1
|
Xu C, Chu X. Dissecting the Roles of Electrostatic Interactions in Modulating the Folding Stability and Cooperativity of Engrailed Homeodomain. Biochemistry 2024; 63:3261-3272. [PMID: 39602187 DOI: 10.1021/acs.biochem.4c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Engrailed homeodomain (EngHD), a highly charged transcription factor regulating over 200 genes, is a fast-folding protein. Recent studies have shown that the abundant charged residues in EngHD not only facilitate protein-DNA interactions but also influence the conformational disorder of its native structure. However, the mechanisms by which electrostatic interactions modulate the folding of EngHD remain unclear. Here, we employ a coarse-grained structure-based model that incorporates the salt-dependent Debye-Hückel model to investigate the (un)folding behavior of EngHD under various salt concentrations. Our findings demonstrate that increasing salt concentrations enhance both folding stability and cooperativity, while the folding barrier height remains relatively constant due to the distinct electrostatic effects on individual residues. By modulating the energetic balance between local and nonlocal interactions, we shift the folding of EngHD from a downhill process to a two-state process. Notably, we observe a nonmonotonic relationship between the strength of local interactions and residue-level coupling degree during (un)folding, likely attributed to the repulsive electrostatic interactions present in the native structure of EngHD. Additionally, we identify a critical turning point in the dependence of folding cooperativity on salt concentration, classified by the energetic balance of local and nonlocal interactions. Our results provide valuable insights into how electrostatic interactions influence the folding of EngHD, contributing to the theoretical framework for engineering highly charged proteins.
Collapse
Affiliation(s)
- Chengzhen Xu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, China
| | - Xiakun Chu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, China
- Guangzhou Municipal Key Laboratory of Materials Informatics, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR 999077, China
| |
Collapse
|
2
|
Zhang G, Chu X. Balancing thermodynamic stability, dynamics, and kinetics in phase separation of intrinsically disordered proteins. J Chem Phys 2024; 161:095102. [PMID: 39225535 DOI: 10.1063/5.0220861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Intrinsically disordered proteins (IDPs) are prevalent participants in liquid-liquid phase separation due to their inherent potential for promoting multivalent binding. Understanding the underlying mechanisms of phase separation is challenging, as phase separation is a complex process, involving numerous molecules and various types of interactions. Here, we used a simplified coarse-grained model of IDPs to investigate the thermodynamic stability of the dense phase, conformational properties of IDPs, chain dynamics, and kinetic rates of forming condensates. We focused on the IDP system, in which the oppositely charged IDPs are maximally segregated, inherently possessing a high propensity for phase separation. By varying interaction strengths, salt concentrations, and temperatures, we observed that IDPs in the dense phase exhibited highly conserved conformational characteristics, which are more extended than those in the dilute phase. Although the chain motions and global conformational dynamics of IDPs in the condensates are slow due to the high viscosity, local chain flexibility at the short timescales is largely preserved with respect to that at the free state. Strikingly, we observed a non-monotonic relationship between interaction strengths and kinetic rates for forming condensates. As strong interactions of IDPs result in high stable condensates, our results suggest that the thermodynamics and kinetics of phase separation are decoupled and optimized by the speed-stability balance through underlying molecular interactions. Our findings contribute to the molecular-level understanding of phase separation and offer valuable insights into the developments of engineering strategies for precise regulation of biomolecular condensates.
Collapse
Affiliation(s)
- Guoqing Zhang
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, China
| | - Xiakun Chu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, China
- Guangzhou Municipal Key Laboratory of Materials Informatics, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR 999077, China
| |
Collapse
|
3
|
The folding and misfolding mechanisms of multidomain proteins. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
4
|
Chu X, Suo Z, Wang J. Investigating the Conformational Dynamics of a Y-Family DNA Polymerase during Its Folding and Binding to DNA and a Nucleotide. JACS AU 2022; 2:341-356. [PMID: 35252985 PMCID: PMC8889613 DOI: 10.1021/jacsau.1c00368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 06/14/2023]
Abstract
During DNA polymerization, the Y-family DNA polymerases are capable of bypassing various DNA damage, which can stall the replication fork progression. It has been well acknowledged that the structures of the Y-family DNA polymerases have been naturally evolved to undertake this vital task. However, the mechanisms of how these proteins utilize their unique structural and conformational dynamical features to perform the translesion DNA synthesis are less understood. Here, we developed structure-based models to study the precatalytic DNA polymerization process, including DNA and nucleotide binding to DPO4, a paradigmatic Y-family polymerase from Sulfolobus solfataricus. We studied the interplay between the folding and the conformational dynamics of DPO4 and found that DPO4 undergoes first unraveling (unfolding) and then folding for accomplishing the functional "open-to-closed" conformational transition. DNA binding dynamically modulates the conformational equilibrium in DPO4 during the stepwise binding through different types of interactions, leading to different conformational distributions of DPO4 at different DNA binding stages. We observed that nucleotide binding induces modulation of a few contacts surrounding the active site of the DPO4-DNA complex associated with a high free energy barrier. Our simulation results resonate with the experimental evidence that the conformational change at the active site led by nucleotide is the rate-limiting step of nucleotide incorporation. In combination with localized frustration analyses, we underlined the importance of DPO4 conformational dynamics and fluctuations in facilitating DNA and nucleotide binding. Our findings offer mechanistic insights into the processes of DPO4 conformational dynamics associated with the substrate binding and contribute to the understanding of the "structure-dynamics-function" relationship in the Y-family DNA polymerases.
Collapse
Affiliation(s)
- Xiakun Chu
- Department
of Chemistry, State University of New York
at Stony Brook, Stony
Brook, New York 11794, United States
| | - Zucai Suo
- Department
of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, United States
| | - Jin Wang
- Department
of Chemistry, State University of New York
at Stony Brook, Stony
Brook, New York 11794, United States
- Department
of Physics and Astronomy, State University
of New York at Stony Brook, Stony Brook, New York 11794, United States
| |
Collapse
|
5
|
Chu WT, Yan Z, Chu X, Zheng X, Liu Z, Xu L, Zhang K, Wang J. Physics of biomolecular recognition and conformational dynamics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:126601. [PMID: 34753115 DOI: 10.1088/1361-6633/ac3800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Biomolecular recognition usually leads to the formation of binding complexes, often accompanied by large-scale conformational changes. This process is fundamental to biological functions at the molecular and cellular levels. Uncovering the physical mechanisms of biomolecular recognition and quantifying the key biomolecular interactions are vital to understand these functions. The recently developed energy landscape theory has been successful in quantifying recognition processes and revealing the underlying mechanisms. Recent studies have shown that in addition to affinity, specificity is also crucial for biomolecular recognition. The proposed physical concept of intrinsic specificity based on the underlying energy landscape theory provides a practical way to quantify the specificity. Optimization of affinity and specificity can be adopted as a principle to guide the evolution and design of molecular recognition. This approach can also be used in practice for drug discovery using multidimensional screening to identify lead compounds. The energy landscape topography of molecular recognition is important for revealing the underlying flexible binding or binding-folding mechanisms. In this review, we first introduce the energy landscape theory for molecular recognition and then address four critical issues related to biomolecular recognition and conformational dynamics: (1) specificity quantification of molecular recognition; (2) evolution and design in molecular recognition; (3) flexible molecular recognition; (4) chromosome structural dynamics. The results described here and the discussions of the insights gained from the energy landscape topography can provide valuable guidance for further computational and experimental investigations of biomolecular recognition and conformational dynamics.
Collapse
Affiliation(s)
- Wen-Ting Chu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Zhiqiang Yan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Xiakun Chu
- Department of Chemistry & Physics, State University of New York at Stony Brook, Stony Brook, NY 11794, United States of America
| | - Xiliang Zheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Li Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Kun Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Jin Wang
- Department of Chemistry & Physics, State University of New York at Stony Brook, Stony Brook, NY 11794, United States of America
| |
Collapse
|
6
|
Nie QM, Sun LZ, Li HB, Chu X, Wang J. Effects of electrostatic interactions on global folding and local conformational dynamics of a multidomain Y-family DNA polymerase. Phys Chem Chem Phys 2021; 23:20841-20847. [PMID: 34533560 DOI: 10.1039/d1cp02832d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Y-family DNA polymerases specialize in translesion DNA synthesis, which is essential for replicating damaged DNA. The Y-family polymerases, which are made up of four stable domains, exhibit extensive distributions of charged residues, and are responsible for the tight formation of the protein-DNA complex. However, it is still unclear how the electrostatic interactions influence the conformational dynamics of the polymerases. Here, we focus on the case of a prototype Y-family DNA polymerase, Dpo4. Using coarse-grained models including a salt-dependent electrostatic potential, we investigate the effects of the electrostatic interactions on the folding process of Dpo4. Our simulations show that strong electrostatic interactions result in a three-state folding of Dpo4, consistent with the experimental observations. This folding process exhibits low cooperativity led by low salt concentration, where the individual domains fold one by one through one single pathway. Since the refined folding order of domains in multidomain proteins can shrink the configurational space, we suggest that the electrostatic interactions facilitate the Dpo4 folding. In addition, we study the local conformational dynamics of Dpo4 in terms of fluctuation and frustration analyses. We show that the electrostatic interactions can exaggerate the local conformational properties, which are in favor of the large-scale conformational transition of Dpo4 during the functional DNA binding. Our results underline the importance of electrostatic interactions in the conformational dynamics of Dpo4 at both the global and local scale, providing useful guidance in protein engineering at the multidomain level.
Collapse
Affiliation(s)
- Qing-Miao Nie
- Department of Applied Physics, Zhejiang University of Technology, 288, Liuhe Road, Hangzhou 310023, P. R. China
| | - Li-Zhen Sun
- Department of Applied Physics, Zhejiang University of Technology, 288, Liuhe Road, Hangzhou 310023, P. R. China
| | - Hai-Bin Li
- Department of Applied Physics, Zhejiang University of Technology, 288, Liuhe Road, Hangzhou 310023, P. R. China
| | - Xiakun Chu
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794, USA.
| | - Jin Wang
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794, USA.
| |
Collapse
|
7
|
Yuan G, Curtolo F, Deng Y, Wu T, Tian F, Ma Q, Liu Y, Zuo J, Arantes GM, Zheng P. Highly Dynamic Polynuclear Metal Cluster Revealed in a Single Metallothionein Molecule. RESEARCH 2021; 2021:9756945. [PMID: 34368766 PMCID: PMC8299258 DOI: 10.34133/2021/9756945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/04/2021] [Indexed: 11/06/2022]
Abstract
Human metallothionein (MT) is a small-size yet efficient metal-binding protein, playing an essential role in metal homeostasis and heavy metal detoxification. MT contains two domains, each forming a polynuclear metal cluster with an exquisite hexatomic ring structure. The apoprotein is intrinsically disordered, which may strongly influence the clusters and the metal-thiolate (M-S) bonds, leading to a highly dynamic structure. However, these features are challenging to identify due to the transient nature of these species. The individual signal from dynamic conformations with different states of the cluster and M-S bond will be averaged and blurred in classic ensemble measurement. To circumvent these problems, we combined a single-molecule approach and multiscale molecular simulations to investigate the rupture mechanism and chemical stability of the metal cluster by a single MT molecule, focusing on the Zn4S11 cluster in the α domain upon unfolding. Unusual multiple unfolding pathways and intermediates are observed for both domains, corresponding to different combinations of M-S bond rupture. None of the pathways is clearly preferred suggesting that unfolding proceeds from the distribution of protein conformational substates with similar M-S bond strengths. Simulations indicate that the metal cluster may rearrange, forming and breaking metal-thiolate bonds even when MT is folded independently of large protein backbone reconfiguration. Thus, a highly dynamic polynuclear metal cluster with multiple conformational states is revealed in MT, responsible for the binding promiscuity and diverse cellular functions of this metal-carrier protein.
Collapse
Affiliation(s)
- Guodong Yuan
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Felipe Curtolo
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
| | - Yibing Deng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Tao Wu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Fang Tian
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Qun Ma
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yutong Liu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jinglin Zuo
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Guilherme Menegon Arantes
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|