1
|
Li Y, Yan Z, Lu Z, Li K. Zebrafish gender-specific anxiety-like behavioral and physiological reactions elicited by caffeine. Behav Brain Res 2024; 472:115151. [PMID: 39019091 DOI: 10.1016/j.bbr.2024.115151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/27/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Caffeine exerts a biphasic effect on zebrafish behavior. High doses of caffeine have been associated with increased stress and anxiety, whereas low doses have been found to enhance performance on tasks requiring focus and attention. However, the sex-specific nature of these biphasic effects on behavior and physiology remains unclear. This study assessed the behavioral responses and hormone levels in male and female zebrafish after acute exposure to caffeine ranging from 0.3 to 600 mg/L. The results showed no significant difference in caffeine intake between males and females after acute exposure at each concentration. Caffeine-induced behavioral and physiological responses indicated a threshold dosage existed between 30 and 300 mg/L. Female fish displayed increased anxiety-like behavioral phenotypes, i.e., latency to upper and freezing, whereas males exhibited more erratic movement following acute exposure to a high-dose treatment. In addition, females exhibited a significant increase in whole-body cortisol levels, while males experienced a testosterone elevation at 300 mg/L of caffeine acute exposure. There was a significant decrease in the duration of erratic movements in males treated with the androgen receptor antagonist flutamide compared to the control group. The transcriptome analysis uncovered 511 and 592 up-regulated and 761 and 922 down-regulated differential expression genes in males and females, respectively, compared to the control. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway analysis revealed that caffeine has the potential to impact various pathways in zebrafish, including phototransduction and steroid hormone biosynthesis. Our findings demonstrate that testosterone and cortisol play a combined role in regulating stress responses in both behavior and physiology. Furthermore, our study highlights the significance of encompassing both male and female zebrafish as a model system.
Collapse
Affiliation(s)
- Yaxi Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Yan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; School of Ocean, Yantai University, Yantai 264005, China
| | - Zhen Lu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Ke Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
3
|
Mei L, Zhang Z, Chen R, Liu Z, Ren X, Li Z. Identification of candidate genes and chemicals associated with osteoarthritis by transcriptome-wide association study and chemical-gene interaction analysis. Arthritis Res Ther 2023; 25:179. [PMID: 37749624 PMCID: PMC10518935 DOI: 10.1186/s13075-023-03164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/10/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a common degenerative joint disease and causes chronic pain and disability to the elderly. Several risk factors are involved, such as aging, obesity, genetic susceptibility, and environmental factors. We conducted a transcriptome-wide association study (TWAS) and chemical-related gene set enrichment analysis (CGSEA) to investigate the susceptibility genes and environmental factors. METHODS TWAS analysis was conducted to identify the susceptibility genes by integrating the summary-level genome-wide association study data of knee OA (KOA) and hip OA (HOA) with the precomputed expression weights from the Genotype-Tissue Expression Project (Version 8). The FUSION software was used for both single-tissue and cross-tissue TWAS, which were combined using an aggregate Cauchy association test. The biological function and pathways of the TWAS genes were explored using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases, and the human cartilage mRNA expression profiles were utilized to validate the TWAS genes. CGSEA analysis was performed to scan the OA-associated chemicals by integrating the TWAS results with the chemical-related gene sets. RESULTS There were 44 and 93 unique TWAS genes identified in 7 and 11 chromosomes for KOA and HOA, respectively, fourteen and four of which showed significantly differential expression in the mRNA profiles, such as CRHR1, LTBP1, WWP2, LMX1B, and PTHLH. OA-related pathways were found in the KEGG and GO analysis, such as TGF-beta signaling pathway, MAPK signaling pathway, hyaluronan metabolic process, and chondrocyte differentiation. Forty-five OA-associated chemicals were identified, including quercetin, bisphenol A, and cadmium chloride. CONCLUSIONS Several candidate OA-associated genes and chemicals were identified through TWAS and CGSEA analysis, which expanded our understanding of the relationship between genes, chemicals, and their impact on OA.
Collapse
Affiliation(s)
- Lin Mei
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Zhiming Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Ruiqi Chen
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Zhongyue Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Xiaolei Ren
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China.
| |
Collapse
|
4
|
Concha ML, Reig G. Origin, form and function of extraembryonic structures in teleost fishes. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210264. [PMID: 36252221 PMCID: PMC9574637 DOI: 10.1098/rstb.2021.0264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/12/2022] [Indexed: 12/18/2022] Open
Abstract
Teleost eggs have evolved a highly derived early developmental pattern within vertebrates as a result of the meroblastic cleavage pattern, giving rise to a polar stratified architecture containing a large acellular yolk and a small cellular blastoderm on top. Besides the acellular yolk, the teleost-specific yolk syncytial layer (YSL) and the superficial epithelial enveloping layer are recognized as extraembryonic structures that play critical roles throughout embryonic development. They provide enriched microenvironments in which molecular feedback loops, cellular interactions and mechanical signals emerge to sculpt, among other things, embryonic patterning along the dorsoventral and left-right axes, mesendodermal specification and the execution of morphogenetic movements in the early embryo and during organogenesis. An emerging concept points to a critical role of extraembryonic structures in reinforcing early genetic and morphogenetic programmes in reciprocal coordination with the embryonic blastoderm, providing the necessary boundary conditions for development to proceed. In addition, the role of the enveloping cell layer in providing mechanical, osmotic and immunological protection during early stages of development, and the autonomous nutritional support provided by the yolk and YSL, have probably been key aspects that have enabled the massive radiation of teleosts to colonize every ecological niche on the Earth. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Miguel L. Concha
- Integrative Biology Program, Institute of Biomedical Sciences (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Biomedical Neuroscience Institute (BNI), Santiago 8380453, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago 7800003, Chile
| | - Germán Reig
- Escuela de Tecnología Médica y del Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 7800003, Chile
| |
Collapse
|
6
|
Nienhaus K, Nienhaus GU. Genetically encodable fluorescent protein markers in advanced optical imaging. Methods Appl Fluoresc 2022; 10. [PMID: 35767981 DOI: 10.1088/2050-6120/ac7d3f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/29/2022] [Indexed: 11/12/2022]
Abstract
Optical fluorescence microscopy plays a pivotal role in the exploration of biological structure and dynamics, especially on live specimens. Progress in the field relies, on the one hand, on technical advances in imaging and data processing and, on the other hand, on progress in fluorescent marker technologies. Among these, genetically encodable fluorescent proteins (FPs) are invaluable tools, as they allow facile labeling of live cells, tissues or organisms, as these produce the FP markers all by themselves after introduction of a suitable gene. Here we cover FP markers from the GFP family of proteins as well as tetrapyrrole-binding proteins, which further complement the FP toolbox in important ways. A broad range of FP variants have been endowed, by using protein engineering, with photophysical properties that are essential for specific fluorescence microscopy techniques, notably those offering nanoscale image resolution. We briefly introduce various advanced imaging methods and show how they utilize the distinct properties of the FP markers in exciting imaging applications, with the aim to guide researchers toward the design of powerful imaging experiments that are optimally suited to address their biological questions.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, Wolfgang Gaede Str. 1, Karlsruhe, 76131, GERMANY
| | - Gerd Ulrich Nienhaus
- Karlsruhe Institute of Technology, Wolfgang Gaede Str. 1, Karlsruhe, 76131, GERMANY
| |
Collapse
|
7
|
Yamamoto-Imoto H, Minami S, Shioda T, Yamashita Y, Sakai S, Maeda S, Yamamoto T, Oki S, Takashima M, Yamamuro T, Yanagawa K, Edahiro R, Iwatani M, So M, Tokumura A, Abe T, Imamura R, Nonomura N, Okada Y, Ayer DE, Ogawa H, Hara E, Takabatake Y, Isaka Y, Nakamura S, Yoshimori T. Age-associated decline of MondoA drives cellular senescence through impaired autophagy and mitochondrial homeostasis. Cell Rep 2022; 38:110444. [PMID: 35235784 DOI: 10.1016/j.celrep.2022.110444] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/06/2021] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
Accumulation of senescent cells affects organismal aging and the prevalence of age-associated disease. Emerging evidence suggests that activation of autophagy protects against age-associated diseases and promotes longevity, but the roles and regulatory mechanisms of autophagy in cellular senescence are not well understood. Here, we identify the transcription factor, MondoA, as a regulator of cellular senescence, autophagy, and mitochondrial homeostasis. MondoA protects against cellular senescence by activating autophagy partly through the suppression of an autophagy-negative regulator, Rubicon. In addition, we identify peroxiredoxin 3 (Prdx3) as another downstream regulator of MondoA essential for mitochondrial homeostasis and autophagy. Rubicon and Prdx3 work independently to regulate senescence. Furthermore, we find that MondoA knockout mice have exacerbated senescence during ischemic acute kidney injury (AKI), and a decrease of MondoA in the nucleus is correlated with human aging and ischemic AKI. Our results suggest that decline of MondoA worsens senescence and age-associated disease.
Collapse
Affiliation(s)
- Hitomi Yamamoto-Imoto
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Satoshi Minami
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Department of Nephrology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tatsuya Shioda
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yurina Yamashita
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shinsuke Sakai
- Department of Nephrology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shihomi Maeda
- Department of Nephrology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takeshi Yamamoto
- Department of Nephrology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shinya Oki
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Mizuki Takashima
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tadashi Yamamuro
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kyosuke Yanagawa
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryuya Edahiro
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Miki Iwatani
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mizue So
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ayaka Tokumura
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Toyofumi Abe
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryoichi Imamura
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Norio Nonomura
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Donald E Ayer
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Hidesato Ogawa
- Laboratory of Nuclear Dynamics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Eiji Hara
- Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Osaka 565-0871, Japan; Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshitsugu Takabatake
- Department of Nephrology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shuhei Nakamura
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan; Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|