1
|
Farkas D, Dobránszki J. Vegetal memory through the lens of transcriptomic changes - recent progress and future practical prospects for exploiting plant transcriptional memory. PLANT SIGNALING & BEHAVIOR 2024; 19:2383515. [PMID: 39077764 PMCID: PMC11290777 DOI: 10.1080/15592324.2024.2383515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Plant memory plays an important role in the efficient and rapid acclimation to a swiftly changing environment. In addition, since plant memory can be inherited, it is also of adaptive and evolutionary importance. The ability of a plant to store, retain, retrieve and delete information on acquired experience is based on cellular, biochemical and molecular networks in the plants. This review offers an up-to-date overview on the formation, types, checkpoints of plant memory based on our current knowledge and focusing on its transcriptional aspects, the transcriptional memory. Roles of long and small non-coding RNAs are summarized in the regulation, formation and the cooperation between the different layers of the plant memory, i.e. in the establishment of epigenetic changes associated with memory formation in plants. The RNA interference mechanisms at the RNA and DNA level and the interplays between them are also presented. Furthermore, this review gives an insight of how exploitation of plant transcriptional memory may provide new opportunities for elaborating promising cost-efficient, and effective strategies to cope with the ever-changing environmental perturbations, caused by climate change. The potentials of plant memory-based methods, such as crop priming, cross acclimatization, memory modification by miRNAs and associative use of plant memory, in the future's agriculture are also discussed.
Collapse
Affiliation(s)
- Dóra Farkas
- Centre for Agricultural Genomics and Biotechnology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| | - Judit Dobránszki
- Centre for Agricultural Genomics and Biotechnology, Faculty of the Agricultural and Food Science and Environmental Management, University of Debrecen, Nyíregyháza, Hungary
| |
Collapse
|
2
|
Ponkshe A, Blancas Barroso J, Abramson CI, Calvo P. A case study of learning in plants: Lessons learned from pea plants. Q J Exp Psychol (Hove) 2024; 77:1272-1280. [PMID: 37705453 DOI: 10.1177/17470218231203078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
To facilitate the study of learning in plants, we share our experiences of trying to replicate the pea plant experiment of Gagliano et al. In the course of our efforts, we identified 11 issues that must be addressed when attempting to replicate these experiments. The issues range from germination and transplantation of seedlings to experimental design and apparatus issues. We propose a number of solutions to overcome these hurdles.
Collapse
Affiliation(s)
- Aditya Ponkshe
- Minimal Intelligence Laboratory (MINTLab), Minimal Intelligence Laboratory, University of Murcia, Murcia, Spain
| | - Jacobo Blancas Barroso
- Minimal Intelligence Laboratory (MINTLab), Minimal Intelligence Laboratory, University of Murcia, Murcia, Spain
| | - Charles I Abramson
- Laboratory of Comparative Psychology and Behavioral Biology, Oklahoma State University, Stillwater, OK, USA
| | - Paco Calvo
- Minimal Intelligence Laboratory (MINTLab), Minimal Intelligence Laboratory, University of Murcia, Murcia, Spain
| |
Collapse
|
3
|
Shomali A, Vafaei Sadi MS, Bakhtiarizadeh MR, Aliniaeifard S, Trewavas A, Calvo P. Identification of intelligence-related proteins through a robust two-layer predictor. Commun Integr Biol 2022; 15:253-264. [DOI: 10.1080/19420889.2022.2143101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Aida Shomali
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | | | | | - Sasan Aliniaeifard
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Anthony Trewavas
- School of Biological Sciences, Institute of Molecular Plant Science, University of Edinburgh, UK
| | - Paco Calvo
- Minimal Intelligence Lab, University of Murcia, Spain
| |
Collapse
|
4
|
Khattar J, Calvo P, Vandebroek I, Pandolfi C, Dahdouh-Guebas F. Understanding interdisciplinary perspectives of plant intelligence: Is it a matter of science, language, or subjectivity? JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2022; 18:41. [PMID: 35637487 PMCID: PMC9153103 DOI: 10.1186/s13002-022-00539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Evidence suggests that plants can behave intelligently by exhibiting the ability to learn, make associations between environmental cues, engage in complex decisions about resource acquisition, memorize, and adapt in flexible ways. However, plant intelligence is a disputed concept in the scientific community. Reasons for lack of consensus can be traced back to the history of Western philosophy, interpretation of terminology, and due to plants lacking neurons and a central nervous system. Plant intelligence thus constitutes a novel paradigm in the plant sciences. Therefore, the perspectives of scientists in plant-related disciplines need to be investigated in order to gain insight into the current state and future development of this concept. METHODS This study analyzed opinions of plant intelligence held by scientists from different plant-related disciplines, including ethnobiology and other biological sciences, through an online questionnaire. RESULTS Our findings show that respondents' personal belief systems and the frequency of taking into account other types of knowledge, such as traditional knowledge, in their own field(s) of study, were associated with their opinions of plant intelligence. Meanwhile, respondents' professional expertise, background (discipline), or familiarity with evidence provided on plant intelligence did not affect their opinions. CONCLUSIONS This study emphasizes the influential role of scientists' own subjective beliefs. In response, two approaches could facilitate transdisciplinary understanding among scientists: (1) effective communication designed to foster change in agreement based on presented information; and (2) holding space for an interdisciplinary dialogue where scientists can express their own subjectivities and open new opportunities for collaboration.
Collapse
Affiliation(s)
- Jennifer Khattar
- Systems Ecology and Resource Management, Department of Organism Biology, Faculté des Sciences, Université Libre de Bruxelles - ULB, Avenue F.D. Roosevelt 50, CPi 264/1, 1050, Brussels, Belgium.
- Ecology and Biodiversity, Laboratory of Plant Biology and Nature Management, Biology Department, Vrije Universiteit Brussel - VUB, Pleinlaan 2, VUB-APNA-WE, 1050, Brussels, Belgium.
- International Laboratory of Plant Neurobiology (LINV), Department of Plant, Soil and Environmental Science, Università degli Studi di Firenze, Viale delle Idee 30, 50019, Sesto Fiorentino, Tuscany, Italy.
| | - Paco Calvo
- Minimal Intelligence Lab, Department of Philosophy, University of Murcia, 30100, Murcia, Spain
| | - Ina Vandebroek
- Faculty of Science and Technology, Department of Life Sciences and Natural Products Institute, The University of the West Indies, Mona Campus, Kingston, Jamaica
- Institute of Economic Botany, The New York Botanical Garden, 2900 Southern Boulevard, Bronx, NY, 10458, USA
| | - Camilla Pandolfi
- International Laboratory of Plant Neurobiology (LINV), Department of Plant, Soil and Environmental Science, Università degli Studi di Firenze, Viale delle Idee 30, 50019, Sesto Fiorentino, Tuscany, Italy
| | - Farid Dahdouh-Guebas
- Systems Ecology and Resource Management, Department of Organism Biology, Faculté des Sciences, Université Libre de Bruxelles - ULB, Avenue F.D. Roosevelt 50, CPi 264/1, 1050, Brussels, Belgium
- Ecology and Biodiversity, Laboratory of Plant Biology and Nature Management, Biology Department, Vrije Universiteit Brussel - VUB, Pleinlaan 2, VUB-APNA-WE, 1050, Brussels, Belgium
- Interfaculty Institute of Social-Ecological Transitions - iiTSE, Université Libre de Bruxelles - ULB, Brussels, Belgium
| |
Collapse
|
5
|
Bouteau F, Grésillon E, Chartier D, Arbelet-Bonnin D, Kawano T, Baluška F, Mancuso S, Calvo P, Laurenti P. Our sisters the plants? notes from phylogenetics and botany on plant kinship blindness. PLANT SIGNALING & BEHAVIOR 2021; 16:2004769. [PMID: 34913409 PMCID: PMC9208782 DOI: 10.1080/15592324.2021.2004769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/13/2021] [Accepted: 11/08/2021] [Indexed: 05/27/2023]
Abstract
Before the upheaval brought about by phylogenetic classification, classical taxonomy separated living beings into two distinct kingdoms, animals and plants. Rooted in 'naturalist' cosmology, Western science has built its theoretical apparatus on this dichotomy mostly based on ancient Aristotelian ideas. Nowadays, despite the adoption of the Darwinian paradigm that unifies living organisms as a kinship, the concept of the "scale of beings" continues to structure our analysis and understanding of living species. Our aim is to combine developments in phylogeny, recent advances in biology, and renewed interest in plant agency to craft an interdisciplinary stance on the living realm. The lines at the origin of plant or animal have a common evolutionary history dating back to about 3.9 Ga, separating only 1.6 Ga ago. From a phylogenetic perspective of living species history, plants and animals belong to sister groups. With recent data related to the field of Plant Neurobiology, our aim is to discuss some socio-cultural obstacles, mainly in Western naturalist epistemology, that have prevented the integration of living organisms as relatives, while suggesting a few avenues inspired by practices principally from other ontologies that could help overcome these obstacles and build bridges between different ways of connecting to life.
Collapse
Affiliation(s)
- François Bouteau
- Laboratoire Interdisciplinaire Des Énergies de Demain, Université de Paris, France
| | - Etienne Grésillon
- Laboratoire Dynamiques Sociales Et Recomposition Des Espaces (Ladyss-umr 7533), Université de Paris, Paris, France
| | - Denis Chartier
- Laboratoire Dynamiques Sociales Et Recomposition Des Espaces (Ladyss-umr 7533), Université de Paris, Paris, France
| | | | - Tomonori Kawano
- Graduate School of Environmental Engineering, University of Kitakyushu 1–1, KitakyushuJapan
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Stefano Mancuso
- LINV-DiSPAA, Department of Agri-Food and Environmental Science, University of Florence, Sesto Fiorentino (FI), Italy
| | - Paco Calvo
- Minimal Intelligence Lab, Department of Philosophy, University of Murcia, Murcia, Spain
| | - Patrick Laurenti
- Laboratoire Interdisciplinaire Des Énergies de Demain, Université de Paris, France
| |
Collapse
|
6
|
Segundo-Ortin M, Calvo P. Consciousness and cognition in plants. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2021; 13:e1578. [PMID: 34558231 DOI: 10.1002/wcs.1578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Unlike animal behavior, behavior in plants is traditionally assumed to be completely determined either genetically or environmentally. Under this assumption, plants are usually considered to be noncognitive organisms. This view nonetheless clashes with a growing body of empirical research that shows that many sophisticated cognitive capabilities traditionally assumed to be exclusive to animals are exhibited by plants too. Yet, if plants can be considered cognitive, even in a minimal sense, can they also be considered conscious? Some authors defend that the quest for plant consciousness is worth pursuing, under the premise that sentience can play a role in facilitating plant's sophisticated behavior. The goal of this article is not to provide a positive argument for plant cognition and consciousness, but to invite a constructive, empirically informed debate about it. After reviewing the empirical literature concerning plant cognition, we introduce the reader to the emerging field of plant neurobiology. Research on plant electrical and chemical signaling can help shed light into the biological bases for plant sentience. To conclude, we shall present a series of approaches to scientifically investigate plant consciousness. In sum, we invite the reader to consider the idea that if consciousness boils down to some form of biological adaptation, we should not exclude a priori the possibility that plants have evolved their own phenomenal experience of the world. This article is categorized under: Cognitive Biology > Evolutionary Roots of Cognition Philosophy > Consciousness Neuroscience > Cognition.
Collapse
Affiliation(s)
- Miguel Segundo-Ortin
- Department of Philosophy and Religious Studies, Faculty of Humanities, Utrecht University, Utrecht, The Netherlands
| | - Paco Calvo
- Minimal Intelligence Laboratory, Universidad de Murcia, Murcia, Spain
| |
Collapse
|
7
|
Mallatt J, Blatt MR, Draguhn A, Robinson DG, Taiz L. Debunking a myth: plant consciousness. PROTOPLASMA 2021; 258:459-476. [PMID: 33196907 PMCID: PMC8052213 DOI: 10.1007/s00709-020-01579-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/22/2020] [Indexed: 05/18/2023]
Abstract
Claims that plants have conscious experiences have increased in recent years and have received wide coverage, from the popular media to scientific journals. Such claims are misleading and have the potential to misdirect funding and governmental policy decisions. After defining basic, primary consciousness, we provide new arguments against 12 core claims made by the proponents of plant consciousness. Three important new conclusions of our study are (1) plants have not been shown to perform the proactive, anticipatory behaviors associated with consciousness, but only to sense and follow stimulus trails reactively; (2) electrophysiological signaling in plants serves immediate physiological functions rather than integrative-information processing as in nervous systems of animals, giving no indication of plant consciousness; (3) the controversial claim of classical Pavlovian learning in plants, even if correct, is irrelevant because this type of learning does not require consciousness. Finally, we present our own hypothesis, based on two logical assumptions, concerning which organisms possess consciousness. Our first assumption is that affective (emotional) consciousness is marked by an advanced capacity for operant learning about rewards and punishments. Our second assumption is that image-based conscious experience is marked by demonstrably mapped representations of the external environment within the body. Certain animals fit both of these criteria, but plants fit neither. We conclude that claims for plant consciousness are highly speculative and lack sound scientific support.
Collapse
Affiliation(s)
- Jon Mallatt
- The University of Washington WWAMI Medical Education Program at The University of Idaho, Moscow, ID 83844 USA
| | - Michael R. Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ UK
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Medical Faculty, University of Heidelberg, 69120 Heidelberg, Germany
| | - David G. Robinson
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| | - Lincoln Taiz
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Cruz, CA 95064 USA
| |
Collapse
|
8
|
Mallatt J, Blatt MR, Draguhn A, Robinson DG, Taiz L. Debunking a myth: plant consciousness. PROTOPLASMA 2021. [PMID: 33196907 DOI: 10.1007/s00709-026-01579-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Claims that plants have conscious experiences have increased in recent years and have received wide coverage, from the popular media to scientific journals. Such claims are misleading and have the potential to misdirect funding and governmental policy decisions. After defining basic, primary consciousness, we provide new arguments against 12 core claims made by the proponents of plant consciousness. Three important new conclusions of our study are (1) plants have not been shown to perform the proactive, anticipatory behaviors associated with consciousness, but only to sense and follow stimulus trails reactively; (2) electrophysiological signaling in plants serves immediate physiological functions rather than integrative-information processing as in nervous systems of animals, giving no indication of plant consciousness; (3) the controversial claim of classical Pavlovian learning in plants, even if correct, is irrelevant because this type of learning does not require consciousness. Finally, we present our own hypothesis, based on two logical assumptions, concerning which organisms possess consciousness. Our first assumption is that affective (emotional) consciousness is marked by an advanced capacity for operant learning about rewards and punishments. Our second assumption is that image-based conscious experience is marked by demonstrably mapped representations of the external environment within the body. Certain animals fit both of these criteria, but plants fit neither. We conclude that claims for plant consciousness are highly speculative and lack sound scientific support.
Collapse
Affiliation(s)
- Jon Mallatt
- The University of Washington WWAMI Medical Education Program at The University of Idaho, Moscow, ID, 83844, USA.
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Medical Faculty, University of Heidelberg, 69120, Heidelberg, Germany
| | - David G Robinson
- Centre for Organismal Studies, University of Heidelberg, 69120, Heidelberg, Germany
| | - Lincoln Taiz
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Cruz, CA, 95064, USA
| |
Collapse
|
9
|
Gershman SJ, Balbi PE, Gallistel CR, Gunawardena J. Reconsidering the evidence for learning in single cells. eLife 2021; 10:61907. [PMID: 33395388 PMCID: PMC7781593 DOI: 10.7554/elife.61907] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/11/2020] [Indexed: 12/19/2022] Open
Abstract
The question of whether single cells can learn led to much debate in the early 20th century. The view prevailed that they were capable of non-associative learning but not of associative learning, such as Pavlovian conditioning. Experiments indicating the contrary were considered either non-reproducible or subject to more acceptable interpretations. Recent developments suggest that the time is right to reconsider this consensus. We exhume the experiments of Beatrice Gelber on Pavlovian conditioning in the ciliate Paramecium aurelia, and suggest that criticisms of her findings can now be reinterpreted. Gelber was a remarkable scientist whose absence from the historical record testifies to the prevailing orthodoxy that single cells cannot learn. Her work, and more recent studies, suggest that such learning may be evolutionarily more widespread and fundamental to life than previously thought and we discuss the implications for different aspects of biology.
Collapse
Affiliation(s)
- Samuel J Gershman
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, United States.,Center for Brains, Mind and Machines, MIT, Cambridge, United States
| | - Petra Em Balbi
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | - C Randy Gallistel
- Rutgers Center for Cognitive Science, Rutgers University at New Brunswick, New Brunswick, United States
| | - Jeremy Gunawardena
- Department of Systems Biology, Harvard Medical School, Boston, United States
| |
Collapse
|