1
|
Wrighton S, Ahnlide VK, André O, Bahnan W, Nordenfelt P. Group A streptococci induce stronger M protein-fibronectin interaction when specific human antibodies are bound. Front Microbiol 2023; 14:1069789. [PMID: 36778879 PMCID: PMC9909010 DOI: 10.3389/fmicb.2023.1069789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Group A streptococcus (GAS) is a highly adapted, human-specific pathogen that is known to manipulate the immune system through various mechanisms. GAS' M protein constitutes a primary target of the immune system due to its spatial configuration and dominance on the bacterial surface. Antibody responses targeting the M protein have been shown to favor the conserved C region. Such antibodies (Abs) circumvent antigenic escape and efficiently bind to various M types. The ability of GAS to bind to fibronectin (Fn), a high molecular weight glycoprotein of the extracellular matrix, has long been known to be essential for the pathogen's evolutionary success and fitness. However, some strains lack the ability to efficiently bind Fn. Instead, they have been found to additionally bind Fn via the A-B domains of their M proteins. Here, we show that human Abs can induce increased Fn-binding affinity in M proteins, likely by enhancing the weak A-B domain binding. We found that this enhanced Fn binding leads to a reduction in Ab-mediated phagocytosis, indicating that this constitutes a GAS immune escape mechanism. We could show that the Fc domain of Abs is necessary to trigger this phenomenon and that Ab flexibility may also play a key role. We, moreover, saw that our Abs could enhance Fn binding in 3 out of 5 emm type strains tested, belonging to different clades, making it likely that this is a more generalizable phenomenon. Together our results suggest a novel synergistic interplay of GAS and host proteins which ultimately benefits the bacterium.
Collapse
|
2
|
Son S, Fletcher DA. Measurement of Molecular Height Using Cell Surface Optical Profilometry (CSOP). Methods Mol Biol 2023; 2654:113-122. [PMID: 37106178 DOI: 10.1007/978-1-0716-3135-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The plasma membrane of cells is covered by proteins, glycoproteins, and glycolipids with molecular heights ranging from just a few nanometers to hundreds of nanometers. Formation of cell-cell contacts and signal transduction by individual receptors can be dependent on both the average height of a cell's glycocalyx and the specific height of individual receptors, sometimes with nanometer-scale sensitivity. While super-resolution imaging techniques allow molecular distances to be measured with the sub-diffraction limited resolution, typically 10 nm in the lateral direction and 100 nm in the axial direction, measurements of molecular heights at the single nanometer scale on native cell membranes have been difficult to obtain. Cell surface optical profilometry (CSOP) is a simple and rapid method that achieves nanometer height resolution by localizing fluorophores at the tip and base of cell surface molecules and determining their separation with high precision by radially averaging across many molecules. Here we describe how to make CSOP measurements of multi-domain proteins on model membrane surfaces as well as native cell surfaces.
Collapse
Affiliation(s)
- Sungmin Son
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA, USA
- Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | - Daniel A Fletcher
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA, USA.
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
3
|
Bahnan W, Happonen L, Khakzad H, Kumra Ahnlide V, de Neergaard T, Wrighton S, André O, Bratanis E, Tang D, Hellmark T, Björck L, Shannon O, Malmström L, Malmström J, Nordenfelt P. A human monoclonal antibody bivalently binding two different epitopes in streptococcal M protein mediates immune function. EMBO Mol Med 2022; 15:e16208. [PMID: 36507602 PMCID: PMC9906385 DOI: 10.15252/emmm.202216208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Abstract
Group A streptococci have evolved multiple strategies to evade human antibodies, making it challenging to create effective vaccines or antibody treatments. Here, we have generated antibodies derived from the memory B cells of an individual who had successfully cleared a group A streptococcal infection. The antibodies bind with high affinity in the central region of the surface-bound M protein. Such antibodies are typically non-opsonic. However, one antibody could effectively promote vital immune functions, including phagocytosis and in vivo protection. Remarkably, this antibody primarily interacts through a bivalent dual-Fab cis mode, where the Fabs bind to two distinct epitopes in the M protein. The dual-Fab cis-binding phenomenon is conserved across different groups of M types. In contrast, other antibodies binding with normal single-Fab mode to the same region cannot bypass the M protein's virulent effects. A broadly binding, protective monoclonal antibody could be a candidate for anti-streptococcal therapy. Our findings highlight the concept of dual-Fab cis binding as a means to access conserved, and normally non-opsonic regions, regions for protective antibody targeting.
Collapse
Affiliation(s)
- Wael Bahnan
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversityLundSweden
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversityLundSweden
| | - Hamed Khakzad
- Equipe Signalisation Calcique et Infections MicrobiennesÉcole Normale Supérieure Paris‐SaclayGif‐sur‐YvetteFrance,Institut National de la Santé et de la Recherche Médicale (INSERM) U1282Gif‐sur‐YvetteFrance,Present address:
Université de Lorraine, Inria, LORIANancyFrance
| | - Vibha Kumra Ahnlide
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversityLundSweden
| | - Therese de Neergaard
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversityLundSweden
| | - Sebastian Wrighton
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversityLundSweden
| | - Oscar André
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversityLundSweden
| | - Eleni Bratanis
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversityLundSweden
| | - Di Tang
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversityLundSweden
| | - Thomas Hellmark
- Department of Clinical Sciences Lund, Division of NephrologyLund UniversityLundSweden
| | - Lars Björck
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversityLundSweden
| | - Oonagh Shannon
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversityLundSweden
| | - Lars Malmström
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversityLundSweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversityLundSweden
| | - Pontus Nordenfelt
- Division of Infection Medicine, Department of Clinical Sciences Lund, Faculty of MedicineLund UniversityLundSweden
| |
Collapse
|