1
|
Zhang R, Pitkow X, Angelaki DE. Inductive biases of neural network modularity in spatial navigation. SCIENCE ADVANCES 2024; 10:eadk1256. [PMID: 39028809 PMCID: PMC11259174 DOI: 10.1126/sciadv.adk1256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 06/14/2024] [Indexed: 07/21/2024]
Abstract
The brain may have evolved a modular architecture for daily tasks, with circuits featuring functionally specialized modules that match the task structure. We hypothesize that this architecture enables better learning and generalization than architectures with less specialized modules. To test this, we trained reinforcement learning agents with various neural architectures on a naturalistic navigation task. We found that the modular agent, with an architecture that segregates computations of state representation, value, and action into specialized modules, achieved better learning and generalization. Its learned state representation combines prediction and observation, weighted by their relative uncertainty, akin to recursive Bayesian estimation. This agent's behavior also resembles macaques' behavior more closely. Our results shed light on the possible rationale for the brain's modularity and suggest that artificial systems can use this insight from neuroscience to improve learning and generalization in natural tasks.
Collapse
Affiliation(s)
- Ruiyi Zhang
- Tandon School of Engineering, New York University, New York, NY, USA
| | - Xaq Pitkow
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Machine Learning, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | - Dora E. Angelaki
- Tandon School of Engineering, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
2
|
Jerjian SJ, Harsch DR, Fetsch CR. Self-motion perception and sequential decision-making: where are we heading? Philos Trans R Soc Lond B Biol Sci 2023; 378:20220333. [PMID: 37545301 PMCID: PMC10404932 DOI: 10.1098/rstb.2022.0333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/18/2023] [Indexed: 08/08/2023] Open
Abstract
To navigate and guide adaptive behaviour in a dynamic environment, animals must accurately estimate their own motion relative to the external world. This is a fundamentally multisensory process involving integration of visual, vestibular and kinesthetic inputs. Ideal observer models, paired with careful neurophysiological investigation, helped to reveal how visual and vestibular signals are combined to support perception of linear self-motion direction, or heading. Recent work has extended these findings by emphasizing the dimension of time, both with regard to stimulus dynamics and the trade-off between speed and accuracy. Both time and certainty-i.e. the degree of confidence in a multisensory decision-are essential to the ecological goals of the system: terminating a decision process is necessary for timely action, and predicting one's accuracy is critical for making multiple decisions in a sequence, as in navigation. Here, we summarize a leading model for multisensory decision-making, then show how the model can be extended to study confidence in heading discrimination. Lastly, we preview ongoing efforts to bridge self-motion perception and navigation per se, including closed-loop virtual reality and active self-motion. The design of unconstrained, ethologically inspired tasks, accompanied by large-scale neural recordings, raise promise for a deeper understanding of spatial perception and decision-making in the behaving animal. This article is part of the theme issue 'Decision and control processes in multisensory perception'.
Collapse
Affiliation(s)
- Steven J. Jerjian
- Solomon H. Snyder Department of Neuroscience, Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Devin R. Harsch
- Solomon H. Snyder Department of Neuroscience, Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
- Center for Neuroscience and Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Christopher R. Fetsch
- Solomon H. Snyder Department of Neuroscience, Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
3
|
Stavropoulos A, Lakshminarasimhan KJ, Angelaki DE. Belief embodiment through eye movements facilitates memory-guided navigation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554107. [PMID: 37662309 PMCID: PMC10473632 DOI: 10.1101/2023.08.21.554107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Neural network models optimized for task performance often excel at predicting neural activity but do not explain other properties such as the distributed representation across functionally distinct areas. Distributed representations may arise from animals' strategies for resource utilization, however, fixation-based paradigms deprive animals of a vital resource: eye movements. During a naturalistic task in which humans use a joystick to steer and catch flashing fireflies in a virtual environment lacking position cues, subjects physically track the latent task variable with their gaze. We show this strategy to be true also during an inertial version of the task in the absence of optic flow and demonstrate that these task-relevant eye movements reflect an embodiment of the subjects' dynamically evolving internal beliefs about the goal. A neural network model with tuned recurrent connectivity between oculomotor and evidence-integrating frontoparietal circuits accounted for this behavioral strategy. Critically, this model better explained neural data from monkeys' posterior parietal cortex compared to task-optimized models unconstrained by such an oculomotor-based cognitive strategy. These results highlight the importance of unconstrained movement in working memory computations and establish a functional significance of oculomotor signals for evidence-integration and navigation computations via embodied cognition.
Collapse
Affiliation(s)
| | | | - Dora E. Angelaki
- Center for Neural Science, New York University, New York, NY, USA
- Tandon School of Engineering, New York University, New York, NY, USA
| |
Collapse
|
4
|
Zhu SL, Lakshminarasimhan KJ, Angelaki DE. Computational cross-species views of the hippocampal formation. Hippocampus 2023; 33:586-599. [PMID: 37038890 PMCID: PMC10947336 DOI: 10.1002/hipo.23535] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023]
Abstract
The discovery of place cells and head direction cells in the hippocampal formation of freely foraging rodents has led to an emphasis of its role in encoding allocentric spatial relationships. In contrast, studies in head-fixed primates have additionally found representations of spatial views. We review recent experiments in freely moving monkeys that expand upon these findings and show that postural variables such as eye/head movements strongly influence neural activity in the hippocampal formation, suggesting that the function of the hippocampus depends on where the animal looks. We interpret these results in the light of recent studies in humans performing challenging navigation tasks which suggest that depending on the context, eye/head movements serve one of two roles-gathering information about the structure of the environment (active sensing) or externalizing the contents of internal beliefs/deliberation (embodied cognition). These findings prompt future experimental investigations into the information carried by signals flowing between the hippocampal formation and the brain regions controlling postural variables, and constitute a basis for updating computational theories of the hippocampal system to accommodate the influence of eye/head movements.
Collapse
Affiliation(s)
- Seren L Zhu
- Center for Neural Science, New York University, New York, New York, USA
| | - Kaushik J Lakshminarasimhan
- Center for Theoretical Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, USA
| | - Dora E Angelaki
- Center for Neural Science, New York University, New York, New York, USA
- Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, New York, New York, USA
| |
Collapse
|
5
|
Lakshminarasimhan KJ, Avila E, Pitkow X, Angelaki DE. Dynamical latent state computation in the male macaque posterior parietal cortex. Nat Commun 2023; 14:1832. [PMID: 37005470 PMCID: PMC10067966 DOI: 10.1038/s41467-023-37400-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/15/2023] [Indexed: 04/04/2023] Open
Abstract
Success in many real-world tasks depends on our ability to dynamically track hidden states of the world. We hypothesized that neural populations estimate these states by processing sensory history through recurrent interactions which reflect the internal model of the world. To test this, we recorded brain activity in posterior parietal cortex (PPC) of monkeys navigating by optic flow to a hidden target location within a virtual environment, without explicit position cues. In addition to sequential neural dynamics and strong interneuronal interactions, we found that the hidden state - monkey's displacement from the goal - was encoded in single neurons, and could be dynamically decoded from population activity. The decoded estimates predicted navigation performance on individual trials. Task manipulations that perturbed the world model induced substantial changes in neural interactions, and modified the neural representation of the hidden state, while representations of sensory and motor variables remained stable. The findings were recapitulated by a task-optimized recurrent neural network model, suggesting that task demands shape the neural interactions in PPC, leading them to embody a world model that consolidates information and tracks task-relevant hidden states.
Collapse
Affiliation(s)
| | - Eric Avila
- Center for Neural Science, New York University, New York City, NY, USA
| | - Xaq Pitkow
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
- Electrical & Computer Engineering, Rice University, Houston, TX, USA
| | - Dora E Angelaki
- Center for Neural Science, New York University, New York City, NY, USA
- Department of Mechanical and Aerospace Engineering, New York University, New York City, NY, USA
| |
Collapse
|
6
|
van Helvert MJL, Selen LPJ, van Beers RJ, Medendorp WP. Predictive steering: integration of artificial motor signals in self-motion estimation. J Neurophysiol 2022; 128:1395-1408. [PMID: 36350058 DOI: 10.1152/jn.00248.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The brain's computations for active and passive self-motion estimation can be unified with a single model that optimally combines vestibular and visual signals with sensory predictions based on efference copies. It is unknown whether this theoretical framework also applies to the integration of artificial motor signals, such as those that occur when driving a car, or whether self-motion estimation in this situation relies on sole feedback control. Here, we examined if training humans to control a self-motion platform leads to the construction of an accurate internal model of the mapping between the steering movement and the vestibular reafference. Participants (n = 15) sat on a linear motion platform and actively controlled the platform's velocity using a steering wheel to translate their body to a memorized visual target (motion condition). We compared their steering behavior to that of participants (n = 15) who remained stationary and instead aligned a nonvisible line with the target (stationary condition). To probe learning, the gain between the steering wheel angle and the platform or line velocity changed abruptly twice during the experiment. These gain changes were virtually undetectable in the displacement error in the motion condition, whereas clear deviations were observed in the stationary condition, showing that participants in the motion condition made within-trial changes to their steering behavior. We conclude that vestibular feedback allows not only the online control of steering but also a rapid adaptation to the gain changes to update the brain's internal model of the mapping between the steering movement and the vestibular reafference.NEW & NOTEWORTHY Perception of self-motion is known to depend on the integration of sensory signals and, when the motion is self-generated, the predicted sensory reafference based on motor efference copies. Here we show, using a closed-loop steering experiment with a direct coupling between the steering movement and the vestibular self-motion feedback, that humans are also able to integrate artificial motor signals, like the motor signals that occur when driving a car.
Collapse
Affiliation(s)
- Milou J L van Helvert
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Luc P J Selen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Robert J van Beers
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.,Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - W Pieter Medendorp
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|