased allocation into current reproduction is favoured despite costs paid later in life. This assumption is violated in organisms with post-maturity growth whose reproductive output increases long after maturity. While reproductive senescence is frequently studied in animals with determinate growth at maturity, such as insects or mammals, we have very limited understanding of reproductive senescence in organisms with an extensive post-maturity growth period. The fact that many post-maturity growers experience strong adult mortality leads to conflicting expectations for reproductive senescence. The aim of this study was to investigate how co-occurrence of rapid life history and post-maturity growth mould reproductive senescence in a short-lived killifish, Nothobranchius furzeri, using longitudinal data on laboratory and wild-type populations. We followed the individual fecundity, fertility and fertilization of 132 singly housed fish from the perspectives of chronological and biological age. At the onset of senescence, the sex-specific contribution to decrease in fertilization capacity was investigated. Allocation trade-offs were estimated through the association between reproductive parameters and life span, and between early-life and late-life fecundity. We demonstrate that female fecundity increased steadily after maturity and reproductive senescence occurred long after the growth asymptote. The prime age for fecundity coincided with 50% female survival and consequent decline in fecundity implies an association with somatic deterioration. Reproductive senescence in fertilization rate was stronger in females than in males. Females with high early fecundity experienced a long life span and high late-life fecundity, discounting the role of allocation trade-offs in reproductive senescence. The present study reports a clear case of reproductive senescence in a fish with a long post-maturation growth period, unusually rapid development and short life span. The onset of reproductive senescence was postponed compared to animals that cease growing at sexual maturity. Fish and other animals with post-maturity growth have long been considered insusceptible to ageing but this conclusion may be related to the previous lack of longitudinal data rather than to the absence of reproductive senescence in such organisms.
Collapse
Affiliation(s)
- Jakub Žák
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic.,Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Reichard
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
30
|
Brengdahl MI, Kimber CM, Elias P, Thompson J, Friberg U. Deleterious mutations show increasing negative effects with age in Drosophila melanogaster. BMC Biol 2020; 18:128. [PMID: 32993647 PMCID: PMC7526172 DOI: 10.1186/s12915-020-00858-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/28/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND In order for aging to evolve in response to a declining strength of selection with age, a genetic architecture that allows for mutations with age-specific effects on organismal performance is required. Our understanding of how selective effects of individual mutations are distributed across ages is however poor. Established evolutionary theories assume that mutations causing aging have negative late-life effects, coupled to either positive or neutral effects early in life. New theory now suggests evolution of aging may also result from deleterious mutations with increasing negative effects with age, a possibility that has not yet been empirically explored. RESULTS To directly test how the effects of deleterious mutations are distributed across ages, we separately measure age-specific effects on fecundity for each of 20 mutations in Drosophila melanogaster. We find that deleterious mutations in general have a negative effect that increases with age and that the rate of increase depends on how deleterious a mutation is early in life. CONCLUSIONS Our findings suggest that aging does not exclusively depend on genetic variants assumed by the established evolutionary theories of aging. Instead, aging can result from deleterious mutations with negative effects that amplify with age. If increasing negative effect with age is a general property of deleterious mutations, the proportion of mutations with the capacity to contribute towards aging may be considerably larger than previously believed.
Collapse
Affiliation(s)
| | | | - Phoebe Elias
- IFM Biology, Linköping University, Linköping, Sweden
| | | | - Urban Friberg
- IFM Biology, Linköping University, Linköping, Sweden.
| |
Collapse
|