1
|
Shi K, Zhang Y, Du Z, Liu SC, Leon I, Fan X, Lee HC, Zhang D. Nucleoporins shape germ granule architecture and balance small RNA silencing pathways. Nat Commun 2025; 16:4295. [PMID: 40341687 PMCID: PMC12062238 DOI: 10.1038/s41467-025-59526-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 04/24/2025] [Indexed: 05/10/2025] Open
Abstract
Animals use small RNA pathways, such as PIWI-interacting RNA (piRNA) and small interfering RNA (siRNA), to silence harmful genetic elements. In Caenorhabditis elegans, piRNA pathway components are organized into sub-compartments within germ granules near nuclear pore complexes, but the basis and function of this association have remained unclear. Here, our data suggest that germ granule formation and nuclear pore clustering are interdependent processes. We identify the conserved nucleoporins NPP-14/NUP214 and NPP-24/NUP88, along with the germ granule protein EPS-1, as key factors anchoring germ granules to nuclear pores. Loss of these factors leads to disorganized, fused granules and enhanced piRNA silencing. Artificial tethering of granule sub-compartments mimics this effect. However, this increase in piRNA silencing comes at the expense of RNA interference efficiency and heritability. Our findings reveal the molecular factors mediating germ granule-nuclear pore interaction and highlight how spatial organization of RNA silencing machinery fine-tunes gene regulation.
Collapse
Affiliation(s)
- Kun Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430032, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430032, China
| | - Zhenzhen Du
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430032, China
| | - Symonne C Liu
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Ivan Leon
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Xinyu Fan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430032, China
| | - Heng-Chi Lee
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, 60637, USA.
| | - Donglei Zhang
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
2
|
Huang X, Feng X, Yan YH, Xu D, Wang K, Zhu C, Dong MQ, Huang X, Guang S, Chen X. Compartmentalized localization of perinuclear proteins within germ granules in C. elegans. Dev Cell 2025; 60:1251-1270.e3. [PMID: 39742661 DOI: 10.1016/j.devcel.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/26/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025]
Abstract
Germ granules, or nuage, are RNA-rich condensates that are often docked on the cytoplasmic surface of germline nuclei. C. elegans perinuclear germ granules are composed of multiple subcompartments, including P granules, Mutator foci, Z granules, SIMR foci, P -bodies, and E granules. Although many perinuclear proteins have been identified, their precise localization within the subcompartments of the germ granule is still unclear. Here, we systematically labeled perinuclear proteins with fluorescent tags via CRISPR-Cas9 technology. Using this nematode strain library, we identified a series of proteins localized in Z or E granules and extended the characterization of the D granule. Finally, we found that the LOTUS domain protein MIP-1/EGGD-1 regulated the multiphase organization of the germ granule. Overall, our work identified the germ-granule architecture and redefined the compartmental localization of perinuclear proteins. Additionally, the library of genetically modified nematode strains will facilitate research on C. elegans germ granules.
Collapse
Affiliation(s)
- Xiaona Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Xuezhu Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yong-Hong Yan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Demin Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Ke Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Chengming Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xinya Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China.
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China.
| | - Xiangyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
3
|
Thomas LL, Bodas DM, Seydoux G. FG repeats drive co-clustering of nuclear pores and P granules in the C. elegans germline. Development 2025; 152:dev204585. [PMID: 40067309 PMCID: PMC12050070 DOI: 10.1242/dev.204585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/19/2025] [Indexed: 03/28/2025]
Abstract
Condensates that accumulate small RNA biogenesis factors (nuage) are common in germ cells and often associate with nuclei. In the Caenorhabditis elegans germline, P granules overlay large clusters of nuclear pores and this organization has been proposed to facilitate surveillance of nascent transcripts by Argonaute proteins enriched in P granules. We report that co-clustering of nuclear pores and P granules depends on FG repeat-containing nucleoporins and FG repeats in the Vasa class helicase GLH-1. Worms with mutations that prevent this co-clustering are fertile under standard growth conditions and exhibit misregulation of only a minority of genes, including replication-dependent histones. Our observations suggest that association with nuclear pores, although non-essential for genome surveillance, may serve to tune mRNA flow through P granules and other nuage condensates.
Collapse
Affiliation(s)
- Laura L. Thomas
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Devavrat M. Bodas
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Geraldine Seydoux
- HHMI and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Shi K, Zhang Y, Du Z, Liu SC, Fan X, Lee HC, Zhang D. Nucleoporins shape germ granule architecture and balance small RNA silencing pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634177. [PMID: 39896640 PMCID: PMC11785172 DOI: 10.1101/2025.01.23.634177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Animals have evolved distinct small RNA pathways, including piRNA and siRNA, to silence invasive and selfish nucleic acids. piRNA pathway factors are concentrated in perinuclear germ granules that frequently associate with nuclear pore complexes (NPCs). However, the factors mediating germ granule-NPC association and the functional relevance of such association remain unknown. Here we show that the conserved nucleoporins NPP-14 (NUP-214) and NPP-24 (NUP-88), components of the cytoplasmic filaments of NPC, play critical roles in anchoring germ granule to NPC and in attenuating piRNA silencing In C. elegans. Proximity labeling experiments further identified EPS-1 (enhanced piRNA silencing) as a key germ granule factor contributing to germ granule-NPC interaction. In npp-14, npp-24, or eps-1 mutant animals, we observed fewer but enlarged, unorganized germ granules, accompanied by the over-amplification of secondary small RNAs at piRNA targeting sites. Nonetheless, we found this enhancement of piRNA silencing comes at the cost of dampened RNAi efficiency and RNAi inheritance. Together, our studies uncovered factors contributing to germ granule-NPC association and underscored the importance of spatial organization of germ granules in balancing small RNA silencing pathways.
Collapse
Affiliation(s)
- Kun Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430032, China
- These authors contribute equally
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430032, China
- These authors contribute equally
| | - Zhenzhen Du
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430032, China
| | - Symonne C Liu
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Xinyu Fan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430032, China
| | - Heng-Chi Lee
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Donglei Zhang
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Suyama R, Kai T. piRNA processing within non-membrane structures is governed by constituent proteins and their functional motifs. FEBS J 2024. [PMID: 39739617 DOI: 10.1111/febs.17360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/23/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025]
Abstract
Discovered two decades ago, PIWI-interacting RNAs (piRNAs) are crucial for silencing transposable elements (TEs) in animal gonads, thereby protecting the germline genome from harmful transposition, and ensuring species continuity. Silencing of TEs is achieved through transcriptional and post-transcriptional suppression by piRNAs and the PIWI clade of Argonaute proteins within non-membrane structured organelle. These structures are composed of proteins involved in piRNA processing, including PIWIs and other proteins by distinct functional motifs such as the Tudor domain, LOTUS, and intrinsic disordered regions (IDRs). This review highlights recent advances in understanding the roles of these conserved proteins and structural motifs in piRNA biogenesis. We explore the molecular mechanisms of piRNA biogenesis, with a primary focus on Drosophila as a model organism, identifying common themes and species-specific variations. Additionally, we extend the discussion to the roles of these components in nongonadal tissues.
Collapse
Affiliation(s)
- Ritsuko Suyama
- Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Toshie Kai
- Laboratory of Germline Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
6
|
Pamula MC, Lehmann R. How germ granules promote germ cell fate. Nat Rev Genet 2024; 25:803-821. [PMID: 38890558 DOI: 10.1038/s41576-024-00744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
Germ cells are the only cells in the body capable of giving rise to a new organism, and this totipotency hinges on their ability to assemble membraneless germ granules. These specialized RNA and protein complexes are hallmarks of germ cells throughout their life cycle: as embryonic germ granules in late oocytes and zygotes, Balbiani bodies in immature oocytes, and nuage in maturing gametes. Decades of developmental, genetic and biochemical studies have identified protein and RNA constituents unique to germ granules and have implicated these in germ cell identity, genome integrity and gamete differentiation. Now, emerging research is defining germ granules as biomolecular condensates that achieve high molecular concentrations by phase separation, and it is assigning distinct roles to germ granules during different stages of germline development. This organization of the germ cell cytoplasm into cellular subcompartments seems to be critical not only for the flawless continuity through the germline life cycle within the developing organism but also for the success of the next generation.
Collapse
Affiliation(s)
| | - Ruth Lehmann
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
7
|
Zhao C, Cai S, Shi R, Li X, Deng B, Li R, Yang S, Huang J, Liang Y, Lu P, Yuan Z, Jia H, Jiang Z, Zhang X, Kennedy S, Wan G. HERD-1 mediates multiphase condensate immiscibility to regulate small RNA-driven transgenerational epigenetic inheritance. Nat Cell Biol 2024; 26:1958-1970. [PMID: 39354132 DOI: 10.1038/s41556-024-01514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 08/23/2024] [Indexed: 10/03/2024]
Abstract
Biomolecular condensates, such as the nucleolus, stress granules/processing bodies and germ granules, are multiphase assemblages whose formation mechanisms and significance remain poorly understood. Here we identify protein constituents of the spatiotemporally ordered P, Z and M multiphase condensates in Caenorhabditis elegans germ granules using optimized TurboID-mediated proximity biotin labelling. These include 462, 41 and 86 proteins localizing to P, Z and M condensates, respectively, of which 522 were previously unknown protein constituents. Each condensate's proteins are enriched for distinct classes of structured and intrinsically disordered domains, suggesting divergent functions and assembly mechanisms. Through a functional screen, we identify a germ granule protein, HERD-1, which prevents the mixing of P, Z and M condensates. Mixing in herd-1 mutants correlates with disorganization of germline small RNA pathways and prolonged epigenetic inheritance of RNA interference-induced gene silencing. Forced mixing of these condensate components using a nanobody with specific binding activity against green fluorescent protein also extends epigenetic inheritance. We propose that active maintenance of germ granule immiscibility helps to organize and regulate small RNA-driven transgenerational epigenetic inheritance in C. elegans.
Collapse
Affiliation(s)
- Changfeng Zhao
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shiyu Cai
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ruona Shi
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Xinru Li
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Boyuan Deng
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ruofei Li
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuhan Yang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Huang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yonglin Liang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pu Lu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhongping Yuan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haoxiang Jia
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zongjin Jiang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaofei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Scott Kennedy
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, MA, USA
| | - Gang Wan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
8
|
Chen X, Wang K, Mufti FUD, Xu D, Zhu C, Huang X, Zeng C, Jin Q, Huang X, Yan YH, Dong MQ, Feng X, Shi Y, Kennedy S, Guang S. Germ granule compartments coordinate specialized small RNA production. Nat Commun 2024; 15:5799. [PMID: 38987544 PMCID: PMC11236994 DOI: 10.1038/s41467-024-50027-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/26/2024] [Indexed: 07/12/2024] Open
Abstract
Germ granules are biomolecular condensates present in most animal germ cells. One function of germ granules is to help maintain germ cell totipotency by organizing mRNA regulatory machinery, including small RNA-based gene regulatory pathways. The C. elegans germ granule is compartmentalized into multiple subcompartments whose biological functions are largely unknown. Here, we identify an uncharted subcompartment of the C. elegans germ granule, which we term the E granule. The E granule is nonrandomly positioned within the germ granule. We identify five proteins that localize to the E granule, including the RNA-dependent RNA polymerase (RdRP) EGO-1, the Dicer-related helicase DRH-3, the Tudor domain-containing protein EKL-1, and two intrinsically disordered proteins, EGC-1 and ELLI-1. Localization of EGO-1 to the E granule enables synthesis of a specialized class of 22G RNAs, which derive exclusively from 5' regions of a subset of germline-expressed mRNAs. Defects in E granule assembly elicit disordered production of endogenous siRNAs, which disturbs fertility and the RNAi response. Our results define a distinct subcompartment of the C. elegans germ granule and suggest that one function of germ granule compartmentalization is to facilitate the localized production of specialized classes of small regulatory RNAs.
Collapse
Affiliation(s)
- Xiangyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ke Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Farees Ud Din Mufti
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Demin Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Chengming Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xinya Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Chenming Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Qile Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xiaona Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yong-Hong Yan
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xuezhu Feng
- School of Basic Medicine, Anhui Medical University, Hefei, China.
| | - Yunyu Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Scott Kennedy
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, MA, 02115, USA.
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Hefei, Anhui, 230027, China.
| |
Collapse
|
9
|
Price IF, Wagner JA, Pastore B, Hertz HL, Tang W. C. elegans germ granules sculpt both germline and somatic RNAome. Nat Commun 2023; 14:5965. [PMID: 37749091 PMCID: PMC10520050 DOI: 10.1038/s41467-023-41556-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023] Open
Abstract
Germ granules are membrane-less organelles essential for small RNA biogenesis and germline development. Among the conserved properties of germ granules is their association with the nuclear membrane. Recent studies demonstrated that LOTUS domain proteins, EGGD-1 and EGGD-2 (also known as MIP-1 and MIP-2 respectively), promote the formation of perinuclear germ granules in C. elegans. This finding presents a unique opportunity to evaluate the significance of perinuclear localization of germ granules. Here we show that loss of eggd-1 causes the coalescence of germ granules and formation of abnormal cytoplasmic aggregates. Impairment of perinuclear granules affects certain germline classes of small RNAs including Piwi-interacting RNAs. Transcriptome profiling reveals overexpression of spermatogenic and cuticle-related genes in eggd-1 hermaphrodites. We further demonstrate that disruption of germ granules activates HLH-30-mediated transcriptional program in somatic tissues. Collectively, our findings underscore the essential role of EGGD-1 in germ granule organization and reveal an unexpected germ granule-to-soma communication.
Collapse
Affiliation(s)
- Ian F Price
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Jillian A Wagner
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Benjamin Pastore
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Hannah L Hertz
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Wen Tang
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA.
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
10
|
Sy VT, Boone EC, Xiao H, Vierling MM, Schmitz SF, Ung Q, Trawick SS, Hammond TM, Shiu PKT. A DEAD-box RNA helicase mediates meiotic silencing by unpaired DNA. G3 (BETHESDA, MD.) 2023; 13:jkad083. [PMID: 37052947 PMCID: PMC10411587 DOI: 10.1093/g3journal/jkad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/22/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
During the sexual phase of Neurospora crassa, unpaired genes are subject to a silencing mechanism known as meiotic silencing by unpaired DNA (MSUD). MSUD targets the transcripts of an unpaired gene and utilizes typical RNA interference factors for its process. Using a reverse genetic screen, we have identified a meiotic silencing gene called sad-9, which encodes a DEAD-box RNA helicase. While not essential for vegetative growth, SAD-9 plays a crucial role in both sexual development and MSUD. Our results suggest that SAD-9, with the help of the SAD-2 scaffold protein, recruits the SMS-2 Argonaute to the perinuclear region, the center of MSUD activity.
Collapse
Affiliation(s)
- Victor T Sy
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Erin C Boone
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Hua Xiao
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Michael M Vierling
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Shannon F Schmitz
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Quiny Ung
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Sterling S Trawick
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Thomas M Hammond
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Patrick K T Shiu
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
11
|
Russell AJC, Sanderson T, Bushell E, Talman AM, Anar B, Girling G, Hunziker M, Kent RS, Martin JS, Metcalf T, Montandon R, Pandey V, Pardo M, Roberts AB, Sayers C, Schwach F, Choudhary JS, Rayner JC, Voet T, Modrzynska KK, Waters AP, Lawniczak MKN, Billker O. Regulators of male and female sexual development are critical for the transmission of a malaria parasite. Cell Host Microbe 2023; 31:305-319.e10. [PMID: 36634679 PMCID: PMC7616090 DOI: 10.1016/j.chom.2022.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/04/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023]
Abstract
Malaria transmission to mosquitoes requires a developmental switch in asexually dividing blood-stage parasites to sexual reproduction. In Plasmodium berghei, the transcription factor AP2-G is required and sufficient for this switch, but how a particular sex is determined in a haploid parasite remains unknown. Using a global screen of barcoded mutants, we here identify genes essential for the formation of either male or female sexual forms and validate their importance for transmission. High-resolution single-cell transcriptomics of ten mutant parasites portrays the developmental bifurcation and reveals a regulatory cascade of putative gene functions in the determination and subsequent differentiation of each sex. A male-determining gene with a LOTUS/OST-HTH domain as well as the protein interactors of a female-determining zinc-finger protein indicate that germ-granule-like ribonucleoprotein complexes complement transcriptional processes in the regulation of both male and female development of a malaria parasite.
Collapse
Affiliation(s)
| | - Theo Sanderson
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK; Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ellen Bushell
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK; Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå 90187, Sweden; Department of Molecular Biology, Umeå University, Umeå 90187, Sweden
| | - Arthur M Talman
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK; MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Burcu Anar
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | | | - Mirjam Hunziker
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå 90187, Sweden; Department of Molecular Biology, Umeå University, Umeå 90187, Sweden
| | - Robyn S Kent
- Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| | - Julie S Martin
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Tom Metcalf
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | | | - Vikash Pandey
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå 90187, Sweden; Department of Molecular Biology, Umeå University, Umeå 90187, Sweden
| | | | - A Brett Roberts
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Claire Sayers
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå 90187, Sweden; Department of Molecular Biology, Umeå University, Umeå 90187, Sweden
| | | | | | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Thierry Voet
- Department of Human Genetics, University of Leuven, KU Leuven, B-3000 Leuven, Belgium; KU Leuven Institute for Single Cell Omics, LISCO, KU Leuven, 3000 Leuven, Belgium
| | - Katarzyna K Modrzynska
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Andrew P Waters
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow G12 8TA, UK.
| | | | - Oliver Billker
- Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå 90187, Sweden; Department of Molecular Biology, Umeå University, Umeå 90187, Sweden.
| |
Collapse
|
12
|
GLH/VASA helicases promote germ granule formation to ensure the fidelity of piRNA-mediated transcriptome surveillance. Nat Commun 2022; 13:5306. [PMID: 36085149 PMCID: PMC9463143 DOI: 10.1038/s41467-022-32880-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
piRNAs function as guardians of the genome by silencing non-self nucleic acids and transposable elements in animals. Many piRNA factors are enriched in perinuclear germ granules, but whether their localization is required for piRNA biogenesis or function is not known. Here we show that GLH/VASA helicase mutants exhibit defects in forming perinuclear condensates containing PIWI and other small RNA cofactors. These mutant animals produce largely normal levels of piRNA but are defective in triggering piRNA silencing. Strikingly, while many piRNA targets are activated in GLH mutants, we observe that hundreds of endogenous genes are aberrantly silenced by piRNAs. This defect in self versus non-self recognition is also observed in other mutants where perinuclear germ granules are disrupted. Together, our results argue that perinuclear germ granules function critically to promote the fidelity of piRNA-based transcriptome surveillance in C. elegans and preserve self versus non-self distinction. Phase separated, membrane-less germ granules preserve fertility and cellular function in animal germ cells. Here the authors show that loss of germ granules impacts piRNA pathway fidelity in the recognition of self and non-self nucleic acids.
Collapse
|
13
|
Marnik EA, Almeida MV, Cipriani PG, Chung G, Caspani E, Karaulanov E, Gan HH, Zinno J, Isolehto IJ, Kielisch F, Butter F, Sharp CS, Flanagan RM, Bonnet FX, Piano F, Ketting RF, Gunsalus KC, Updike DL. The Caenorhabditis elegans TDRD5/7-like protein, LOTR-1, interacts with the helicase ZNFX-1 to balance epigenetic signals in the germline. PLoS Genet 2022; 18:e1010245. [PMID: 35657999 PMCID: PMC9200344 DOI: 10.1371/journal.pgen.1010245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 06/15/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
LOTUS and Tudor domain containing proteins have critical roles in the germline. Proteins that contain these domains, such as Tejas/Tapas in Drosophila, help localize the Vasa helicase to the germ granules and facilitate piRNA-mediated transposon silencing. The homologous proteins in mammals, TDRD5 and TDRD7, are required during spermiogenesis. Until now, proteins containing both LOTUS and Tudor domains in Caenorhabditis elegans have remained elusive. Here we describe LOTR-1 (D1081.7), which derives its name from its LOTUS and Tudor domains. Interestingly, LOTR-1 docks next to P granules to colocalize with the broadly conserved Z-granule helicase, ZNFX-1. The Tudor domain of LOTR-1 is required for its Z-granule retention. Like znfx-1 mutants, lotr-1 mutants lose small RNAs from the 3' ends of WAGO and mutator targets, reminiscent of the loss of piRNAs from the 3' ends of piRNA precursor transcripts in mouse Tdrd5 mutants. Our work shows that LOTR-1 acts with ZNFX-1 to bring small RNA amplifying mechanisms towards the 3' ends of its RNA templates.
Collapse
Affiliation(s)
- Elisabeth A. Marnik
- The MDI Biological Laboratory, Bar Harbor, Maine, United States of America
- Husson University, Bangor, Maine, United States of America
| | - Miguel V. Almeida
- Institute of Molecular Biology, Mainz, Germany
- International PhD Programme on Gene Regulation, Epigenetics & Genome Stability, Mainz, Germany
| | - P. Giselle Cipriani
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - George Chung
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
| | - Edoardo Caspani
- Institute of Molecular Biology, Mainz, Germany
- International PhD Programme on Gene Regulation, Epigenetics & Genome Stability, Mainz, Germany
| | | | - Hin Hark Gan
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
| | - John Zinno
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
| | - Ida J. Isolehto
- Institute of Molecular Biology, Mainz, Germany
- International PhD Programme on Gene Regulation, Epigenetics & Genome Stability, Mainz, Germany
| | | | - Falk Butter
- Institute of Molecular Biology, Mainz, Germany
| | - Catherine S. Sharp
- The MDI Biological Laboratory, Bar Harbor, Maine, United States of America
| | - Roisin M. Flanagan
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
| | - Frederic X. Bonnet
- The MDI Biological Laboratory, Bar Harbor, Maine, United States of America
| | - Fabio Piano
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | | - Kristin C. Gunsalus
- Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Dustin L. Updike
- The MDI Biological Laboratory, Bar Harbor, Maine, United States of America
| |
Collapse
|
14
|
Phillips CM, Updike DL. Germ granules and gene regulation in the Caenorhabditis elegans germline. Genetics 2022; 220:6541922. [PMID: 35239965 PMCID: PMC8893257 DOI: 10.1093/genetics/iyab195] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/10/2021] [Indexed: 01/27/2023] Open
Abstract
The transparency of Caenorhabditis elegans provides a unique window to observe and study the function of germ granules. Germ granules are specialized ribonucleoprotein (RNP) assemblies specific to the germline cytoplasm, and they are largely conserved across Metazoa. Within the germline cytoplasm, they are positioned to regulate mRNA abundance, translation, small RNA production, and cytoplasmic inheritance to help specify and maintain germline identity across generations. Here we provide an overview of germ granules and focus on the significance of more recent observations that describe how they further demix into sub-granules, each with unique compositions and functions.
Collapse
Affiliation(s)
- Carolyn M Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA,Corresponding author: (C.M.P.); (D.L.U.)
| | - Dustin L Updike
- The Mount Desert Island Biological Laboratory, Bar Harbor, ME 04672, USA,Corresponding author: (C.M.P.); (D.L.U.)
| |
Collapse
|
15
|
Price IF, Hertz HL, Pastore B, Wagner J, Tang W. Proximity labeling identifies LOTUS domain proteins that promote the formation of perinuclear germ granules in C. elegans. eLife 2021; 10:e72276. [PMID: 34730513 PMCID: PMC8616582 DOI: 10.7554/elife.72276] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/01/2021] [Indexed: 11/30/2022] Open
Abstract
The germ line produces gametes that transmit genetic and epigenetic information to the next generation. Maintenance of germ cells and development of gametes require germ granules-well-conserved membraneless and RNA-rich organelles. The composition of germ granules is elusive owing to their dynamic nature and their exclusive expression in the germ line. Using Caenorhabditis elegans germ granule, called P granule, as a model system, we employed a proximity-based labeling method in combination with mass spectrometry to comprehensively define its protein components. This set of experiments identified over 200 proteins, many of which contain intrinsically disordered regions (IDRs). An RNA interference-based screen identified factors that are essential for P granule assembly, notably EGGD-1 and EGGD-2, two putative LOTUS-domain proteins. Loss of eggd-1 and eggd-2 results in separation of P granules from the nuclear envelope, germline atrophy, and reduced fertility. We show that IDRs of EGGD-1 are required to anchor EGGD-1 to the nuclear periphery while its LOTUS domains are required to promote the perinuclear localization of P granules. Taken together, our work expands the repertoire of P granule constituents and provides new insights into the role of LOTUS-domain proteins in germ granule organization.
Collapse
Affiliation(s)
- Ian F Price
- Department of Biological Chemistry and PharmacologyColumbusUnited States
- Center for RNA BiologyColumbusUnited States
- Ohio State Biochemistry ProgramColumbusUnited States
| | - Hannah L Hertz
- Department of Biological Chemistry and PharmacologyColumbusUnited States
- Center for RNA BiologyColumbusUnited States
| | - Benjamin Pastore
- Department of Biological Chemistry and PharmacologyColumbusUnited States
- Center for RNA BiologyColumbusUnited States
- Ohio State Biochemistry ProgramColumbusUnited States
| | - Jillian Wagner
- Department of Biological Chemistry and PharmacologyColumbusUnited States
- Department of Molecular Genetics, Ohio State UniversityColumbusUnited States
| | - Wen Tang
- Department of Biological Chemistry and PharmacologyColumbusUnited States
- Center for RNA BiologyColumbusUnited States
| |
Collapse
|
16
|
Perera RP, Shaikhqasem A, Rostam N, Dickmanns A, Ficner R, Tittmann K, Dosch R. Bucky Ball Is a Novel Zebrafish Vasa ATPase Activator. Biomolecules 2021; 11:1507. [PMID: 34680140 PMCID: PMC8533965 DOI: 10.3390/biom11101507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
Many multicellular organisms specify germ cells during early embryogenesis by the inheritance of ribonucleoprotein (RNP) granules known as germplasm. However, the role of complex interactions of RNP granules during germ cell specification remains elusive. This study characterizes the interaction of RNP granules, Buc, and zebrafish Vasa (zfVasa) during germ cell specification. We identify a novel zfVasa-binding motif (Buc-VBM) in Buc and a Buc-binding motif (zfVasa-BBM) in zfVasa. Moreover, we show that Buc and zfVasa directly bind in vitro and that this interaction is independent of the RNA. Our circular dichroism spectroscopy data reveal that the intrinsically disordered Buc-VBM peptide forms alpha-helices in the presence of the solvent trifluoroethanol. Intriguingly, we further demonstrate that Buc-VBM enhances zfVasa ATPase activity, thereby annotating the first biochemical function of Buc as a zfVasa ATPase activator. Collectively, these results propose a model in which the activity of zfVasa is a central regulator of primordial germ cell (PGC) formation and is tightly controlled by the germplasm organizer Buc.
Collapse
Affiliation(s)
| | - Alaa Shaikhqasem
- Department for Molecular Structural Biology, University of Goettingen, 37077 Goettingen, Germany; (A.S.); (A.D.); (R.F.)
| | - Nadia Rostam
- Institute for Human Genetics, University of Goettingen, 37073 Goettingen, Germany;
| | - Achim Dickmanns
- Department for Molecular Structural Biology, University of Goettingen, 37077 Goettingen, Germany; (A.S.); (A.D.); (R.F.)
| | - Ralf Ficner
- Department for Molecular Structural Biology, University of Goettingen, 37077 Goettingen, Germany; (A.S.); (A.D.); (R.F.)
- deCluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (MBExC), University of Goettingen, 37073 Goettingen, Germany
| | - Kai Tittmann
- Department of Molecular Enzymology, University of Goettingen, 37077 Goettingen, Germany;
| | - Roland Dosch
- Department of Developmental Biochemistry, University of Goettingen, 37077 Goettingen, Germany;
| |
Collapse
|
17
|
Cipriani PG, Bay O, Zinno J, Gutwein M, Gan HH, Mayya VK, Chung G, Chen JX, Fahs H, Guan Y, Duchaine TF, Selbach M, Piano F, Gunsalus KC. Novel LOTUS-domain proteins are organizational hubs that recruit C. elegans Vasa to germ granules. eLife 2021; 10:60833. [PMID: 34223818 PMCID: PMC8331183 DOI: 10.7554/elife.60833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 06/27/2021] [Indexed: 12/16/2022] Open
Abstract
We describe MIP-1 and MIP-2, novel paralogous C. elegans germ granule components that interact with the intrinsically disordered MEG-3 protein. These proteins promote P granule condensation, form granules independently of MEG-3 in the postembryonic germ line, and balance each other in regulating P granule growth and localization. MIP-1 and MIP-2 each contain two LOTUS domains and intrinsically disordered regions and form homo- and heterodimers. They bind and anchor the Vasa homolog GLH-1 within P granules and are jointly required for coalescence of MEG-3, GLH-1, and PGL proteins. Animals lacking MIP-1 and MIP-2 show temperature-sensitive embryonic lethality, sterility, and mortal germ lines. Germline phenotypes include defects in stem cell self-renewal, meiotic progression, and gamete differentiation. We propose that these proteins serve as scaffolds and organizing centers for ribonucleoprotein networks within P granules that help recruit and balance essential RNA processing machinery to regulate key developmental transitions in the germ line.
Collapse
Affiliation(s)
- Patricia Giselle Cipriani
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States.,NYU Abu Dhabi Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Olivia Bay
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - John Zinno
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Michelle Gutwein
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Hin Hark Gan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Vinay K Mayya
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Canada
| | - George Chung
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Jia-Xuan Chen
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Hala Fahs
- NYU Abu Dhabi Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Yu Guan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States
| | - Thomas F Duchaine
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Canada
| | | | - Fabio Piano
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States.,NYU Abu Dhabi Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kristin C Gunsalus
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, United States.,NYU Abu Dhabi Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|