1
|
Stephens MC, Li J, Mair M, Moore J, Zhu K, Tarkunde A, Amoh B, Perez AM, Bhakare A, Guo F, Shulman JM, Al-Ramahi I, Botas J. Computational and functional prioritization identifies genes that rescue behavior and reduce tau protein in fly and human cell models of Alzheimer disease. Am J Hum Genet 2025; 112:1081-1096. [PMID: 40215969 PMCID: PMC12120185 DOI: 10.1016/j.ajhg.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 05/04/2025] Open
Abstract
Genome-wide association studies (GWASs) in Alzheimer disease (AD) have uncovered over 70 loci significantly associated with AD risk, but identifying the true causal gene(s) at these loci requires systematic functional validation that is rarely performed due to limitations of time and cost. Here, we integrate transcriptome-wide association study (TWAS) with colocalization analysis, fine-mapping, and additional annotation of AD GWAS variants to identify 123 genes at known and suggestive AD risk loci. A comparison with human AD brain transcriptome data confirmed that many of these candidate genes are dysregulated in human AD and correlate with neuropathology. We then tested all available orthologs in two well-established Drosophila AD models that express either wild-type tau or secreted β-amyloid (β42). Experimental perturbation of the 60 available candidates pinpointed 46 that modulated neuronal dysfunction in one or both fly models. The effects of 18 of these genes were concordant with the TWAS prediction, such that the direction of misexpression predicted to increase AD risk in humans exacerbated behavioral impairments in the AD fly models. Reversing the aberrant down- or upregulation of 11 of these genes (MTCH2, ELL, TAP2, HDC, DMWD, MYCL, SLC4A9, ABCA7, CSTF1, PTK2B, and CD2AP) proved neuroprotective in vivo. We further studied MTCH2 and found that it regulates steady-state tau protein levels in the Drosophila brain and reduces tau accumulation in human neural progenitor cells. This systematic, integrative approach effectively prioritizes genes at GWAS loci and reveals promising AD-relevant candidates for further investigation as risk factors or targets for therapeutic intervention.
Collapse
Affiliation(s)
- Morgan C Stephens
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Jiayang Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Megan Mair
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Justin Moore
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Katy Zhu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Akash Tarkunde
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Bismark Amoh
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Alma M Perez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Arya Bhakare
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Fangfei Guo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Joshua M Shulman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Alzheimer's and Neurodegenerative Disease, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA; Center for Alzheimer's and Neurodegenerative Disease, Baylor College of Medicine, Houston, TX 77030, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA; Center for Alzheimer's and Neurodegenerative Disease, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Singh P, Borkar M, Doshi G. Network pharmacology approach to unravel the neuroprotective potential of natural products: a narrative review. Mol Divers 2025:10.1007/s11030-025-11198-3. [PMID: 40279084 DOI: 10.1007/s11030-025-11198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 04/13/2025] [Indexed: 04/26/2025]
Abstract
Aging is a slow and irreversible biological process leading to decreased cell and tissue functions with higher risks of multiple age-related diseases, including neurodegenerative diseases. It is widely accepted that aging represents the leading risk factor for neurodegeneration. The pathogenesis of these diseases involves complex interactions of genetic mutations, environmental factors, oxidative stress, neuroinflammation, and mitochondrial dysfunction, which complicate treatment with traditional mono-targeted therapies. Network pharmacology can help identify potential gene or protein targets related to neurodegenerative diseases. Integrating advanced molecular profiling technologies and computer-aided drug design further enhances the potential of network pharmacology, enabling the identification of biomarkers and therapeutic targets, thus paving the way for precision medicine in neurodegenerative diseases. This review article delves into the application of network pharmacology in understanding and treating neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and spinal muscular atrophy. Overall, this article emphasizes the importance of addressing aging as a central factor in developing effective disease-modifying therapies, highlighting how network pharmacology can unravel the complex biological networks associated with aging and pave the way for personalized medical strategies.
Collapse
Affiliation(s)
- Pankaj Singh
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai Campus, V. M. Road, Vile Parle (W), Mumbai, 400056, India
| | - Maheshkumar Borkar
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai Campus, V. M. Road, Vile Parle (W), Mumbai, 400056, India.
| |
Collapse
|
3
|
Spargo TP, Sands CF, Juan IR, Mitchell J, Ravanmehr V, Butts JC, De-Paula RB, Kim Y, Hu F, Wang Q, Vitsios D, Garg M, Middleton L, Tyrlik M, Messa M, Del Angel G, Calame DG, Saade H, Robak L, Hollis B, Cuddapah VA, Zoghbi HY, Shulman JM, Petrovski S, Al-Ramahi I, Tachmazidou I, Dhindsa RS. Haploinsufficiency of ITSN1 is associated with a substantial increased risk of Parkinson's disease. Cell Rep 2025; 44:115355. [PMID: 40056900 PMCID: PMC12124131 DOI: 10.1016/j.celrep.2025.115355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/18/2024] [Accepted: 02/06/2025] [Indexed: 03/10/2025] Open
Abstract
Despite its significant heritability, the genetic basis of Parkinson's disease (PD) remains incompletely understood. Here, in analyzing whole-genome sequence data from 3,809 PD cases and 247,101 controls in the UK Biobank, we discover that protein-truncating variants in ITSN1 confer a substantially increased risk of PD (p = 6.1 × 10-7; odds ratio [95% confidence interval] = 10.5 [5.2, 21.3]). We replicate this association in three independent datasets totaling 8,407 cases and 413,432 controls (combined p = 4.5 × 10-12). Notably, ITSN1 haploinsufficiency has also been associated with autism spectrum disorder, suggesting variable penetrance/expressivity. In Drosophila, we find that loss of the ITSN1 ortholog Dap160 exacerbates α-synuclein-induced neuronal toxicity and motor deficits, and in vitro assays further suggest a physical interaction between ITSN1 and α-synuclein. These results firmly establish ITSN1 as a PD risk gene with an effect size exceeding previously established loci, implicate vesicular trafficking dysfunction in PD pathogenesis, and potentially open new avenues for therapeutic development.
Collapse
Affiliation(s)
- Thomas P Spargo
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Chloe F Sands
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA; Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St., Suite N.1150, Houston, TX, USA
| | - Isabella R Juan
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St., Suite N.1150, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan Mitchell
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Vida Ravanmehr
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St., Suite N.1150, Houston, TX, USA
| | - Jessica C Butts
- Department of Bioengineering, George R. Brown School of Engineering, Rice University, Houston, TX, USA
| | - Ruth B De-Paula
- Quantitative and Computational Biology Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Youngdoo Kim
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St., Suite N.1150, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Fengyuan Hu
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Quanli Wang
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Waltham, MA, USA
| | - Dimitrios Vitsios
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Manik Garg
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Lawrence Middleton
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Michal Tyrlik
- Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Mirko Messa
- Translational Genomics, Centre for Genomics Research, Discovery Sciences BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Guillermo Del Angel
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Waltham, MA, USA
| | - Daniel G Calame
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Texas Children's Hospital, Houston, TX, USA
| | - Hiba Saade
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St., Suite N.1150, Houston, TX, USA; Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Laurie Robak
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St., Suite N.1150, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ben Hollis
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Vishnu A Cuddapah
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St., Suite N.1150, Houston, TX, USA; Department of Pediatrics, Texas Children's Hospital, Houston, TX, USA
| | - Huda Y Zoghbi
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St., Suite N.1150, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Texas Children's Hospital, Houston, TX, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Joshua M Shulman
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St., Suite N.1150, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Neurology, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Slavé Petrovski
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK; Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia.
| | - Ismael Al-Ramahi
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St., Suite N.1150, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Ioanna Tachmazidou
- Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Ryan S Dhindsa
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St., Suite N.1150, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Moore J, Wu T, Dhindsa J, El Fadel O, Le A, Perez A, Amoh B, Tarkunde A, Zhu KF, Avalos M, Dammer EB, Duong DM, Seyfried NT, Shulman JM, Al-Ramahi I, Botas J. Longitudinal multi-omics in alpha-synuclein Drosophila model discriminates disease- from age-associated pathologies in Parkinson's disease. NPJ Parkinsons Dis 2025; 11:46. [PMID: 40069190 PMCID: PMC11897226 DOI: 10.1038/s41531-025-00899-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/17/2025] [Indexed: 03/15/2025] Open
Abstract
Parkinson's disease (PD) starts decades before symptoms appear, usually in the later decades of life, when age-related changes are occurring. To identify molecular changes early in the disease course and distinguish PD pathologies from aging, we generated Drosophila expressing alpha-synuclein (αSyn) in neurons and performed longitudinal bulk transcriptomics and proteomics on brains at six time points across the lifespan and compared the data to healthy control flies as well as human post-mortem brain datasets. We found that translational and energy metabolism pathways were downregulated in αSyn flies at the earliest timepoints; comparison with the aged control flies suggests that elevated αSyn accelerates changes associated with normal aging. Unexpectedly, single-cell analysis at a mid-disease stage revealed that neurons upregulate protein synthesis and nonsense-mediated decay, while glia drive their overall downregulation. Longitudinal multi-omics approaches in animal models can thus help elucidate the molecular cascades underlying neurodegeneration vs. aging and co-pathologies.
Collapse
Affiliation(s)
- Justin Moore
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Quantitative and Computational Bioscience Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Timothy Wu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Justin Dhindsa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Omar El Fadel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Anh Le
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Alma Perez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Bismark Amoh
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Akash Tarkunde
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Katy F Zhu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Matthew Avalos
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Joshua M Shulman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- Deparment of Neurology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Quantitative and Computational Bioscience Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA.
- Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX, 77030, USA.
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Shweta, Sharma K, Shakarad M, Agrawal N, Maurya SK. Drosophila glial system: an approach towards understanding molecular complexity of neurodegenerative diseases. Mol Biol Rep 2024; 51:1146. [PMID: 39532789 DOI: 10.1007/s11033-024-10075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Glia is pivotal in regulating neuronal stem cell proliferation, functioning, and nervous system homeostasis, significantly influencing neuronal health and disorders. Dysfunction in glial activity is a key factor in the development and progression of brain pathology. However, a deeper understanding of the intricate nature of glial cells and their diverse role in neurological disorders is still required. To this end, we conducted data mining to retrieve literature from PubMed and Google Scholar using the keywords: glia, Drosophila, neurodegeneration, and mammals. The retrieved literature was manually screened and used to comprehensively understand and present the different glial types in Drosophila, i.e., perineurial, subperineurial, cortex, astrocyte-like and ensheathing glia, their relevance with mammalian counterparts, mainly microglia and astrocytes, and their potential to reveal complex neuron-glial molecular networks in managing neurodegenerative processes.
Collapse
Affiliation(s)
- Shweta
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, 110007, India
| | - Khushboo Sharma
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Mallikarjun Shakarad
- Evolutionary Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Namita Agrawal
- Fly Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, 110007, India
| | - Shashank Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
6
|
Manor J, Jangam SV, Chung HL, Bhagwat P, Andrews J, Chester H, Kondo S, Srivastav S, Botas J, Moser AB, Huguenin SM, Wangler MF. Genetic analysis of the X-linked Adrenoleukodystrophy ABCD1 gene in Drosophila uncovers a role in Peroxisomal dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614586. [PMID: 39386423 PMCID: PMC11463603 DOI: 10.1101/2024.09.23.614586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a progressive neurodegenerative disorder caused by a loss-of-function (LOF) mutation in the ATP-binding cassette subfamily D member 1 (ABCD1) gene, leading to the accumulation of very long-chain fatty acids (VLCFAs). This disorder exhibits striking heterogeneity; some male patients develop an early childhood neuroinflammatory demyelination disorder, while other patients, including adult males and most affected female carriers, experience a chronic progressive myelopathy. Adrenocortical failure is observed in almost all male patients, with age of onset varying sometimes being the first diagnostic finding. The gene underlying this spectrum of disease encodes an ATP-binding cassette (ABC) transporter that localizes to peroxisomes and facilitates VLCFA transport. X-ALD is considered a single peroxisomal component defect and does not play a direct role in peroxisome assembly. Drosophila models of other peroxisomal genes have provided mechanistic insight into some of the neurodegenerative mechanisms with reduced lifespan, retinal degeneration, and VLCFA accumulation. Here, we perform a genetic analysis of the fly ABCD1 ortholog Abcd1 (CG2316). Knockdown or deficiency of Abcd1 leads to VLCFA accumulation, salivary gland defects, locomotor impairment and retinal lipid abnormalities. Interestingly, there is also evidence of reduced peroxisomal numbers. Flies overexpressing the human cDNA for ABCD1 display a wing crumpling phenotype characteristic of the pex2 loss-of-function. Surprisingly, overexpression of human ABCD1 appears to inhibit or overwhelm peroxisomal biogenesis to levels similar to null mutations in fly pex2, pex16 and pex3. Drosophila Abcd1 is therefore implicated in peroxisomal number, and overexpression of the human ABCD1 gene acts a potent inhibitor of peroxisomal biogenesis in flies.
Collapse
Affiliation(s)
- Joshua Manor
- Metabolic Disease Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Sharayu V Jangam
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Hyung-lok Chung
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA
- Department of Neurology, Weill Cornell Medical College, New York, NY, USA
| | - Pranjali Bhagwat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Jonathan Andrews
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Hillary Chester
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Shu Kondo
- Tokyo University of Science, Faculty of Advanced Engineering, Department of Biological Science and Technology, Tokyo, Japan
| | - Saurabh Srivastav
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Ann B. Moser
- Hugo W Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Suzette M. Huguenin
- Hugo W Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
7
|
Hernandez SJ, Lim RG, Onur T, Dane MA, Smith R, Wang K, Jean GEH, Reyes-Ortiz A, Devlin K, Miramontes R, Wu J, Casale M, Kilburn D, Heiser LM, Korkola JE, Van Vactor D, Botas J, Thompson-Peer KL, Thompson LM. An altered extracellular matrix-integrin interface contributes to Huntington's disease-associated CNS dysfunction in glial and vascular cells. Hum Mol Genet 2023; 32:1483-1496. [PMID: 36547263 PMCID: PMC10117161 DOI: 10.1093/hmg/ddac303] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Astrocytes and brain endothelial cells are components of the neurovascular unit that comprises the blood-brain barrier (BBB) and their dysfunction contributes to pathogenesis in Huntington's disease (HD). Defining the contribution of these cells to disease can inform cell-type-specific effects and uncover new disease-modifying therapeutic targets. These cells express integrin (ITG) adhesion receptors that anchor the cells to the extracellular matrix (ECM) to maintain the integrity of the BBB. We used HD patient-derived induced pluripotent stem cell (iPSC) modeling to study the ECM-ITG interface in astrocytes and brain microvascular endothelial cells and found ECM-ITG dysregulation in human iPSC-derived cells that may contribute to the dysfunction of the BBB in HD. This disruption has functional consequences since reducing ITG expression in glia in an HD Drosophila model suppressed disease-associated CNS dysfunction. Since ITGs can be targeted therapeutically and manipulating ITG signaling prevents neurodegeneration in other diseases, defining the role of ITGs in HD may provide a novel strategy of intervention to slow CNS pathophysiology to treat HD.
Collapse
Affiliation(s)
- Sarah J Hernandez
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - Ryan G Lim
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Tarik Onur
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark A Dane
- Department of Biomedical Engineering, OHSU, Portland, OR 97239, USA
| | - Rebecca Smith
- Department of Biomedical Engineering, OHSU, Portland, OR 97239, USA
| | - Keona Wang
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - Grace En-Hway Jean
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Andrea Reyes-Ortiz
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Kaylyn Devlin
- Department of Biomedical Engineering, OHSU, Portland, OR 97239, USA
| | - Ricardo Miramontes
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Malcolm Casale
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
| | - David Kilburn
- Department of Biomedical Engineering, OHSU, Portland, OR 97239, USA
| | - Laura M Heiser
- Department of Biomedical Engineering, OHSU, Portland, OR 97239, USA
- OHSU Knight Cancer Institute, Portland, OR 97239, USA
| | - James E Korkola
- Department of Biomedical Engineering, OHSU, Portland, OR 97239, USA
- OHSU Knight Cancer Institute, Portland, OR 97239, USA
| | - David Van Vactor
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Genetics & Genomics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
- Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Katherine L Thompson-Peer
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
- Reeve-Irvine Research Center, University of California, Irvine, CA 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Leslie M Thompson
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
8
|
Li X, Liu Q, Xie X, Peng C, Pang Q, Liu B, Han B. Application of Novel Degraders Employing Autophagy for Expediting Medicinal Research. J Med Chem 2023; 66:1700-1711. [PMID: 36716420 DOI: 10.1021/acs.jmedchem.2c01712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Targeted protein degradation (TPD) technology is based on a unique pharmacological mechanism that has profoundly revolutionized medicinal research by overcoming limitations associated with traditional small-molecule drugs. Autophagy, a mechanism for intracellular waste disposal and recovery, is an important biological process in medicinal research. Recently, studies have demonstrated that several emerging autophagic degraders can treat human diseases. Herein we summarize the progress in medicinal research on autophagic degraders, including autophagosome-tethering compounds (ATTEC), autophagy-targeting chimeras (AUTAC), and AUTOphagy-TArgeting chimeras (AUTOTAC), for treating human diseases. These autophagic degraders exhibit excellent potential for treating neurodegenerative diseases. Our research on autophagic degraders provides a new avenue for medicinal research on TPD via autophagy.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiwen Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
9
|
Li J, Amoh BK, McCormick E, Tarkunde A, Zhu KF, Perez A, Mair M, Moore J, Shulman JM, Al-Ramahi I, Botas J. Integration of transcriptome-wide association study with neuronal dysfunction assays provides functional genomics evidence for Parkinson's disease genes. Hum Mol Genet 2023; 32:685-695. [PMID: 36173927 PMCID: PMC9896475 DOI: 10.1093/hmg/ddac230] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023] Open
Abstract
Genome-wide association studies (GWAS) have markedly advanced our understanding of the genetics of Parkinson's disease (PD), but they currently do not account for the full heritability of PD. In many cases it is difficult to unambiguously identify a specific gene within each locus because GWAS does not provide functional information on the identified candidate loci. Here we present an integrative approach that combines transcriptome-wide association study (TWAS) with high-throughput neuronal dysfunction analyses in Drosophila to discover and validate candidate PD genes. We identified 160 candidate genes whose misexpression is associated with PD risk via TWAS. Candidates were validated using orthogonal in silico methods and found to be functionally related to PD-associated pathways (i.e. endolysosome). We then mimicked these TWAS-predicted transcriptomic alterations in a Drosophila PD model and discovered that 50 candidates can modulate α-Synuclein(α-Syn)-induced neurodegeneration, allowing us to nominate new genes in previously known PD loci. We also uncovered additional novel PD candidate genes within GWAS suggestive loci (e.g. TTC19, ADORA2B, LZTS3, NRBP1, HN1L), which are also supported by clinical and functional evidence. These findings deepen our understanding of PD, and support applying our integrative approach to other complex trait disorders.
Collapse
Affiliation(s)
- Jiayang Li
- Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Bismark Kojo Amoh
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Emma McCormick
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Akash Tarkunde
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Katy Fan Zhu
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Alma Perez
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Megan Mair
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Justin Moore
- Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Joshua M Shulman
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Ismael Al-Ramahi
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Juan Botas
- Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
10
|
Reyes-Ortiz AM, Abud EM, Burns MS, Wu J, Hernandez SJ, McClure N, Wang KQ, Schulz CJ, Miramontes R, Lau A, Michael N, Miyoshi E, Van Vactor D, Reidling JC, Blurton-Jones M, Swarup V, Poon WW, Lim RG, Thompson LM. Single-nuclei transcriptome analysis of Huntington disease iPSC and mouse astrocytes implicates maturation and functional deficits. iScience 2023; 26:105732. [PMID: 36590162 PMCID: PMC9800269 DOI: 10.1016/j.isci.2022.105732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/13/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Huntington disease (HD) is a neurodegenerative disorder caused by expanded CAG repeats in the huntingtin gene that alters cellular homeostasis, particularly in the striatum and cortex. Astrocyte signaling that establishes and maintains neuronal functions are often altered under pathological conditions. We performed single-nuclei RNA-sequencing on human HD patient-induced pluripotent stem cell (iPSC)-derived astrocytes and on striatal and cortical tissue from R6/2 HD mice to investigate high-resolution HD astrocyte cell state transitions. We observed altered maturation and glutamate signaling in HD human and mouse astrocytes. Human HD astrocytes also showed upregulated actin-mediated signaling, suggesting that some states may be cell-autonomous and human specific. In both species, astrogliogenesis transcription factors may drive HD astrocyte maturation deficits, which are supported by rescued climbing deficits in HD drosophila with NFIA knockdown. Thus, dysregulated HD astrocyte states may induce dysfunctional astrocytic properties, in part due to maturation deficits influenced by astrogliogenesis transcription factor dysregulation.
Collapse
Affiliation(s)
- Andrea M. Reyes-Ortiz
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92617, USA
| | - Edsel M. Abud
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Mara S. Burns
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92617, USA
| | - Sarah J. Hernandez
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Nicolette McClure
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92617, USA
| | - Keona Q. Wang
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Corey J. Schulz
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92617, USA
| | - Ricardo Miramontes
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Alice Lau
- Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Neethu Michael
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - Emily Miyoshi
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
| | - David Van Vactor
- Harvard Medical School, Department of Cell Biology, Boston, MA 02115, USA
| | - John C. Reidling
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92617, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Vivek Swarup
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Wayne W. Poon
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Ryan G. Lim
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| | - Leslie M. Thompson
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92617, USA
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92617, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92617, USA
- Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine, CA 92617, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92617, USA
| |
Collapse
|
11
|
Brandebura AN, Paumier A, Onur TS, Allen NJ. Astrocyte contribution to dysfunction, risk and progression in neurodegenerative disorders. Nat Rev Neurosci 2023; 24:23-39. [PMID: 36316501 DOI: 10.1038/s41583-022-00641-1] [Citation(s) in RCA: 195] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
Abstract
There is increasing appreciation that non-neuronal cells contribute to the initiation, progression and pathology of diverse neurodegenerative disorders. This Review focuses on the role of astrocytes in disorders including Alzheimer disease, Parkinson disease, Huntington disease and amyotrophic lateral sclerosis. The important roles astrocytes have in supporting neuronal function in the healthy brain are considered, along with studies that have demonstrated how the physiological properties of astrocytes are altered in neurodegenerative disorders and may explain their contribution to neurodegeneration. Further, the question of whether in neurodegenerative disorders with specific genetic mutations these mutations directly impact on astrocyte function, and may suggest a driving role for astrocytes in disease initiation, is discussed. A summary of how astrocyte transcriptomic and proteomic signatures are altered during the progression of neurodegenerative disorders and may relate to functional changes is provided. Given the central role of astrocytes in neurodegenerative disorders, potential strategies to target these cells for future therapeutic avenues are discussed.
Collapse
Affiliation(s)
- Ashley N Brandebura
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Adrien Paumier
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tarik S Onur
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nicola J Allen
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
12
|
Ding Y, Xing D, Fei Y, Lu B. Emerging degrader technologies engaging lysosomal pathways. Chem Soc Rev 2022; 51:8832-8876. [PMID: 36218065 PMCID: PMC9620493 DOI: 10.1039/d2cs00624c] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Indexed: 08/24/2023]
Abstract
Targeted protein degradation (TPD) provides unprecedented opportunities for drug discovery. While the proteolysis-targeting chimera (PROTAC) technology has already entered clinical trials and changed the landscape of small-molecule drugs, new degrader technologies harnessing alternative degradation machineries, especially lysosomal pathways, have emerged and broadened the spectrum of degradable targets. We have recently proposed the concept of autophagy-tethering compounds (ATTECs) that hijack the autophagy protein microtubule-associated protein 1A/1B light chain 3 (LC3) for targeted degradation. Other groups also reported degrader technologies engaging lysosomal pathways through different mechanisms including AUTACs, AUTOTACs, LYTACs and MoDE-As. In this review, we analyse and discuss ATTECs along with other lysosomal-relevant degrader technologies. Finally, we will briefly summarize the current status of these degrader technologies and envision possible future studies.
Collapse
Affiliation(s)
- Yu Ding
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China.
| | - Dong Xing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| | - Yiyan Fei
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai, China.
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Discovery of levodopa-induced dyskinesia-associated genes using genomic studies in patients and Drosophila behavioral analyses. Commun Biol 2022; 5:872. [PMID: 36008531 PMCID: PMC9411113 DOI: 10.1038/s42003-022-03830-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 08/11/2022] [Indexed: 11/11/2022] Open
Abstract
Although levodopa is the most effective medication for Parkinson’s disease, long-term levodopa treatment is largely compromised due to late motor complications, including levodopa-induced dyskinesia (LID). However, the genetic basis of LID pathogenesis has not been fully understood. Here, we discover genes pathogenic for LID using Drosophila genetics and behavioral analyses combined with genome-wide association studies on 578 patients clinically diagnosed with LID. Similar to the therapeutic effect of levodopa in patients, acute levodopa treatments restore the motor defect of Parkinson’s disease model flies, while prolonged treatments cause LID-related symptoms, such as increased yawing, freezing and abrupt acceleration of locomotion. These symptoms require dopamine 1-like receptor 1 and are induced by neuronal overexpression of the receptor. Among genes selected from our analyses in the patient genome, neuronal knockdown of adenylyl cyclase 2 suppresses the levodopa-induced phenotypes and the receptor overexpression-induced symptoms in Drosophila. Together, our study provides genetic insights for LID pathogenesis through the D1-like receptor-adenylyl cyclase 2 signaling axis. A combined research approach using GWAS on Parkinson's disease patients and a Drosophila model of L-DOPA-induced dyskinesia (LID) reveals that LID is linked to ADCY2 signaling.
Collapse
|
14
|
Lagisetty Y, Bourquard T, Al-Ramahi I, Mangleburg CG, Mota S, Soleimani S, Shulman JM, Botas J, Lee K, Lichtarge O. Identification of risk genes for Alzheimer's disease by gene embedding. CELL GENOMICS 2022; 2:100162. [PMID: 36268052 PMCID: PMC9581494 DOI: 10.1016/j.xgen.2022.100162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Most disease-gene association methods do not account for gene-gene interactions, even though these play a crucial role in complex, polygenic diseases like Alzheimer's disease (AD). To discover new genes whose interactions may contribute to pathology, we introduce GeneEMBED. This approach compares the functional perturbations induced in gene interaction network neighborhoods by coding variants from disease versus healthy subjects. In two independent AD cohorts of 5,169 exomes and 969 genomes, GeneEMBED identified novel candidates. These genes were differentially expressed in post mortem AD brains and modulated neurological phenotypes in mice. Four that were differentially overexpressed and modified neurodegeneration in vivo are PLEC, UTRN, TP53, and POLD1. Notably, TP53 and POLD1 are involved in DNA break repair and inhibited by approved drugs. While these data show proof of concept in AD, GeneEMBED is a general approach that should be broadly applicable to identify genes relevant to risk mechanisms and therapy of other complex diseases.
Collapse
Affiliation(s)
- Yashwanth Lagisetty
- Department of Biology and Pharmacology, UTHealth McGovern Medical School, Houston, TX 77030, USA,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas Bourquard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA,Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carl Grant Mangleburg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Samantha Mota
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shirin Soleimani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joshua M. Shulman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA,Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX 77030, USA,Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA,Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA,Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kwanghyuk Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA,Center for Alzheimer’s and Neurodegenerative Diseases, Baylor College of Medicine, Houston, TX 77030, USA,Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX 77030, USA,Corresponding author
| |
Collapse
|
15
|
Schober AL, Wicki-Stordeur LE, Murai KK, Swayne LA. Foundations and implications of astrocyte heterogeneity during brain development and disease. Trends Neurosci 2022; 45:692-703. [PMID: 35879116 DOI: 10.1016/j.tins.2022.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/25/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022]
Abstract
Astrocytes play crucial roles in regulating brain circuit formation and physiology. Recent technological advances have revealed unprecedented levels of astrocyte diversity encompassing molecular, morphological, and functional differences. This diversification is initiated during embryonic specification events and (in rodents) continues into the early postnatal period where it overlaps with peak synapse development and circuit refinement. In fact, several lines of evidence suggest astrocyte diversity both influences and is a consequence of molecular crosstalk among developing astrocytes and other cell types, notably neurons and their synapses. Neurological disease states exhibit additional layers of astrocyte heterogeneity, which could help shed light on these cells' key pathological roles. This review highlights recent advances in clarifying astrocyte heterogeneity and molecular/cellular crosstalk and identifies key outstanding questions.
Collapse
Affiliation(s)
- Alexandra L Schober
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | | | - Keith K Murai
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada; Quantitative Life Sciences Graduate Program, McGill University, Montreal, QC, Canada
| | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Cellular and Physiological Sciences, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
16
|
Kolobkov DS, Sviridova DA, Abilev SK, Kuzovlev AN, Salnikova LE. Genes and Diseases: Insights from Transcriptomics Studies. Genes (Basel) 2022; 13:genes13071168. [PMID: 35885950 PMCID: PMC9317567 DOI: 10.3390/genes13071168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 01/25/2023] Open
Abstract
Results of expression studies can be useful to clarify the genotype-phenotype relationship. However, according to data from recent literature, there is a large group of genes that are revealed as differentially expressed (DE) in many studies, regardless of the biological context. Additional analyses could shed more light on the relationships between genes, their differential expression, and diseases. We generated a set of 9972 disease genes from five gene-phenotype databases (OMIM, ORPHANET, DDG2P, DisGeNet and MalaCards) and a report of the International Union of Immunological Societies. To study transcriptomics of disease and non-disease genes in healthy tissues, we obtained data from the Human Protein Atlas (HPA) website. We analyzed the dependency between expression in healthy tissues and gene occurrence in Gene Expression Omnibus series using tools within the Enrichr libraries. The results of expression studies were annotated with Gene Ontology (GO) and Human Phenotype Ontology (HPO) terms. Using transcriptomics analysis of healthy tissues, we validated the previous findings of higher expression levels of disease genes in pathologically linked tissues compared to other tissues. Preferentially DE genes were generally highly expressed in one or multiple tissues and were enriched for disease genes. According to the results of GO enrichment analyses, both down- and up-regulated DE genes most often took part in immune response, translation and tissue-specific processes. A connection between DE-related pathology and the diversity of HPO terms was found. Investigating a link between expression and phenotype contributes to understanding the mode of development and progression of human diseases.
Collapse
Affiliation(s)
- Dmitry S. Kolobkov
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia; (D.S.K.); (D.A.S.); (S.K.A.)
| | - Darya A. Sviridova
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia; (D.S.K.); (D.A.S.); (S.K.A.)
| | - Serikbai K. Abilev
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia; (D.S.K.); (D.A.S.); (S.K.A.)
| | - Artem N. Kuzovlev
- The Laboratory of Clinical Pathophysiology of Critical Conditions, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia;
| | - Lyubov E. Salnikova
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia; (D.S.K.); (D.A.S.); (S.K.A.)
- The Laboratory of Clinical Pathophysiology of Critical Conditions, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia;
- The Laboratory of Molecular Immunology, Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117997, Russia
- Correspondence:
| |
Collapse
|
17
|
Luo J. TGF-β as a Key Modulator of Astrocyte Reactivity: Disease Relevance and Therapeutic Implications. Biomedicines 2022; 10:1206. [PMID: 35625943 PMCID: PMC9138510 DOI: 10.3390/biomedicines10051206] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Astrocytes are essential for normal brain development and functioning. They respond to brain injury and disease through a process referred to as reactive astrogliosis, where the reactivity is highly heterogenous and context-dependent. Reactive astrocytes are active contributors to brain pathology and can exert beneficial, detrimental, or mixed effects following brain insults. Transforming growth factor-β (TGF-β) has been identified as one of the key factors regulating astrocyte reactivity. The genetic and pharmacological manipulation of the TGF-β signaling pathway in animal models of central nervous system (CNS) injury and disease alters pathological and functional outcomes. This review aims to provide recent understanding regarding astrocyte reactivity and TGF-β signaling in brain injury, aging, and neurodegeneration. Further, it explores how TGF-β signaling modulates astrocyte reactivity and function in the context of CNS disease and injury.
Collapse
Affiliation(s)
- Jian Luo
- Palo Alto Veterans Institute for Research, VAPAHCS, Palo Alto, CA 94304, USA
| |
Collapse
|
18
|
Store-operated Ca2+ entry regulates neuronal gene expression and function. Curr Opin Neurobiol 2022; 73:102520. [DOI: 10.1016/j.conb.2022.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 12/21/2022]
|
19
|
Greco TM, Secker C, Ramos ES, Federspiel JD, Liu JP, Perez AM, Al-Ramahi I, Cantle JP, Carroll JB, Botas J, Zeitlin SO, Wanker EE, Cristea IM. Dynamics of huntingtin protein interactions in the striatum identifies candidate modifiers of Huntington disease. Cell Syst 2022; 13:304-320.e5. [PMID: 35148841 PMCID: PMC9317655 DOI: 10.1016/j.cels.2022.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/18/2021] [Accepted: 01/24/2022] [Indexed: 12/13/2022]
Abstract
Huntington disease (HD) is a monogenic neurodegenerative disorder with one causative gene, huntingtin (HTT). Yet, HD pathobiology is multifactorial, suggesting that cellular factors influence disease progression. Here, we define HTT protein-protein interactions (PPIs) perturbed by the mutant protein with expanded polyglutamine in the mouse striatum, a brain region with selective HD vulnerability. Using metabolically labeled tissues and immunoaffinity purification-mass spectrometry, we establish that polyglutamine-dependent modulation of HTT PPI abundances and relative stability starts at an early stage of pathogenesis in a Q140 HD mouse model. We identify direct and indirect PPIs that are also genetic disease modifiers using in-cell two-hybrid and behavioral assays in HD human cell and Drosophila models, respectively. Validated, disease-relevant mHTT-dependent interactions encompass mediators of synaptic neurotransmission (SNAREs and glutamate receptors) and lysosomal acidification (V-ATPase). Our study provides a resource for understanding mHTT-dependent dysfunction in cortico-striatal cellular networks, partly through impaired synaptic communication and endosomal-lysosomal system. A record of this paper's Transparent Peer Review process is included in the supplemental information.
Collapse
Affiliation(s)
- Todd M Greco
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, USA
| | - Christopher Secker
- Neuroproteomics, Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Eduardo Silva Ramos
- Neuroproteomics, Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Joel D Federspiel
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, USA
| | - Jeh-Ping Liu
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Alma M Perez
- Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ismael Al-Ramahi
- Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey P Cantle
- Department of Psychology, Western Washington University, Bellingham, WA, USA
| | - Jeffrey B Carroll
- Department of Psychology, Western Washington University, Bellingham, WA, USA
| | - Juan Botas
- Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Scott O Zeitlin
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Erich E Wanker
- Neuroproteomics, Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, USA.
| |
Collapse
|