1
|
Loosen AM, Seow TXF, Hauser TU. Consistency within change: Evaluating the psychometric properties of a widely used predictive-inference task. Behav Res Methods 2024; 56:7410-7426. [PMID: 38844601 PMCID: PMC11362202 DOI: 10.3758/s13428-024-02427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 08/30/2024]
Abstract
Rapid adaptation to sudden changes in the environment is a hallmark of flexible human behaviour. Many computational, neuroimaging, and even clinical investigations studying this cognitive process have relied on a behavioural paradigm known as the predictive-inference task. However, the psychometric quality of this task has never been examined, leaving unanswered whether it is indeed suited to capture behavioural variation on a within- and between-subject level. Using a large-scale test-retest design (T1: N = 330; T2: N = 219), we assessed the internal (internal consistency) and temporal (test-retest reliability) stability of the task's most used measures. We show that the main measures capturing flexible belief and behavioural adaptation yield good internal consistency and overall satisfying test-retest reliability. However, some more complex markers of flexible behaviour show lower psychometric quality. Our findings have implications for the large corpus of previous studies using this task and provide clear guidance as to which measures should and should not be used in future studies.
Collapse
Affiliation(s)
- Alisa M Loosen
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK.
- Wellcome Centre for Human Neuroimaging, University College London, University College London, London, UK.
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Tricia X F Seow
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, University College London, London, UK
| | - Tobias U Hauser
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, University College London, London, UK
- Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Tübingen, Germany
| |
Collapse
|
2
|
Foster BL, Koslov SR, Aponik-Gremillion L, Monko ME, Hayden BY, Heilbronner SR. A tripartite view of the posterior cingulate cortex. Nat Rev Neurosci 2023; 24:173-189. [PMID: 36456807 PMCID: PMC10041987 DOI: 10.1038/s41583-022-00661-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 12/03/2022]
Abstract
The posterior cingulate cortex (PCC) is one of the least understood regions of the cerebral cortex. By contrast, the anterior cingulate cortex has been the subject of intensive investigation in humans and model animal systems, leading to detailed behavioural and computational theoretical accounts of its function. The time is right for similar progress to be made in the PCC given its unique anatomical and physiological properties and demonstrably important contributions to higher cognitive functions and brain diseases. Here, we describe recent progress in understanding the PCC, with a focus on convergent findings across species and techniques that lay a foundation for establishing a formal theoretical account of its functions. Based on this converging evidence, we propose that the broader PCC region contains three major subregions - the dorsal PCC, ventral PCC and retrosplenial cortex - that respectively support the integration of executive, mnemonic and spatial processing systems. This tripartite subregional view reconciles inconsistencies in prior unitary theories of PCC function and offers promising new avenues for progress.
Collapse
Affiliation(s)
- Brett L Foster
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Seth R Koslov
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lyndsey Aponik-Gremillion
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.,Department of Health Sciences, Dumke College for Health Professionals, Weber State University, Ogden, UT, USA
| | - Megan E Monko
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin Y Hayden
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.,Center for Magnetic Resonance Research and Center for Neural Engineering, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
3
|
Bakst L, McGuire JT. Experience-driven recalibration of learning from surprising events. Cognition 2023; 232:105343. [PMID: 36481590 PMCID: PMC9851993 DOI: 10.1016/j.cognition.2022.105343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Different environments favor different patterns of adaptive learning. A surprising event that in one context would accelerate belief updating might, in another context, be downweighted as a meaningless outlier. Here, we investigated whether people would spontaneously regulate the influence of surprise on learning in response to event-by-event experiential feedback. Across two experiments, we examined whether participants performing a perceptual judgment task under spatial uncertainty (n = 29, n = 63) adapted their patterns of predictive gaze according to the informativeness or uninformativeness of surprising events in their current environment. Uninstructed predictive eye movements exhibited a form of metalearning in which surprise came to modulate event-by-event learning rates in opposite directions across contexts. Participants later appropriately readjusted their patterns of adaptive learning when the statistics of the environment underwent an unsignaled reversal. Although significant adjustments occurred in both directions, performance was consistently superior in environments in which surprising events reflected meaningful change, potentially reflecting a bias towards interpreting surprise as informative and/or difficulty ignoring salient outliers. Our results provide evidence for spontaneous, context-appropriate recalibration of the role of surprise in adaptive learning.
Collapse
Affiliation(s)
- Leah Bakst
- Department of Psychological & Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA 02215, USA; Center for Systems Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA.
| | - Joseph T McGuire
- Department of Psychological & Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA 02215, USA; Center for Systems Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA.
| |
Collapse
|
4
|
Monosov IE, Rushworth MFS. Interactions between ventrolateral prefrontal and anterior cingulate cortex during learning and behavioural change. Neuropsychopharmacology 2022; 47:196-210. [PMID: 34234288 PMCID: PMC8617208 DOI: 10.1038/s41386-021-01079-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/27/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Hypotheses and beliefs guide credit assignment - the process of determining which previous events or actions caused an outcome. Adaptive hypothesis formation and testing are crucial in uncertain and changing environments in which associations and meanings are volatile. Despite primates' abilities to form and test hypotheses, establishing what is causally responsible for the occurrence of particular outcomes remains a fundamental challenge for credit assignment and learning. Hypotheses about what surprises are due to stochasticity inherent in an environment as opposed to real, systematic changes are necessary for identifying the environment's predictive features, but are often hard to test. We review evidence that two highly interconnected frontal cortical regions, anterior cingulate cortex and ventrolateral prefrontal area 47/12o, provide a biological substrate for linking two crucial components of hypothesis-formation and testing: the control of information seeking and credit assignment. Neuroimaging, targeted disruptions, and neurophysiological studies link an anterior cingulate - 47/12o circuit to generation of exploratory behaviour, non-instrumental information seeking, and interpretation of subsequent feedback in the service of credit assignment. Our observations support the idea that information seeking and credit assignment are linked at the level of neural circuits and explain why this circuit is important for ensuring behaviour is flexible and adaptive.
Collapse
Affiliation(s)
- Ilya E Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.
- Department of Electrical Engineering, Washington University, St. Louis, MO, USA.
- Department of Neurosurgery, Washington University, St. Louis, MO, USA.
- Pain Center, Washington University, St. Louis, MO, USA.
| | - Matthew F S Rushworth
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK.
| |
Collapse
|