1
|
Ogelman R, Gomez Wulschner LE, Hoelscher VM, Hwang IW, Chang VN, Oh WC. Serotonin modulates excitatory synapse maturation in the developing prefrontal cortex. Nat Commun 2024; 15:1368. [PMID: 38365905 PMCID: PMC10873381 DOI: 10.1038/s41467-024-45734-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024] Open
Abstract
Serotonin (5-HT) imbalances in the developing prefrontal cortex (PFC) are linked to long-term behavioral deficits. However, the synaptic mechanisms underlying 5-HT-mediated PFC development are unknown. We found that chemogenetic suppression and enhancement of 5-HT release in the PFC during the first two postnatal weeks decreased and increased the density and strength of excitatory spine synapses, respectively, on prefrontal layer 2/3 pyramidal neurons in mice. 5-HT release on single spines induced structural and functional long-term potentiation (LTP), requiring both 5-HT2A and 5-HT7 receptor signals, in a glutamatergic activity-independent manner. Notably, LTP-inducing 5-HT stimuli increased the long-term survival of newly formed spines ( ≥ 6 h) via 5-HT7 Gαs activation. Chronic treatment of mice with fluoxetine, a selective serotonin-reuptake inhibitor, during the first two weeks, but not the third week of postnatal development, increased the density and strength of excitatory synapses. The effect of fluoxetine on PFC synaptic alterations in vivo was abolished by 5-HT2A and 5-HT7 receptor antagonists. Our data describe a molecular basis of 5-HT-dependent excitatory synaptic plasticity at the level of single spines in the PFC during early postnatal development.
Collapse
Affiliation(s)
- Roberto Ogelman
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Luis E Gomez Wulschner
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Victoria M Hoelscher
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - In-Wook Hwang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Victoria N Chang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Won Chan Oh
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
2
|
Zeng PY, Tsai YH, Lee CL, Ma YK, Kuo TH. Minimal influence of estrous cycle on studies of female mouse behaviors. Front Mol Neurosci 2023; 16:1146109. [PMID: 37470056 PMCID: PMC10352621 DOI: 10.3389/fnmol.2023.1146109] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/15/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Sex bias has been an issue in many biomedical fields, especially in neuroscience. In rodent research, many scientists only focused on male animals due to the belief that female estrous cycle gives rise to unacceptable, high levels of variance in the experiments. However, even though female sexual behaviors are well known to be regulated by estrous cycle, which effects on other non-sexual behaviors were not always consistent in previous reports. Recent reviews analyzing published literature even suggested that there is no evidence for larger variation in female than male in several phenotypes. Methods To further investigate the impact of estrous cycle on the variability of female behaviors, we conducted multiple behavioral assays, including the open field test, forced swimming test, and resident-intruder assay to assess anxiety-, depression-like behaviors, as well as social interaction respectively. We compared females in the estrus and diestrus stages across four different mouse strains: C57BL/6, BALB/c, C3H, and DBA/2. Results Our results found no significant difference in most behavioral parameters between females in these two stages. On the other hand, the differences in behaviors among certain strains are relatively consistent in both stages, suggesting a very minimal effect of estrous cycle for detecting the behavioral difference. Last, we compared the behavioral variation between male and female and found very similar variations in most behaviors between the two sexes. Discussion While our study successfully identified behavioral differences among strains and between the sexes, we did not find solid evidence to support the notion that female behaviors are influenced by the estrous cycle. Additionally, we observed similar levels of behavioral variability between males and females. Female mice, therefore, have no reason to be excluded in future behavioral research.
Collapse
Affiliation(s)
- Pei-Yun Zeng
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Ya-Hsuan Tsai
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Lin Lee
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Kai Ma
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Tsung-Han Kuo
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
3
|
Kawashima S, Lou F, Kusumoto-Yoshida I, Hao L, Kuwaki T. Activation of the rostral nucleus accumbens shell by optogenetics induces cataplexy-like behavior in orexin neuron-ablated mice. Sci Rep 2023; 13:2546. [PMID: 36781929 PMCID: PMC9925750 DOI: 10.1038/s41598-023-29488-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Cataplexy is one of the symptoms of type 1 narcolepsy, characterized by a sudden loss of muscle tone. It can be seen as a behavioral index of salience, predominantly positive emotion, since it is triggered by laughter in humans and palatable foods in mice. In our previous study using chemogenetic techniques in narcoleptic mice (orexin neuron-ablated mice), we found that the rostral nucleus accumbens (NAc) shell is needed for chocolate-induced cataplexy. In this study, we investigated whether a short-lasting stimulation/inhibition of the NAc by optogenetics led to a similar result. Photo-illumination to the NAc in the channel rhodopsin-expressing mice showed a higher incidence (34.9 ± 5.1%) of cataplexy-like behavior than the control mice (17.8 ± 3.1%, P = 0.0056). Meanwhile, inactivation with archaerhodopsin did not affect incidence. The episode duration of cataplexy-like behavior was not affected by activation or inactivation. Immunohistochemical analysis revealed that photo-illumination activated channel rhodopsin-expressing NAc shell neurons. Thus, activation of the NAc, whether transient (light stimulation) or longer-lasting (chemical stimulation in our previous study), facilitates cataplexy-like behaviors and contributes to the induction but not maintenance in them. On the other hand, our study's result from optogenetic inhibition of the NAc (no effect) was different from chemogenetic inhibition (reduction of cataplexy-like behavior) in our previous study. We propose that the initiation of cataplexy-like behavior is facilitated by activation of the NAc, while NAc-independent mechanisms determine the termination of the behavior.
Collapse
Affiliation(s)
- Shigetaka Kawashima
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Fan Lou
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
- The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ikue Kusumoto-Yoshida
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
4
|
Teal LB, Ingram SM, Bubser M, McClure E, Jones CK. The Evolving Role of Animal Models in the Discovery and Development of Novel Treatments for Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2023; 30:37-99. [PMID: 36928846 DOI: 10.1007/978-3-031-21054-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Historically, animal models have been routinely used in the characterization of novel chemical entities (NCEs) for various psychiatric disorders. Animal models have been essential in the in vivo validation of novel drug targets, establishment of lead compound pharmacokinetic to pharmacodynamic relationships, optimization of lead compounds through preclinical candidate selection, and development of translational measures of target occupancy and functional target engagement. Yet, with decades of multiple NCE failures in Phase II and III efficacy trials for different psychiatric disorders, the utility and value of animal models in the drug discovery process have come under intense scrutiny along with the widespread withdrawal of the pharmaceutical industry from psychiatric drug discovery. More recently, the development and utilization of animal models for the discovery of psychiatric NCEs has undergone a dynamic evolution with the application of the Research Domain Criteria (RDoC) framework for better design of preclinical to clinical translational studies combined with innovative genetic, neural circuitry-based, and automated testing technologies. In this chapter, the authors will discuss this evolving role of animal models for improving the different stages of the discovery and development in the identification of next generation treatments for psychiatric disorders.
Collapse
Affiliation(s)
- Laura B Teal
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Shalonda M Ingram
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Michael Bubser
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Elliott McClure
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
5
|
Qi X, Cui K, Zhang Y, Wang L, Tong J, Sun W, Shao S, Wang J, Wang C, Sun X, Xiao L, Xi K, Cui S, Liu F, Ma L, Zheng J, Yi M, Wan Y. A nociceptive neuronal ensemble in the dorsomedial prefrontal cortex underlies pain chronicity. Cell Rep 2022; 41:111833. [PMID: 36516746 DOI: 10.1016/j.celrep.2022.111833] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/28/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Pain chronicity involves unpleasant experience in both somatosensory and affective aspects, accompanied with the prefrontal cortex (PFC) neuroplastic alterations. However, whether specific PFC neuronal ensembles underlie pain chronicity remains elusive. Here we identify a nociceptive neuronal ensemble in the dorsomedial prefrontal cortex (dmPFC), which shows prominent reactivity to nociceptive stimuli. We observed that this ensemble shows distinct molecular characteristics and is densely connected to pain-related regions including basolateral amygdala (BLA) and lateral parabrachial nuclei (LPB). Prolonged chemogenetic activation of this nociceptive neuronal ensemble, but not a randomly transfected subset of dmPFC neurons, induces chronic pain-like behaviors in normal mice. By contrast, silencing the nociceptive dmPFC neurons relieves both pain hypersensitivity and anxiety in mice with chronic inflammatory pain. These results suggest the presence of specific dmPFC neuronal ensembles in processing nociceptive information and regulating pain chronicity.
Collapse
Affiliation(s)
- Xuetao Qi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Kun Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Yu Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, CAMS&PUMC, Beijing 100021, P.R. China
| | - Linshu Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Jifu Tong
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Weiqi Sun
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Shan Shao
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Jiaxin Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Cheng Wang
- Chinese Institute for Brain Research, Beijing (CIBR), Beijing 102206, P.R. China
| | - Xiaoyan Sun
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Liming Xiao
- Institute of Systems Biomedicine, Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100083, P.R. China
| | - Ke Xi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Shuang Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, P.R. China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, P.R. China
| | - Longyu Ma
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, P.R. China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, P.R. China
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, P.R. China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100083, P.R. China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, P.R. China.
| |
Collapse
|
6
|
Banerjee T, Pati S, Tiwari P, Vaidya VA. Chronic hM3Dq-DREADD-mediated chemogenetic activation of parvalbumin-positive inhibitory interneurons in postnatal life alters anxiety and despair-like behavior in adulthood in a task- and sex-dependent manner. J Biosci 2022. [DOI: 10.1007/s12038-022-00308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Chronic hM4Di-DREADD-Mediated Chemogenetic Inhibition of Forebrain Excitatory Neurons in Postnatal or Juvenile Life Does Not Alter Adult Mood-Related Behavior. eNeuro 2022; 9:ENEURO.0381-21.2021. [PMID: 35115382 PMCID: PMC8856708 DOI: 10.1523/eneuro.0381-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 11/21/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) coupled to Gi signaling, in particular downstream of monoaminergic neurotransmission, are posited to play a key role during developmental epochs (postnatal and juvenile) in shaping the emergence of adult anxiodepressive behaviors and sensorimotor gating. To address the role of Gi signaling in these developmental windows, we used a CaMKIIα-tTA::TRE hM4Di bigenic mouse line to express the hM4Di-DREADD (designer receptor exclusively activated by designer drugs) in forebrain excitatory neurons and enhanced Gi signaling via chronic administration of the DREADD agonist, clozapine-N-oxide (CNO) in the postnatal window (postnatal days 2–14) or the juvenile window (postnatal days 28–40). We confirmed that the expression of the HA-tagged hM4Di-DREADD was restricted to CaMKIIα-positive neurons in the forebrain, and that the administration of CNO in postnatal or juvenile windows evoked inhibition in forebrain circuits of the hippocampus and cortex, as indicated by a decline in expression of the neuronal activity marker c-Fos. hM4Di-DREADD-mediated inhibition of CaMKIIα-positive forebrain excitatory neurons in postnatal or juvenile life did not impact the weight profile of mouse pups, and also did not influence the normal ontogeny of sensory reflexes. Further, postnatal or juvenile hM4Di-DREADD-mediated inhibition of CaMKIIα-positive forebrain excitatory neurons did not alter anxiety- or despair-like behaviors in adulthood and did not impact sensorimotor gating. Collectively, these results indicate that chemogenetic induction of Gi signaling in CaMKIIα-positive forebrain excitatory neurons in postnatal and juvenile temporal windows does not appear to impinge on the programming of anxiodepressive behaviors in adulthood.
Collapse
|
8
|
Kawai M, Imaizumi K, Ishikawa M, Shibata S, Shinozaki M, Shibata T, Hashimoto S, Kitagawa T, Ago K, Kajikawa K, Shibata R, Kamata Y, Ushiba J, Koga K, Furue H, Matsumoto M, Nakamura M, Nagoshi N, Okano H. Long-term selective stimulation of transplanted neural stem/progenitor cells for spinal cord injury improves locomotor function. Cell Rep 2021; 37:110019. [PMID: 34818559 DOI: 10.1016/j.celrep.2021.110019] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/06/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
In cell transplantation therapy for spinal cord injury (SCI), grafted human induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NS/PCs) mainly differentiate into neurons, forming synapses in a process similar to neurodevelopment. In the developing nervous system, the activity of immature neurons has an important role in constructing and maintaining new synapses. Thus, we investigate how enhancing the activity of transplanted hiPSC-NS/PCs affects both the transplanted cells themselves and the host tissue. We find that chemogenetic stimulation of hiPSC-derived neural cells enhances cell activity and neuron-to-neuron interactions in vitro. In a rodent model of SCI, consecutive and selective chemogenetic stimulation of transplanted hiPSC-NS/PCs also enhances the expression of synapse-related genes and proteins in surrounding host tissues and prevents atrophy of the injured spinal cord, thereby improving locomotor function. These findings provide a strategy for enhancing activity within the graft to improve the efficacy of cell transplantation therapy for SCI.
Collapse
Affiliation(s)
- Momotaro Kawai
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Kent Imaizumi
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Takahiro Shibata
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Shogo Hashimoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Takahiro Kitagawa
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Kentaro Ago
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Keita Kajikawa
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Reo Shibata
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Yasuhiro Kamata
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan
| | - Keisuke Koga
- Department of Neurophysiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Hidemasa Furue
- Department of Neurophysiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| |
Collapse
|
9
|
Guo W, Wan X, Ma L, Zhang J, Hashimoto K. Abnormalities in the composition of the gut microbiota in mice after repeated administration of DREADD ligands. Brain Res Bull 2021; 173:66-73. [PMID: 34004259 DOI: 10.1016/j.brainresbull.2021.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023]
Abstract
Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are known as genetically modified G-protein-coupled receptors (GPCRs), which can be activated by synthetic ligands such as clozapine N-oxide (CNO) and DREADD agonist 21 (compound 21: C21). The brain-gut-microbiota axis has a crucial role in bidirectional interactions between the brain and the gastrointestinal microbiota. In this study, we investigated whether repeated administration of CNO or C21 could influence the gut microbiota and short-chain fatty acids (SCFAs) in feces of adult mice. Repeated administration of CNO or C21 as drinking water did not alter the α- and β-diversity of gut microbiota in mice compared with control mice. However, we found significant changes in relative abundance for several bacteria in the CNO (or C21) group at the taxonomic level compared to the control group. The linear discriminant analysis effect size (LEfSe) algorithm distinguished the family Prevotellaceae, the genus Anaerocolumna, the genus Prevotella, and the genus Frisingicoccus, these four specific microbial markers for the CNO group relative to the control group. In addition, the LEfSe algorithm identified the family Clostridiaceae, the genus Faecalicatena and the genus Marinisporobacter, these three bacteria of different taxonomic as potential microbial markers for the C21 group relative to the control group. In contrast, repeated administration of CNO (or C21) did not alter SCFAs in feces samples of adult mice. The data suggest that repeated administration of CNO or C21 contributes to an unusual organization of the gut microbiota in adult mice. Therefore, abnormalities in the composition of gut microbiota by repeated dosing of DREADD ligands should be taken into consideration for behavioral and biological functions in rodents treated with DREADD ligands.
Collapse
Affiliation(s)
- Wei Guo
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Xiayun Wan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Li Ma
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Jiancheng Zhang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
10
|
Tiwari P, Fanibunda SE, Kapri D, Vasaya S, Pati S, Vaidya VA. GPCR signaling: role in mediating the effects of early adversity in psychiatric disorders. FEBS J 2021; 288:2602-2621. [DOI: 10.1111/febs.15738] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Praachi Tiwari
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| | - Sashaina E. Fanibunda
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
- Medical Research Centre Kasturba Health Society Mumbai India
| | - Darshana Kapri
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| | - Shweta Vasaya
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| | - Sthitapranjya Pati
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| | - Vidita A. Vaidya
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| |
Collapse
|