1
|
Li W, Jiang H, Hu L, Shen T, Chen Q. The Role of Gli1 + Mesenchymal Stem Cells in Craniofacial Development and Disease Treatment. J Oral Rehabil 2025; 52:531-539. [PMID: 39794930 DOI: 10.1111/joor.13917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 11/23/2024] [Accepted: 12/01/2024] [Indexed: 01/13/2025]
Abstract
OBJECTIVE This review summarises the role of Gli1+ (Glioma-associated oncogene homologue 1) mesenchymal stem cells in craniofacial growth and development or tissue repair, and their application in the treatment of some diseases. DESIGN The search for this narrative review was conducted in PubMed and Web of Science using relevant keywords, including checking reference lists of journal articles by hand searching. RESULTS Gli1+ mesenchymal stem cells play an important role in the growth and development of the skull, tooth, periodontium and mandibular condyle. They can be applied to the treatment of pulp and periodontal diseases, temporomandibular joint osteoarthritis and other diseases. CONCLUSIONS Gli1+ mesenchymal stem cells are crucial for the development and repair of craniofacial tissue.
Collapse
Affiliation(s)
- Wen Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Han Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Longshuang Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Tianjiao Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| |
Collapse
|
2
|
Fang F, Casserly M, Robbins J, Thomopoulos S. Hedgehog signaling directs cell differentiation and plays a critical role in tendon enthesis healing. NPJ Regen Med 2025; 10:3. [PMID: 39833191 PMCID: PMC11747568 DOI: 10.1038/s41536-025-00392-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
A high prevalence of rotator cuff tears presents a major clinical challenge. A better understanding of the molecular mechanisms underlying enthesis development and healing is needed for developing treatments. We recently identified hedgehog (Hh)-lineage cells critical for enthesis development and repair. This study revealed cell-cell communication within the Hh-lineage cell population. To further characterize the role of Hh signaling, we used mouse models to activate and inactivate the Hh pathway in enthesis progenitors. Activation of Hh target genes during enthesis development increased its mineralization and mechanical properties. Activation of Hh signaling at the injured mature enthesis promoted fibrocartilage formation, enhanced mineralization, and increased expression of chondrogenic and osteogenic markers, which implies that Hh signaling drives cell differentiation to regenerate the damaged enthesis. Conversely, deletion of Hh target genes impaired enthesis healing. In summary, this study revealed a new strategy for enthesis repair via activation of Hh signaling in endogenous cells.
Collapse
Affiliation(s)
- Fei Fang
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Matthew Casserly
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julia Robbins
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
3
|
Yan WT, Wang JS, Fan PZ, Roberts S, Wright K, Zhang ZZ. The clinical potential of meniscal progenitor cells. THE JOURNAL OF CARTILAGE & JOINT PRESERVATION 2024; 4:None. [PMID: 39669533 PMCID: PMC11636529 DOI: 10.1016/j.jcjp.2024.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/29/2024] [Accepted: 02/11/2024] [Indexed: 12/14/2024]
Abstract
Introduction The meniscus is an important cushioning structure of the knee joint, with the maintenance of its normal structure and function playing a crucial role in protecting the joint from early degeneration. Stem/progenitor cells could be the key to help researchers to have a deeper understanding of the biological process of meniscal injury repair and may be important in the meniscus tissue regeneration processes. To the best of our knowledge, there is currently a lack of comprehensive reviews on existing research about the meniscus progenitor cells (MPCs). Objectives By reviewing the existing MPC literature, we aim to provide insights for future research on meniscus regeneration. Methods The isolation methods, biological characteristics and the translational application of MPCs were summarized. Results MPCs could be isolated according to their colony-forming ability, marker expression, migration ability, and differential adhesion to fibronectin. Most existing studies on surface markers of MPCs have largely followed the paradigm of mesenchymal stromal/stem cell research. Based on the information provided by their surface markers and expression profile, researchers located MPCs in the peripheral surface area of the meniscus. Few researches have investigated the translation and application of MPCs, with most studies being limited to MPCs extraction and subsequent reimplantation in vivo. Conclusions MPCs are a group of meniscus-resident cells, which exhibit certain stem/progenitor cell characteristics, such as the ability to undergo multilineage differentiation in in vitro culture.
Collapse
Affiliation(s)
- Wan-Ting Yan
- Department of Sports Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jing-Song Wang
- Department of Sports Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | - Sally Roberts
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Trust, Oswestry, United Kingdom
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
| | - Karina Wright
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Trust, Oswestry, United Kingdom
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
| | - Zheng-Zheng Zhang
- Department of Sports Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
4
|
Wang J, Dong X, Lei J, Zhang Y, Chen S, He Y. β-catenin Orchestrates Gli1+ Cell Fate in Condylar Development and TMJOA. J Dent Res 2024; 103:1291-1301. [PMID: 39400124 DOI: 10.1177/00220345241274354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
The fibrocartilage stem cells (FCSCs) on the surface of the condyle play an essential role in cartilage homeostasis and regeneration. However, few well-defined stem cell markers have been identified for the analysis of FCSCs' cell fate and regulation mechanism. In this study, we first mapped the transcriptional landscape of the condylar cartilage and identified a Gli1+ subset. Label-retaining cells and our lineage-tracing study showed that Gli1 labeled a group of FCSCs. Conditional knockout β-catenin inhibited Gli1+ cells differentiating into hypertrophic chondrocytes. In discectomy-induced temporomandibular joint osteoarthritis (TMJOA), Gli1+ cells were further activated, and their differentiation into hypertrophic chondrocytes was accelerated, which induced stem cell pool depletion. The deletion of β-catenin in Gli1+ cells preserved the FCSC pool and alleviated TMJOA cartilage degeneration. Collectively, we uncovered that a Gli1+ FCSC subpopulation and Wnt/β-catenin signaling orchestrate the Gli1+ cell fate in condyle postnatal development and TMJOA.
Collapse
Affiliation(s)
- J Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - X Dong
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - J Lei
- Center for TMD and Orofacial Pain, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Y Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - S Chen
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Y He
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
5
|
Liu F, Sun H, Li D, Huang J, Chen M, Lin X, Xu J, Ma R. DLL1/NOTCH1 signaling pathway maintain angiogenesis in meniscus development and degeneration. Int J Biochem Cell Biol 2024; 172:106589. [PMID: 38772475 DOI: 10.1016/j.biocel.2024.106589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/05/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
OBJECTIVES The decline in vascular capacity within the meniscus is a well-documented phenomenon during both development and degeneration. Maintaining vascular integrity has been proposed as a potential therapeutic strategy for osteoarthritis. Therefore, our study aims to investigate the characteristics of endothelial cells and blood vessels in embryonic and degenerated meniscus tissues. METHODS Human embryonic and mature menisci were used for histological analyses. Single-cell RNA sequencing was used to identify cell clusters and their significant genes in embryo meniscus to uncover characteristic of endothelial cells. Computer analysis and various staining techniques were used to characterize vessels in development and osteoarthritis meniscus. RESULTS Vessels structure first observed in E12w and increasing in E14w. Vessels were veins majorly and arteries growth in E35w. Endothelial cells located not only perivascular but also in the surface of meniscus. The expression of DLL1 was observed to be significantly altered in endothelial cells within the vascular network that failed to form. Meniscus tissues affected by osteoarthritis, characterized by diminished vascular capacity, displayed reduced levels of DLL1 expression. Experiment in vitro confirmed DLL1/NOTCH1 be vital to angiogenesis. CONCLUSION Lack of DLL1/NOTCH1 signaling pathway was mechanism of vascular declination in development and degenerated meniscus.
Collapse
Affiliation(s)
- Fangzhou Liu
- All listed authos are from Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Hao Sun
- All listed authos are from Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Deng Li
- All listed authos are from Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Junming Huang
- All listed authos are from Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Meiyi Chen
- All listed authos are from Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Xiaobin Lin
- All listed authos are from Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Jie Xu
- All listed authos are from Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China.
| | - Ruofan Ma
- All listed authos are from Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China.
| |
Collapse
|
6
|
Deng GH. Causal relationship between dried fruit intake and meniscal injuries: Two-sample Mendelian randomization. Medicine (Baltimore) 2023; 102:e36415. [PMID: 38050257 PMCID: PMC10695596 DOI: 10.1097/md.0000000000036415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 11/10/2023] [Indexed: 12/06/2023] Open
Abstract
To investigate the causal relationship between dried fruit intake and meniscal injuries using Mendelian randomization (MR). Data were pooled from large-scale genome wide association studies (GWAS), and genetic loci independently associated with dry fruit intake and meniscal injuries in populations of European origin were selected as instrumental variables. Three MR analyses, inverse variance weighting (IVW), weighted median (WME) and MR-Egger, were used to investigate the causal relationship between dried fruit intake and meniscal injuries. The results were tested for robustness by heterogeneity and multiplicity tests, and sensitivity analyses were performed using the "leave-one-out" method. The IVW results showed an OR (95 % CI) of 0.47 (0.28-0.78), P = .003, indicating a causal relationship between dried fruit intake and meniscus injury. And no heterogeneity and multiplicity were found by the test and sensitivity analysis also showed robust results. The present study used a 2-sample MR analysis, and by analyzing and exploring the genetic data, the study showed that too little intake of dry fruits is a risk factor for meniscal injuries.
Collapse
|
7
|
Therrien E, Langhans MT, Lamba A, Daniel AV, Stuart MJ, Levy BA, Smith PA, Krych AJ. Outcomes of Lateral Meniscal Oblique Radial Tear Repair Compared With Intact Meniscus After ACL Reconstruction: A Cohort Study. Orthop J Sports Med 2023; 11:23259671231216102. [PMID: 38107847 PMCID: PMC10722935 DOI: 10.1177/23259671231216102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 06/29/2023] [Indexed: 12/19/2023] Open
Abstract
Background Recently, the posterior horn lateral meniscal oblique radial tear (LMORT) was identified in 12% of acute anterior cruciate ligament (ACL) injuries. However, patient-reported outcomes for repair of this relatively common tear have not been reported. Purpose To determine the minimum 2-year functional outcomes after LMORT repair at the time of ACL reconstruction (ACLR) compared to a matched cohort of patients who underwent isolated ACLR (iACLR). Study Design Cohort study; Level of evidence, 3. Methods Included were 100 patients (mean age at surgery, 21 years; range, 13-45 years) who underwent primary ACLR between 2010 and 2018. The mean follow-up period was 4.1 ± 2.0 years (range, 2.0-9.2 years). A total of 50 patients with surgically repaired LMORT type 3 or type 4 lesions, defined as partial or complete tears >10 mm from the root (LMORT group) were matched 1:1 based on age, date of surgery, and graft choice with 50 patients who underwent iACLR (iACLR group). The postoperative outcomes were compared between groups using the International Knee Documentation Committee subjective score (sIKDC) and the Tegner activity scale. An updated medical history was obtained via the electronic medical record to determine any subsequent complications and reoperations. Results There was 1 ACL graft failure in each group as well as 5 (10%) reoperations per group. None of the patients in the LMORT group necessitated a lateral meniscal revision repair or partial meniscectomy. The LMORT and iACLR groups reported comparable sIKDC scores (92.5 ± 6.8 vs 91.9 ± 8.2, respectively; P = .712) as well as Tegner scores (6.7 ± 1.8 vs 6.6 ± 1.8, respectively; P = .910) at final follow-up. No failures of the LMORT repairs were reported. Conclusion The study findings demonstrated that reoperations, graft failure rates, patient-reported outcomes, and patient activity levels at ≥2 years after type 3 and 4 LMORT repairs at the time of ACLR compared favorably with those of a matched cohort of patients who underwent iACLR with intact meniscus.
Collapse
Affiliation(s)
- Erik Therrien
- Department of Orthopedic Surgery and Sports Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark T. Langhans
- Department of Orthopedic Surgery and Sports Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Abhinav Lamba
- Department of Orthopedic Surgery and Sports Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Adam V. Daniel
- Department of Orthopedic Surgery, Columbia Orthopaedic Group, Columbia, Missouri, USA
| | - Michael J. Stuart
- Department of Orthopedic Surgery and Sports Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Bruce A. Levy
- Department of Orthopedic Surgery and Sports Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Patrick A. Smith
- Department of Orthopedic Surgery, Columbia Orthopaedic Group, Columbia, Missouri, USA
- Department of Orthopedic Surgery, University of Missouri, Columbia, Missouri, USA
| | - Aaron J. Krych
- Department of Orthopedic Surgery and Sports Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
8
|
Li MR, Luo XJ, Peng J. Role of sonic hedgehog signaling pathway in the regulation of ion channels: focus on its association with cardio-cerebrovascular diseases. J Physiol Biochem 2023; 79:719-730. [PMID: 37676576 DOI: 10.1007/s13105-023-00982-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
Sonic hedgehog (SHH) signaling is vital for cell differentiation and proliferation during embryonic development, yet its role in cardiac, cerebral, and vascular pathophysiology is under debate. Recent studies have demonstrated that several compounds of SHH signaling regulate ion channels, which in turn affect the behavior of target cells. Some of these ion channels are involved in the cardio-cerebrovascular system. Here, we first reviewed the SHH signaling cascades, then its interaction with ion channels, and their impact on cardio-cerebrovascular diseases. Considering the complex cross talk of SHH signaling with other pathways that also affect ion channels and their potential impact on the cardio-cerebrovascular system, we highlight the necessity of thoroughly studying the effect of SHH signaling on ion homeostasis, which could serve as a novel mechanism for cardio-cerebrovascular diseases. Activation of SHH signaling influence ion channels activity, which in turn influence ion homeostasis, membrane potential, and electrophysiology, could serve as a novel strategy for cardio-cerebrovascular diseases.
Collapse
Affiliation(s)
- Ming-Rui Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
9
|
Kwok B, Chandrasekaran P, Wang C, He L, Mauck RL, Dyment NA, Koyama E, Han L. Rapid specialization and stiffening of the primitive matrix in developing articular cartilage and meniscus. Acta Biomater 2023; 168:235-251. [PMID: 37414114 PMCID: PMC10529006 DOI: 10.1016/j.actbio.2023.06.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/02/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
Understanding early patterning events in the extracellular matrix (ECM) formation can provide a blueprint for regenerative strategies to better recapitulate the function of native tissues. Currently, there is little knowledge on the initial, incipient ECM of articular cartilage and meniscus, two load-bearing counterparts of the knee joint. This study elucidated distinctive traits of their developing ECMs by studying the composition and biomechanics of these two tissues in mice from mid-gestation (embryonic day 15.5) to neo-natal (post-natal day 7) stages. We show that articular cartilage initiates with the formation of a pericellular matrix (PCM)-like primitive matrix, followed by the separation into distinct PCM and territorial/interterritorial (T/IT)-ECM domains, and then, further expansion of the T/IT-ECM through maturity. In this process, the primitive matrix undergoes a rapid, exponential stiffening, with a daily modulus increase rate of 35.7% [31.9 39.6]% (mean [95% CI]). Meanwhile, the matrix becomes more heterogeneous in the spatial distribution of properties, with concurrent exponential increases in the standard deviation of micromodulus and the slope correlating local micromodulus with the distance from cell surface. In comparison to articular cartilage, the primitive matrix of meniscus also exhibits exponential stiffening and an increase in heterogeneity, albeit with a much slower daily stiffening rate of 19.8% [14.9 24.9]% and a delayed separation of PCM and T/IT-ECM. These contrasts underscore distinct development paths of hyaline versus fibrocartilage. Collectively, these findings provide new insights into how knee joint tissues form to better guide cell- and biomaterial-based repair of articular cartilage, meniscus and potentially other load-bearing cartilaginous tissues. STATEMENT OF SIGNIFICANCE: Successful regeneration of articular cartilage and meniscus is challenged by incomplete knowledge of early events that drive the initial formation of the tissues' extracellular matrix in vivo. This study shows that articular cartilage initiates with a pericellular matrix (PCM)-like primitive matrix during embryonic development. This primitive matrix then separates into distinct PCM and territorial/interterritorial domains, undergoes an exponential daily stiffening of ≈36% and an increase in micromechanical heterogeneity. At this early stage, the meniscus primitive matrix shows differential molecular traits and exhibits a slower daily stiffening of ≈20%, underscoring distinct matrix development between these two tissues. Our findings thus establish a new blueprint to guide the design of regenerative strategies to recapitulate the key developmental steps in vivo.
Collapse
Affiliation(s)
- Bryan Kwok
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Prashant Chandrasekaran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Lan He
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA 19104, United States
| | - Nathaniel A Dyment
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
10
|
Johnson JP, Ahn J, Dirschl DR, Wixted JJ, Evans AR. Fracture healing-orthobiologics: from basic science to clinical application. OTA Int 2023; 6:e262. [PMID: 37168028 PMCID: PMC10166332 DOI: 10.1097/oi9.0000000000000262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/30/2022] [Indexed: 05/13/2023]
Abstract
Orthopaedics as a field and a profession is fundamentally concerned with the treatment of musculoskeletal disease, in all of its many forms. Our collective understanding of the cellular mechanisms underlying musculoskeletal pathology resulting from injury continues to evolve, opening novel opportunities to develop orthobiologic treatments to improve care. It is a long path to move from an understanding of cellular pathology to development of successful clinical treatment, and this article proposes to discuss some of the challenges to achieving translational therapies in orthopaedics. The article will focus on challenges that clinicians will likely face in seeking to bring promising treatments forward to clinical practice and strategies for improving success in translational efforts.
Collapse
Affiliation(s)
- Joey P. Johnson
- Department of Orthopedic Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Jaimo Ahn
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI
| | - Douglas R. Dirschl
- Department of Orthopaedic Surgery and Rehabilitation Medicine, University of Chicago, Chicago, IL
| | | | - Andrew R. Evans
- Department of Orthopedics, The Warren Alpert School of Medicine, Brown University, Providence, RI
- Corresponding author. Address: Andrew R. Evans, MD, Department of Orthopedics, The Warren Alpert School of Medicine, Brown University/Rhode Island Hospital, 2 Dudley St., Ste. 200, Providence, RI 02905. E-mail:
| |
Collapse
|
11
|
Ghuloum FI, Johnson CA, Riobo-Del Galdo NA, Amer MH. From mesenchymal niches to engineered in vitro model systems: Exploring and exploiting biomechanical regulation of vertebrate hedgehog signalling. Mater Today Bio 2022; 17:100502. [PMID: 36457847 PMCID: PMC9707069 DOI: 10.1016/j.mtbio.2022.100502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Tissue patterning is the result of complex interactions between transcriptional programs and various mechanical cues that modulate cell behaviour and drive morphogenesis. Vertebrate Hedgehog signalling plays key roles in embryogenesis and adult tissue homeostasis, and is central to skeletal development and the osteogenic differentiation of mesenchymal stem cells. The expression of several components of the Hedgehog signalling pathway have been reported to be mechanically regulated in mesodermal tissue patterning and osteogenic differentiation in response to external stimulation. Since a number of bone developmental defects and skeletal diseases, such as osteoporosis, are directly linked to aberrant Hedgehog signalling, a better knowledge of the regulation of Hedgehog signalling in the mechanosensitive bone marrow-residing mesenchymal stromal cells will present novel avenues for modelling these diseases and uncover novel opportunities for extracellular matrix-targeted therapies. In this review, we present a brief overview of the key molecular players involved in Hedgehog signalling and the basic concepts of mechanobiology, with a focus on bone development and regeneration. We also highlight the correlation between the activation of the Hedgehog signalling pathway in response to mechanical cues and osteogenesis in bone marrow-derived mesenchymal stromal cells. Finally, we propose different tissue engineering strategies to apply the expanding knowledge of 3D material-cell interactions in the modulation of Hedgehog signalling in vitro for fundamental and translational research applications.
Collapse
Affiliation(s)
- Fatmah I. Ghuloum
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Colin A. Johnson
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Natalia A. Riobo-Del Galdo
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, UK
| | - Mahetab H. Amer
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
12
|
Pattappa G, Reischl F, Jahns J, Schewior R, Lang S, Zellner J, Johnstone B, Docheva D, Angele P. Fibronectin Adherent Cell Populations Derived From Avascular and Vascular Regions of the Meniscus Have Enhanced Clonogenicity and Differentiation Potential Under Physioxia. Front Bioeng Biotechnol 2022; 9:789621. [PMID: 35155405 PMCID: PMC8831898 DOI: 10.3389/fbioe.2021.789621] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
The meniscus is composed of an avascular inner region and vascular outer region. The vascular region has been shown to contain a progenitor population with multilineage differentiation capacity. Strategies facilitating the isolation and propagation of these progenitors can be used to develop cell-based meniscal therapies. Differential adhesion to fibronectin has been used to isolate progenitor populations from cartilage, while low oxygen or physioxia (2% oxygen) enhances the meniscal phenotype. This study aimed to isolate progenitor populations from the avascular and vascular meniscus using differential fibronectin adherence and examine their clonogenicity and differentiation potential under hyperoxia (20% oxygen) and physioxia (2% oxygen). Human vascular and avascular meniscus cells were seeded onto fibronectin-coated dishes for a short period and monitored for colony formation under either hyperoxia or physioxia. Non-fibronectin adherent meniscus cells were also expanded under both oxygen tension. Individual fibronectin adherent colonies were isolated and further expanded, until approximately ten population doublings (passage 3), whereby they underwent chondrogenic, osteogenic, and adipogenic differentiation. Physioxia enhances clonogenicity of vascular and avascular meniscus cells on plastic or fibronectin-coated plates. Combined differential fibronectin adhesion and physioxia isolated a progenitor population from both meniscus regions with trilineage differentiation potential compared to equivalent hyperoxia progenitors. Physioxia isolated progenitors had a significantly enhanced meniscus matrix content without the presence of collagen X. These results demonstrate that combined physioxia and fibronectin adherence can isolate and propagate a meniscus progenitor population that can potentially be used to treat meniscal tears or defects.
Collapse
Affiliation(s)
- Girish Pattappa
- Laboratory for Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- *Correspondence: Girish Pattappa,
| | - Franziska Reischl
- Laboratory for Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Judith Jahns
- Laboratory for Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Ruth Schewior
- Laboratory for Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Siegmund Lang
- Laboratory for Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Johannes Zellner
- Laboratory for Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Sporthopaedicum Regensburg, Regensburg, Germany
| | - Brian Johnstone
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR, United States
| | - Denitsa Docheva
- Laboratory for Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Wurzburg, Wurzburg, Germany
| | - Peter Angele
- Laboratory for Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Sporthopaedicum Regensburg, Regensburg, Germany
| |
Collapse
|
13
|
Shen F, Shi Y. Recent Advances in Single-Cell View of Mesenchymal Stem Cell in Osteogenesis. Front Cell Dev Biol 2022; 9:809918. [PMID: 35071243 PMCID: PMC8766509 DOI: 10.3389/fcell.2021.809918] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023] Open
Abstract
Osteoblasts continuously replenished by osteoblast progenitor cells form the basis of bone development, maintenance, and regeneration. Mesenchymal stem cells (MSCs) from various tissues can differentiate into the progenitor cell of osteogenic lineage and serve as the main source of osteoblasts. They also respond flexibly to regenerative and anabolic signals emitted by the surrounding microenvironment, thereby maintaining bone homeostasis and participating in bone remodeling. However, MSCs exhibit heterogeneity at multiple levels including different tissue sources and subpopulations which exhibit diversified gene expression and differentiation capacity, and surface markers used to predict cell differentiation potential remain to be further elucidated. The rapid advancement of lineage tracing methods and single-cell technology has made substantial progress in the characterization of osteogenic stem/progenitor cell populations in MSCs. Here, we reviewed the research progress of scRNA-seq technology in the identification of osteogenic markers and differentiation pathways, MSC-related new insights drawn from single-cell technology combined with experimental technology, and recent findings regarding the interaction between stem cell fate and niche in homeostasis and pathological process.
Collapse
Affiliation(s)
- Fangyuan Shen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Fang F, Sup M, Luzzi A, Ferrer X, Thomopoulos S. Hedgehog signaling underlying tendon and enthesis development and pathology. Matrix Biol 2022; 105:87-103. [PMID: 34954379 PMCID: PMC8821161 DOI: 10.1016/j.matbio.2021.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
Hedgehog (Hh) signaling has been widely acknowledged to play essential roles in many developmental processes, including endochondral ossification and growth plate maintenance. Furthermore, a rising number of studies have shown that Hh signaling is necessary for tendon enthesis development. Specifically, the well-tuned regulation of Hh signaling during development drives the formation of a mineral gradient across the tendon enthesis fibrocartilage. However, aberrant Hh signaling can also lead to pathologic heterotopic ossification in tendon or osteophyte formation at the enthesis. Therefore, the therapeutic potential of Hh signaling modulation for treating tendon and enthesis diseases remains uncertain. For example, increased Hh signaling may enhance tendon-to-bone healing by promoting the formation of mineralized fibrocartilage at the healing interface, but pathologic heterotopic ossification may also be triggered in the adjacent tendon. Further work is needed to elucidate the distinct functions of Hh signaling in the tendon and enthesis to support the development of therapies that target the pathway.
Collapse
Affiliation(s)
- Fei Fang
- Department of Orthopedic Surgery, Columbia University, Black Building, Room 1408, 650W 168 ST, New York, NY 10032-3702, United States
| | - McKenzie Sup
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Andrew Luzzi
- Department of Orthopedic Surgery, Columbia University, Black Building, Room 1408, 650W 168 ST, New York, NY 10032-3702, United States
| | - Xavier Ferrer
- Department of Orthopedic Surgery, Columbia University, Black Building, Room 1408, 650W 168 ST, New York, NY 10032-3702, United States
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, Black Building, Room 1408, 650W 168 ST, New York, NY 10032-3702, United States; Department of Biomedical Engineering, Columbia University, New York, NY, United States.
| |
Collapse
|
15
|
Trivedi J, Betensky D, Desai S, Jayasuriya CT. Post-Traumatic Osteoarthritis Assessment in Emerging and Advanced Pre-Clinical Meniscus Repair Strategies: A Review. Front Bioeng Biotechnol 2021; 9:787330. [PMID: 35004646 PMCID: PMC8733822 DOI: 10.3389/fbioe.2021.787330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Surgical repair of meniscus injury is intended to help alleviate pain, prevent further exacerbation of the injury, restore normal knee function, and inhibit the accelerated development of post-traumatic osteoarthritis (PTOA). Meniscus injuries that are treated poorly or left untreated are reported to significantly increase the risk of PTOA in patients. Current surgical approaches for the treatment of meniscus injuries do not eliminate the risk of accelerated PTOA development. Through recent efforts by scientists to develop innovative and more effective meniscus repair strategies, the use of biologics, allografts, and scaffolds have come into the forefront in pre-clinical investigations. However, gauging the extent to which these (and other) approaches inhibit the development of PTOA in the knee joint is often overlooked, yet an important consideration for determining the overall efficacy of potential treatments. In this review, we catalog recent advancements in pre-clinical therapies for meniscus injuries and discuss the assessment methodologies that are used for gauging the success of these treatments based on their effect on PTOA severity. Methodologies include histopathological evaluation of cartilage, radiographic evaluation of the knee, analysis of knee function, and quantification of OA predictive biomarkers. Lastly, we analyze the prevalence of these methodologies using a systemic PubMed® search for original scientific journal articles published in the last 3-years. We indexed 37 meniscus repair/replacement studies conducted in live animal models. Overall, our findings show that approximately 75% of these studies have performed at least one assessment for PTOA following meniscus injury repair. Out of this, 84% studies have reported an improvement in PTOA resulting from treatment.
Collapse
Affiliation(s)
| | | | | | - Chathuraka T. Jayasuriya
- Department of Orthopaedics, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, United States
| |
Collapse
|
16
|
Feng M, Liu W, Ding J, Qiu Y, Chen Q. Sonic Hedgehog Induces Mesenchymal Stromal Cell Senescence-Associated Secretory Phenotype and Chondrocyte Apoptosis in Human Osteoarthritic Cartilage. Front Cell Dev Biol 2021; 9:716610. [PMID: 34646822 PMCID: PMC8502980 DOI: 10.3389/fcell.2021.716610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/01/2021] [Indexed: 12/30/2022] Open
Abstract
Hedgehog (HH) signaling plays a critical role in osteoarthritis (OA) pathogenesis, but the molecular mechanism remains to be elucidated. We show here that Sonic Hedgehog (SHH) gene expression is initiated in human normal cartilage stromal cells (NCSC) and increased in OA cartilage mesenchymal stromal cells (OA-MSCs) during aging. Manifesting a reciprocal cellular distribution pattern, the SHH receptors PTCH1 and SMO and transcription factors GLI2 and GLI3 are expressed by chondrocytes (OAC) in OA cartilage. SHH autocrine treatment of osteoarthritis MSC stimulates proliferation, chondrogenesis, hypertrophy, and replicative senescence with elevated SASP gene expression including IL1B, IL6, CXCL1, and CXCL8. SHH paracrine treatment of OAC suppresses COL2A1, stimulates MMP13, and induces chondrocyte apoptosis. The OA-MSC conditioned medium recapitulates the stimulatory effects of SHH on OAC catabolism and apoptosis. SHH knock-down in OA-MSC not only inhibits catabolic and senescence marker expression in OA-MSC, but also abolishes the effect of the OA-MSC conditioned medium on OAC catabolism and apoptosis. We propose that SHH is a key mediator between OA-MSC and OA chondrocytes interaction in human OA cartilage via two mechanisms: (1) SHH mediates MSC growth and aging by activating not only its proliferation and chondrogenesis, but also low-grade inflammation and replicative senescence, and (2) SHH mediates OA-MSC-induced OAC catabolism and apoptosis by creating a pro-inflammatory microenvironment favoring tissue degeneration during OA pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Qian Chen
- Department of Orthopedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|