1
|
Kulkarni A, Ewen-Campen B, Terao K, Matsumoto Y, Li Y, Watanabe T, Kao JA, Parhad SS, Ylla G, Mizunami M, Extavour CG. oskar acts with the transcription factor Creb to regulate long-term memory in crickets. Proc Natl Acad Sci U S A 2023; 120:e2218506120. [PMID: 37192168 PMCID: PMC10214185 DOI: 10.1073/pnas.2218506120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/28/2023] [Indexed: 05/18/2023] Open
Abstract
Novel genes have the potential to drive the evolution of new biological mechanisms, or to integrate into preexisting regulatory circuits and contribute to the regulation of older, conserved biological functions. One such gene, the novel insect-specific gene oskar, was first identified based on its role in establishing the Drosophila melanogaster germ line. We previously showed that this gene likely arose through an unusual domain transfer event involving bacterial endosymbionts and played a somatic role before evolving its well-known germ line function. Here, we provide empirical support for this hypothesis in the form of evidence for a neural role for oskar. We show that oskar is expressed in the adult neural stem cells of a hemimetabolous insect, the cricket Gryllus bimaculatus. In these stem cells, called neuroblasts, oskar is required together with the ancient animal transcription factor Creb to regulate long-term (but not short-term) olfactory memory. We provide evidence that oskar positively regulates Creb, which plays a conserved role in long-term memory across animals, and that oskar in turn may be a direct target of Creb. Together with previous reports of a role for oskar in nervous system development and function in crickets and flies, our results are consistent with the hypothesis that oskar's original somatic role may have been in the insect nervous system. Moreover, its colocalization and functional cooperation with the conserved pluripotency gene piwi in the nervous system may have facilitated oskar's later co-option to the germ line in holometabolous insects.
Collapse
Affiliation(s)
- Arpita Kulkarni
- Department of Organismic and Evolutionary Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA02138
| | - Ben Ewen-Campen
- Department of Organismic and Evolutionary Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA02138
| | - Kanta Terao
- Graduate School of Life Science, Hokkaido University, Sapporo060-0810, Japan
| | | | - Yaolong Li
- Graduate School of Life Science, Hokkaido University, Sapporo060-0810, Japan
| | - Takayuki Watanabe
- Faculty of Science, Hokkaido University, Sapporo060-0810, Japan
- Research Center for Integrative Evolutionary Science, School of Advanced Sciences, Sokendai-Hayama, Kanagawa240-0193, Japan
| | - Jonchee A. Kao
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA02138
| | - Swapnil S. Parhad
- University of Massachusetts Chan Medical School, Program in Molecular Medicine, Worcester, MA01655
| | - Guillem Ylla
- Department of Organismic and Evolutionary Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA02138
| | - Makoto Mizunami
- Faculty of Science, Hokkaido University, Sapporo060-0810, Japan
| | - Cassandra G. Extavour
- Department of Organismic and Evolutionary Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA02138
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA02138
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
2
|
Contextual memory reactivation modulates Ca2+-activity network state in a mushroom body-like center of the crab N. granulata. Sci Rep 2022; 12:11408. [PMID: 35794138 PMCID: PMC9259570 DOI: 10.1038/s41598-022-15502-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/24/2022] [Indexed: 11/19/2022] Open
Abstract
High-order brain centers play key roles in sensory integration and cognition. In arthropods, much is known about the insect high-order centers that support associative memory processes, the mushroom bodies. The hypothesis that crustaceans possess structures equivalent to the mushroom bodies -traditionally called hemiellipsoid body- has been receiving neuroanatomical endorsement. The recent functional support is limited to the short term: in a structure of the true crab Neohelice granulata that has many insect-like mushroom bodies traits, the plastic learning changes express the context attribute of an associative memory trace. Here, we used in vivo calcium imaging to test whether neuronal activity in this structure is associated with memory reactivation in the long-term (i.e., 24 h after training). Long-term training effects were tested by presenting the training-context alone, a reminder known to trigger memory reconsolidation. We found similar spontaneous activity between trained and naïve animals. However, after training-context presentation, trained animals showed increased calcium events rate, suggesting that memory reactivation induced a change in the underlying physiological state of this center. Reflecting the change in the escape response observed in the paradigm, animals trained with a visual danger stimulus showed significantly lower calcium-evoked transients in the insect-like mushroom body. Protein synthesis inhibitor cycloheximide administered during consolidation prevented calcium mediated changes. Moreover, we found the presence of distinct calcium activity spatial patterns. Results suggest that intrinsic neurons of this crustacean mushroom body-like center are involved in contextual associative long-term memory processes.
Collapse
|
3
|
Harzsch S, Krieger J. Genealogical relationships of mushroom bodies, hemiellipsoid bodies, and their afferent pathways in the brains of Pancrustacea: Recent progress and open questions. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 65:101100. [PMID: 34488068 DOI: 10.1016/j.asd.2021.101100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
According to all latest phylogenetic analyses, the taxon Pancrustacea embraces the crustaceans in the traditional sense and the hexapods. Members of the Pancrustacea for a long time have been known to display distinct similarities in the architecture of their brains. Here, we review recent progress and open questions concerning structural and functional communalities of selected higher integrative neuropils in the lateral protocerebrum of pancrustaceans, the mushroom bodies and hemiellipsoid bodies. We also discuss the projection neuron pathway which provides a distinct input channel to both mushroom and hemiellipsoid bodies from the primary chemosensory centers in the deutocerebrum. Neuronal characters are mapped on a current pancrustacean phylogeny in order to extract those characters that are part of the pancrustacean ground pattern. Furthermore, we summarize recent insights into the evolutionary transformation of mushroom body morphology across the Pancrustacea.
Collapse
Affiliation(s)
- S Harzsch
- University of Greifswald, Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Soldmannstrasse 23, D-17498 Greifswald, Germany.
| | - J Krieger
- University of Greifswald, Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Soldmannstrasse 23, D-17498 Greifswald, Germany
| |
Collapse
|
4
|
Strausfeld NJ. Mushroom bodies and reniform bodies coexisting in crabs cannot both be homologs of the insect mushroom body. J Comp Neurol 2021; 529:3265-3271. [PMID: 33829500 DOI: 10.1002/cne.25152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 11/06/2022]
Abstract
In one species of shore crab (Brachyura, Varunidae), a center that supports long-term visual habituation and that matches the reniform body's morphology has been claimed as a homolog of the insect mushroom body despite lacking traits that define it as such. The discovery in a related species of shore crab of a mushroom body possessing those defining traits renders that interpretation unsound. Two phenotypically distinct, coexisting centers cannot both be homologs of the insect mushroom body. The present commentary outlines the history of research leading to misidentification of the reniform body as a mushroom body. One conclusion is that if both centers support learning and memory, this would be viewed as a novel and fascinating attribute of the pancrustacean brain.
Collapse
|