1
|
Ohki Y, Shinone T, Inoko S, Sudo M, Demura M, Kikukawa T, Tsukamoto T. The preferential transport of NO 3- by full-length Guillardia theta anion channelrhodopsin 1 is enhanced by its extended cytoplasmic domain. J Biol Chem 2023; 299:105305. [PMID: 37778732 PMCID: PMC10637977 DOI: 10.1016/j.jbc.2023.105305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023] Open
Abstract
Previous research of anion channelrhodopsins (ACRs) has been performed using cytoplasmic domain (CPD)-deleted constructs and therefore have overlooked the native functions of full-length ACRs and the potential functional role(s) of the CPD. In this study, we used the recombinant expression of full-length Guillardia theta ACR1 (GtACR1_full) for pH measurements in Pichia pastoris cell suspensions as an indirect method to assess its anion transport activity and for absorption spectroscopy and flash photolysis characterization of the purified protein. The results show that the CPD, which was predicted to be intrinsically disordered and possibly phosphorylated, enhanced NO3- transport compared to Cl- transport, which resulted in the preferential transport of NO3-. This correlated with the extended lifetime and large accumulation of the photocycle intermediate that is involved in the gate-open state. Considering that the depletion of a nitrogen source enhances the expression of GtACR1 in native algal cells, we suggest that NO3- transport could be the natural function of GtACR1_full in algal cells.
Collapse
Affiliation(s)
- Yuya Ohki
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Tsukasa Shinone
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Sayo Inoko
- Division of Macromolecular Functions, Department of Biological Science, School of Science, Hokkaido University, Sapporo, Japan
| | - Miu Sudo
- Division of Macromolecular Functions, Department of Biological Science, School of Science, Hokkaido University, Sapporo, Japan
| | - Makoto Demura
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Division of Macromolecular Functions, Department of Biological Science, School of Science, Hokkaido University, Sapporo, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Takashi Kikukawa
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Division of Macromolecular Functions, Department of Biological Science, School of Science, Hokkaido University, Sapporo, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Takashi Tsukamoto
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Division of Macromolecular Functions, Department of Biological Science, School of Science, Hokkaido University, Sapporo, Japan; Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
2
|
My remembrances of H.G. Khorana: exploring the mechanism of bacteriorhodopsin with site-directed mutagenesis and FTIR difference spectroscopy. Biophys Rev 2023; 15:103-110. [PMID: 36909952 PMCID: PMC9995631 DOI: 10.1007/s12551-023-01046-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
H.G. Khorana's seminal contributions to molecular biology are well-known. He also had a lesser known but still major influence on current application of advanced vibrational spectroscopic techniques such as FTIR difference spectroscopy to explore the mechanism of bacteriorhodopsin and other integral membrane proteins. In this review, I provide a personal perspective of my collaborative research and interactions with Gobind, from 1982 to 1995 when our groups published over 25 papers together which resulted in an early picture of key features of the bacteriorhodopsin proton pump mechanism. Much of this early work served as a blueprint for subsequent advances based on combining protein bioengineering and vibrational spectroscopic techniques to study integral membrane proteins.
Collapse
|
3
|
Govorunova EG, Sineshchekov OA, Brown LS, Bondar AN, Spudich JL. Structural Foundations of Potassium Selectivity in Channelrhodopsins. mBio 2022; 13:e0303922. [PMID: 36413022 PMCID: PMC9765531 DOI: 10.1128/mbio.03039-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
Potassium-selective channelrhodopsins (KCRs) are light-gated K+ channels recently found in the stramenopile protist Hyphochytrium catenoides. When expressed in neurons, KCRs enable high-precision optical inhibition of spiking (optogenetic silencing). KCRs are capable of discriminating K+ from Na+ without the conventional K+ selectivity filter found in classical K+ channels. The genome of H. catenoides also encodes a third paralog that is more permeable for Na+ than for K+. To identify structural motifs responsible for the unusual K+ selectivity of KCRs, we systematically analyzed a series of chimeras and mutants of this protein. We found that mutations of three critical residues in the paralog convert its Na+-selective channel into a K+-selective one. Our characterization of homologous proteins from other protists (Colponema vietnamica, Cafeteria burkhardae, and Chromera velia) and metagenomic samples confirmed the importance of these residues for K+ selectivity. We also show that Trp102 and Asp116, conserved in all three H. catenoides paralogs, are necessary, although not sufficient, for K+ selectivity. Our results provide the foundation for further engineering of KCRs for optogenetic needs. IMPORTANCE Recently discovered microbial light-gated ion channels (channelrhodopsins) with a higher permeability for K+ than for Na+ (potassium-selective channelrhodopsins [kalium channelrhodopsins, or KCRs]) demonstrate an alternative K+ selectivity mechanism, unrelated to well-characterized "selectivity filters" of voltage- and ligand-gated K+ channels. KCRs can be used for optogenetic inhibition of neuronal firing and potentially for the development of gene therapies to treat neurological and cardiovascular disorders. In this study, we identified structural motifs that determine the K+ selectivity of KCRs that provide the foundation for their further improvement as optogenetic tools.
Collapse
Affiliation(s)
- Elena G. Govorunova
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Oleg A. Sineshchekov
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| | - Leonid S. Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | - Ana-Nicoleta Bondar
- Faculty of Physics, University of Bucharest, Bucharest, Romania
- Institute of Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany
| | - John L. Spudich
- Center for Membrane Biology, Department of Biochemistry & Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
4
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
5
|
Conformational alterations in unidirectional ion transport of a light-driven chloride pump revealed using X-ray free electron lasers. Proc Natl Acad Sci U S A 2022; 119:2117433119. [PMID: 35197289 PMCID: PMC8892520 DOI: 10.1073/pnas.2117433119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 01/06/2023] Open
Abstract
Light-driven chloride pumps have been identified in various species, including archaea and marine flavobacteria. The function of ion transportation controllable by light is utilized for optogenetics tools in neuroscience. Chloride pumps differ among species, in terms of amino acid homology and structural similarity. Our time-resolved crystallographic studies using X-ray free electron lasers reveal the molecular mechanism of halide ion transfer in a light-driven chloride pump from a marine flavobacterium. Our data indicate a common mechanism in chloride pumping rhodopsins, as compared to previous low-temperature trapping studies of chloride pumps. These findings are significant not only for further improvements of optogenetic tools but also for a general understanding of the ion pumping mechanisms of microbial rhodopsins. Light-driven chloride-pumping rhodopsins actively transport anions, including various halide ions, across cell membranes. Recent studies using time-resolved serial femtosecond crystallography (TR-SFX) have uncovered the structural changes and ion transfer mechanisms in light-driven cation-pumping rhodopsins. However, the mechanism by which the conformational changes pump an anion to achieve unidirectional ion transport, from the extracellular side to the cytoplasmic side, in anion-pumping rhodopsins remains enigmatic. We have collected TR-SFX data of Nonlabens marinus rhodopsin-3 (NM-R3), derived from a marine flavobacterium, at 10-µs and 1-ms time points after photoexcitation. Our structural analysis reveals the conformational alterations during ion transfer and after ion release. Movements of the retinal chromophore initially displace a conserved tryptophan to the cytoplasmic side of NM-R3, accompanied by a slight shift of the halide ion bound to the retinal. After ion release, the inward movements of helix C and helix G and the lateral displacements of the retinal block access to the extracellular side of NM-R3. Anomalous signal data have also been obtained from NM-R3 crystals containing iodide ions. The anomalous density maps provide insight into the halide binding site for ion transfer in NM-R3.
Collapse
|
6
|
Govorunova EG, Sineshchekov OA, Spudich JL. Emerging Diversity of Channelrhodopsins and Their Structure-Function Relationships. Front Cell Neurosci 2022; 15:800313. [PMID: 35140589 PMCID: PMC8818676 DOI: 10.3389/fncel.2021.800313] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cation and anion channelrhodopsins (CCRs and ACRs, respectively) from phototactic algae have become widely used as genetically encoded molecular tools to control cell membrane potential with light. Recent advances in polynucleotide sequencing, especially in environmental samples, have led to identification of hundreds of channelrhodopsin homologs in many phylogenetic lineages, including non-photosynthetic protists. Only a few CCRs and ACRs have been characterized in detail, but there are indications that ion channel function has evolved within the rhodopsin superfamily by convergent routes. The diversity of channelrhodopsins provides an exceptional platform for the study of structure-function evolution in membrane proteins. Here we review the current state of channelrhodopsin research and outline perspectives for its further development.
Collapse
|
7
|
Tsujimura M, Kojima K, Kawanishi S, Sudo Y, Ishikita H. Proton transfer pathway in anion channelrhodopsin-1. eLife 2021; 10:72264. [PMID: 34930528 PMCID: PMC8691836 DOI: 10.7554/elife.72264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/25/2021] [Indexed: 12/31/2022] Open
Abstract
Anion channelrhodopsin from Guillardia theta (GtACR1) has Asp234 (3.2 Å) and Glu68 (5.3 Å) near the protonated Schiff base. Here, we investigate mutant GtACR1s (e.g., E68Q/D234N) expressed in HEK293 cells. The influence of the acidic residues on the absorption wavelengths was also analyzed using a quantum mechanical/molecular mechanical approach. The calculated protonation pattern indicates that Asp234 is deprotonated and Glu68 is protonated in the original crystal structures. The D234E mutation and the E68Q/D234N mutation shorten and lengthen the measured and calculated absorption wavelengths, respectively, which suggests that Asp234 is deprotonated in the wild-type GtACR1. Molecular dynamics simulations show that upon mutation of deprotonated Asp234 to asparagine, deprotonated Glu68 reorients toward the Schiff base and the calculated absorption wavelength remains unchanged. The formation of the proton transfer pathway via Asp234 toward Glu68 and the disconnection of the anion conducting channel are likely a basis of the gating mechanism.
Collapse
Affiliation(s)
- Masaki Tsujimura
- Department of Applied Chemistry, The University of Tokyo, Tokyo, Japan
| | - Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shiho Kawanishi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, Tokyo, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Li H, Huang CY, Govorunova EG, Sineshchekov OA, Yi A, Rothschild KJ, Wang M, Zheng L, Spudich JL. The crystal structure of bromide-bound GtACR1 reveals a pre-activated state in the transmembrane anion tunnel. eLife 2021; 10:65903. [PMID: 33998458 PMCID: PMC8172240 DOI: 10.7554/elife.65903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/16/2021] [Indexed: 12/16/2022] Open
Abstract
The crystal structure of the light-gated anion channel GtACR1 reported in our previous Research Article (Li et al., 2019) revealed a continuous tunnel traversing the protein from extracellular to intracellular pores. We proposed the tunnel as the conductance channel closed by three constrictions: C1 in the extracellular half, mid-membrane C2 containing the photoactive site, and C3 on the cytoplasmic side. Reported here, the crystal structure of bromide-bound GtACR1 reveals structural changes that relax the C1 and C3 constrictions, including a novel salt-bridge switch mechanism involving C1 and the photoactive site. These findings indicate that substrate binding induces a transition from an inactivated state to a pre-activated state in the dark that facilitates channel opening by reducing free energy in the tunnel constrictions. The results provide direct evidence that the tunnel is the closed form of the channel of GtACR1 and shed light on the light-gated channel activation mechanism.
Collapse
Affiliation(s)
- Hai Li
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center - McGovern Medical School, Houston, United States
| | - Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Elena G Govorunova
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center - McGovern Medical School, Houston, United States
| | - Oleg A Sineshchekov
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center - McGovern Medical School, Houston, United States
| | - Adrian Yi
- Molecular Biophysics Laboratory, Photonics Center and Department of Physics, Boston University, Boston, United States
| | - Kenneth J Rothschild
- Molecular Biophysics Laboratory, Photonics Center and Department of Physics, Boston University, Boston, United States
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Lei Zheng
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center - McGovern Medical School, Houston, United States
| | - John L Spudich
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center - McGovern Medical School, Houston, United States
| |
Collapse
|