1
|
Sheridan J, Grata A, Dorr J, Suva EE, Bresteau E, Mitchell LR, Hassan O, Mitchell B. Centriolar defects underlie a primary ciliary dyskinesia phenotype in an adenylate kinase 7 deficient ciliated epithelium. Dev Biol 2025; 524:152-161. [PMID: 40381709 DOI: 10.1016/j.ydbio.2025.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/01/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
The skin of Xenopus embryos contains numerous multiciliated cells (MCCs), which collectively generate a directed fluid flow across the epithelial surface essential for distributing the overlaying mucous. MCCs develop into highly specialized cells to generate this flow, containing approximately 150 evenly spaced centrioles that give rise to motile cilia. MCC-driven fluid flow can be impaired when ciliary dysfunction occurs, resulting in primary ciliary dyskinesia (PCD) in humans. Mutations in a large number of genes (∼50) have been found to be causative to PCD. Recently, studies have linked low levels of Adenylate Kinase 7 (AK7) gene expression to patients with PCD; however, the mechanism for this link remains unclear. Additionally, AK7 mutations have been linked to multiple PCD patients. Adenylate kinases modulate ATP production and consumption, with AK7 explicitly associated with motile cilia. Here we reproduce an AK7 PCD-like phenotype in Xenopus and describe the cellular consequences that occur with manipulation of AK7 levels. We show that AK7 localizes throughout the cilia in a DPY30 domain-dependent manner, suggesting a ciliary function. Additionally, we find that AK7 overexpression increases centriole number, suggesting a role in regulating centriole biogenesis. We find that in AK7-depleted embryos, cilia number, length, and beat frequency are all reduced, which in turn significantly decreases the tissue-wide mucociliary flow. Additionally, we find a decrease in centriole number and an increase in sub-apical centrioles, implying that AK7 influences both centriole biogenesis and docking, which we propose underlie its defect in ciliogenesis. We find that both the AK domain and the DPY30 domain are required for proper centriole regulation. We propose that AK7 plays a role in PCD by impacting centriole biogenesis and apical docking, ultimately leading to ciliogenesis defects that impair mucociliary clearance.
Collapse
Affiliation(s)
- Jennifer Sheridan
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, USA
| | - Aline Grata
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, USA
| | - Julia Dorr
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, USA
| | - Eve E Suva
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, USA
| | - Enzo Bresteau
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, USA
| | - Linus R Mitchell
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, USA
| | - Osama Hassan
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, USA
| | - Brian Mitchell
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, USA; Northwestern University, Lurie Cancer Center, USA.
| |
Collapse
|
2
|
Nakayama T, Kulkarni S. Genomic Complexity of ccdc40 in Xenopus : Implications for CRISPR Targeting and Disease Modeling. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001596. [PMID: 40415903 PMCID: PMC12100157 DOI: 10.17912/micropub.biology.001596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 04/25/2025] [Accepted: 05/03/2025] [Indexed: 05/27/2025]
Abstract
Mutations in CCDC40 cause primary ciliary dyskinesia in humans. To evaluate the pathogenicity of variants in CCDC40 , we examined the genomic structure of this gene in Xenopus tropicalis , a diploid frog suitable as a model for genetic studies. We identified inconsistencies in the current ccdc40 gene model and discovered two distinct ccdc40 genes near the previously annotated locus. Surprisingly, Xenopus laevis , an allotetraploid species that typically has two homoeologs, contains only one homoeolog ( ccdc40.S ), making it a more suitable genetic model for studying ccdc40 function and potentially expediting the functional characterization of CCDC40 variants linked to primary ciliary dyskinesia.
Collapse
Affiliation(s)
- Takuya Nakayama
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States
| | - Saurabh Kulkarni
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
3
|
Rao VG, Subramanianbalachandar VA, Magaj MM, Redemann S, Kulkarni SS. Mechanisms of cilia regeneration in Xenopus multiciliated epithelium in vivo. EMBO Rep 2025; 26:2192-2220. [PMID: 40087471 PMCID: PMC12019409 DOI: 10.1038/s44319-025-00414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 02/04/2025] [Accepted: 02/18/2025] [Indexed: 03/17/2025] Open
Abstract
Cilia regeneration is a physiological event, and while studied extensively in unicellular organisms, it remains poorly understood in vertebrates. In this study, using Xenopus multiciliated cells (MCCs), we demonstrate that, unlike unicellular organisms, deciliation removes the transition zone (TZ) and the ciliary axoneme. While MCCs immediately begin regenerating the axoneme, surprisingly, the TZ assembly is delayed. However, ciliary tip proteins, Sentan and Clamp, localize to regenerating cilia without delay. Using cycloheximide (CHX) to block protein synthesis, we show that the TZ protein B9d1 is not present in the cilia precursor pool and requires new transcription/translation, providing insights into the delayed repair of TZ. Moreover, MCCs in CHX treatment assemble fewer but near wild-type length cilia by gradually concentrating ciliogenesis proteins like IFTs at a few basal bodies. Using mathematical modeling, we show that cilia length, compared to cilia number, has a larger influence on the force generated by MCCs. Our results question the requirement of TZ in motile cilia assembly and provide insights into the fundamental question of how cells determine organelle size and number.
Collapse
Affiliation(s)
- Venkatramanan G Rao
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22903, USA
| | | | - Magdalena M Magaj
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22903, USA
- Center for Membrane & Cell Physiology, University of Virginia, Charlottesville, VA, 22903, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22903, USA
| | - Stefanie Redemann
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22903, USA
- Center for Membrane & Cell Physiology, University of Virginia, Charlottesville, VA, 22903, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22903, USA
| | - Saurabh S Kulkarni
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22903, USA.
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA.
| |
Collapse
|
4
|
Basso M, Mahuzier A, Ali SK, Marty A, Faucourt M, Lennon-Duménil AM, Srivastava A, Khoury Damaa M, Bankolé A, Meunier A, Yamada A, Plastino J, Spassky N, Delgehyr N. Actin-based deformations of the nucleus control mouse multiciliated ependymal cell differentiation. Dev Cell 2025; 60:749-761.e5. [PMID: 39662468 DOI: 10.1016/j.devcel.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 07/16/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024]
Abstract
Ependymal cells (ECs) are multiciliated cells in the brain that contribute to cerebrospinal fluid flow. ECs are specified during embryonic stages but differentiate later in development. Their differentiation depends on genes such as GEMC1 and MCIDAS in conjunction with E2F4/5 as well as on cell-cycle-related factors. In the mouse brain, we observe that nuclear deformation accompanies EC differentiation. Tampering with these deformations either by decreasing F-actin levels or by severing the link between the nucleus and the actin cytoskeleton blocks differentiation. Conversely, increasing F-actin by knocking out the Arp2/3 complex inhibitor Arpin or artificially deforming the nucleus activates differentiation. These data are consistent with actin polymerization triggering nuclear deformation and jump starting the signaling that produces ECs. A player in this process is the retinoblastoma 1 (RB1) protein, whose phosphorylation prompts MCIDAS activation. Overall, this study identifies a role for actin-based mechanical inputs to the nucleus as controlling factors in cell differentiation.
Collapse
Affiliation(s)
- Marianne Basso
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Alexia Mahuzier
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Syed Kaabir Ali
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France; Laboratoire de physique de l'Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France; PASTEUR, Département de Chimie, Ecole Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005 Paris, France
| | - Anaïs Marty
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005 Paris, France
| | - Marion Faucourt
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | | | - Ayush Srivastava
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Michella Khoury Damaa
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Alexia Bankolé
- Institut Necker Enfants Malades (INEM), Université Paris Cité, CNRS, INSERM, 75015 Paris, France
| | - Alice Meunier
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Ayako Yamada
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005 Paris, France
| | - Julie Plastino
- Laboratoire de physique de l'Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Nathalie Spassky
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Nathalie Delgehyr
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| |
Collapse
|
5
|
Narayanan V, Rao VG, Arrigo A, Kulkarni SS. Multiciliated cells adapt the mechanochemical Piezo1-Erk1/2-Yap1 cell proliferation axis to fine-tune centriole number. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634139. [PMID: 39896494 PMCID: PMC11785133 DOI: 10.1101/2025.01.21.634139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Multiciliated cells (MCCs) are specialized epithelial cells that undergo massive amplification of centrioles, constructing several motile cilia to propel fluid flow. The abundance of cilia is critical for efficient fluid flow, yet how MCCs regulate centriole/cilia numbers remains a major knowledge gap. We have shown that mechanical tension plays a central role in regulating apical area and centriole number in MCCs. Here, we demonstrate that centriole amplification is controlled by a mechanochemical pathway essential for cell proliferation in cycling cells. Specifically, MCCs under tension use Piezo1-mediated calcium signaling to drive Erk½ phosphorylation via PKC and subsequent Yap1 activation. Remarkably, MCCs use this pathway to activate a cilia-specific transcription program, influencing the expression of Foxj1, a master regulator of motile ciliogenesis. Our work is the first to identify a novel function for an important mechanochemical pathway in centriole amplification in MCCs, offering new insights into ciliopathies and cancer, where aberrant centriole numbers are implicated. Teaser This study demonstrates that multiciliated cells utilize the mechanochemical Piezo1-Erk1/2-Yap1 cell proliferation axis to activate the cilia-specific transcriptional factor Foxj1 and amplify centrioles in a tension- dependent manner.
Collapse
|
6
|
Sripinun P, See LP, Nikonov S, Chavali VRM, Vrathasha V, He J, O'Brien JM, Xia J, Lu W, Mitchell CH. Piezo1 and Piezo2 channels in retinal ganglion cells and the impact of Piezo1 stimulation on light-dependent neural activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.599602. [PMID: 38979351 PMCID: PMC11230181 DOI: 10.1101/2024.06.25.599602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Piezo channels are associated with neuropathology in diseases like traumatic brain injury and glaucoma, but pathways linking tissue stretch to aberrant neural signaling remain unclear. The present study demonstrates that Piezo1 activation increases action potential frequency in response to light and the spontaneous dark signal from mouse retinal explants. Piezo1 stimulation was sufficient to increase cytoplasmic Ca 2+ in soma and neurites, while stretch increased spiking activity in current clamp recordings from of isolated retinal ganglion cells (RGCs). Axon-marker beta-tubulin III colocalized with both Piezo1 and Piezo2 protein in the mouse optic nerve head, while RGC nuclear marker BRN3A colocalized with Piezo channels in the soma. Piezo1 was also present on GFAP-positive regions in the optic nerve head and colocalized with glutamine synthetase in the nerve fiber layer, suggesting expression in optic nerve head astrocytes and Müller glia end feet, respectively. Human RGCs from induced pluripotent stem cells also expressed Piezo1 and Piezo2 in soma and axons, while staining patterns in rats resembled those in mice. mRNA message for Piezo1 was greatest in the RPE/choroid tissue, while Piezo2 levels were highest in the optic nerve, with both channels also expressed in the retina. Increased expression of Piezo1 and Piezo2 occurred both 1 and 10 days after a single stretch in vivo; this increase suggests a potential role in rising sensitivity to repeated nerve stretch. In summary, Piezo1 and Piezo2 were detected in the soma and axons of RGCs, and stimulation affected the light-dependent output of RGCs. The rise in RGCs excitability induced by Piezo stimulation may have parallels to the early disease progression in models of glaucoma and other retinal degenerations. Highlights Activation of Piezo1 excites retinal ganglion cells, paralleling the early neurodegenerative progression in glaucoma mouse models and retinal degeneration.Piezo1 and Piezo2 were expressed in axons and soma of retinal ganglion cells in mice, rats, and human iPSC-RGCs.Functional assays confirmed Piezo1 in soma and neurites of neurons. Sustained elevation of Piezo1 and Piezo2 occurred after a single transient stretch may enhance damage from repeated traumatic nerve injury. Abstract Figure
Collapse
|
7
|
Chouhan G, Lewis NS, Ghanekar V, Koti Ainavarapu SR, Inamdar MM, Sonawane M. Cell-size-dependent regulation of Ezrin dictates epithelial resilience to stretch by countering myosin-II-mediated contractility. Cell Rep 2024; 43:114271. [PMID: 38823013 DOI: 10.1016/j.celrep.2024.114271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024] Open
Abstract
The epithelial adaptations to mechanical stress are facilitated by molecular and tissue-scale changes that include the strengthening of junctions, cytoskeletal reorganization, and cell-proliferation-mediated changes in tissue rheology. However, the role of cell size in controlling these properties remains underexplored. Our experiments in the zebrafish embryonic epidermis, guided by theoretical estimations, reveal a link between epithelial mechanics and cell size, demonstrating that an increase in cell size compromises the tissue fracture strength and compliance. We show that an increase in E-cadherin levels in the proliferation-deficient epidermis restores epidermal compliance but not the fracture strength, which is largely regulated by Ezrin-an apical membrane-cytoskeleton crosslinker. We show that Ezrin fortifies the epithelium in a cell-size-dependent manner by countering non-muscle myosin-II-mediated contractility. This work uncovers the importance of cell size maintenance in regulating the mechanical properties of the epithelium and fostering protection against future mechanical stresses.
Collapse
Affiliation(s)
- Geetika Chouhan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | - Natasha Steffi Lewis
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | - Vallari Ghanekar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | | | - Mandar M Inamdar
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India.
| | - Mahendra Sonawane
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India.
| |
Collapse
|
8
|
Rao VG, Subramanianbalachandar V, Magaj MM, Redemann S, Kulkarni SS. Mechanisms of cilia regeneration in Xenopus multiciliated epithelium in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.14.544972. [PMID: 37398226 PMCID: PMC10312767 DOI: 10.1101/2023.06.14.544972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Cilia regeneration is a physiological event, and while studied extensively in unicellular organisms, it remains poorly understood in vertebrates. In this study, using Xenopus multiciliated cells (MCCs) as a model, we demonstrate that, unlike unicellular organisms, deciliation removes the transition zone (TZ) and the ciliary axoneme. While MCCs immediately begin the regeneration of the ciliary axoneme, surprisingly, the assembly of TZ is delayed. However, ciliary tip proteins, Sentan and Clamp, localize to regenerating cilia without delay. Using cycloheximide (CHX) to block new protein synthesis, we show that the TZ protein B9d1 is not a component of the cilia precursor pool and requires new transcription/translation, providing insights into the delayed repair of TZ. Moreover, MCCs in CHX treatment assemble fewer (∼ 10 vs. ∼150 in controls) but near wild-type length (ranging between 60 to 90%) cilia by gradually concentrating ciliogenesis proteins like IFTs at a select few basal bodies. Using mathematical modeling, we show that cilia length compared to cilia number influences the force generated by MCCs more. In summary, our results question the requirement of TZ in motile cilia assembly and provide insights into how cells determine organelle size and number.
Collapse
|
9
|
Lyu Q, Li Q, Zhou J, Zhao H. Formation and function of multiciliated cells. J Cell Biol 2024; 223:e202307150. [PMID: 38032388 PMCID: PMC10689204 DOI: 10.1083/jcb.202307150] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
In vertebrates, multiciliated cells (MCCs) are terminally differentiated cells that line the airway tracts, brain ventricles, and reproductive ducts. Each MCC contains dozens to hundreds of motile cilia that beat in a synchronized manner to drive fluid flow across epithelia, the dysfunction of which is associated with a group of human diseases referred to as motile ciliopathies, such as primary cilia dyskinesia. Given the dynamic and complex process of multiciliogenesis, the biological events essential for forming multiple motile cilia are comparatively unelucidated. Thanks to advancements in genetic tools, omics technologies, and structural biology, significant progress has been achieved in the past decade in understanding the molecular mechanism underlying the regulation of multiple motile cilia formation. In this review, we discuss recent studies with ex vivo culture MCC and animal models, summarize current knowledge of multiciliogenesis, and particularly highlight recent advances and their implications.
Collapse
Affiliation(s)
- Qian Lyu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Qingchao Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
10
|
Ventrella R, Kim SK, Sheridan J, Grata A, Bresteau E, Hassan OA, Suva EE, Walentek P, Mitchell BJ. Bidirectional multiciliated cell extrusion is controlled by Notch-driven basal extrusion and Piezo1-driven apical extrusion. Development 2023; 150:dev201612. [PMID: 37602491 PMCID: PMC10482390 DOI: 10.1242/dev.201612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
Xenopus embryos are covered with a complex epithelium containing numerous multiciliated cells (MCCs). During late-stage development, there is a dramatic remodeling of the epithelium that involves the complete loss of MCCs. Cell extrusion is a well-characterized process for driving cell loss while maintaining epithelial barrier function. Normal cell extrusion is typically unidirectional, whereas bidirectional extrusion is often associated with disease (e.g. cancer). We describe two distinct mechanisms for MCC extrusion, a basal extrusion driven by Notch signaling and an apical extrusion driven by Piezo1. Early in the process there is a strong bias towards basal extrusion, but as development continues there is a shift towards apical extrusion. Importantly, response to the Notch signal is age dependent and governed by the maintenance of the MCC transcriptional program such that extension of this program is protective against cell loss. In contrast, later apical extrusion is regulated by Piezo1, such that premature activation of Piezo1 leads to early extrusion while blocking Piezo1 leads to MCC maintenance. Distinct mechanisms for MCC loss underlie the importance of their removal during epithelial remodeling.
Collapse
Affiliation(s)
- Rosa Ventrella
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, IL 60611, USA
- Precision Medicine Program, Midwestern University, Downers Grove, IL 60515, USA
| | - Sun K. Kim
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, IL 60611, USA
| | - Jennifer Sheridan
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, IL 60611, USA
| | - Aline Grata
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, IL 60611, USA
| | - Enzo Bresteau
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, IL 60611, USA
| | - Osama A. Hassan
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, IL 60611, USA
| | - Eve E. Suva
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, IL 60611, USA
| | - Peter Walentek
- University of Freiburg, Renal Division, Internal Medicine IV, Medical Center and CIBSS Centre for Integrative Biological Signalling Studies, 79104 Freiburg im Breisgau, Germany
| | - Brian J. Mitchell
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, IL 60611, USA
- Northwestern University, Lurie Cancer Center, Chicago, IL 60611, USA
| |
Collapse
|
11
|
Sheridan J, Grata A, Suva EE, Bresteau E, Mitchell LR, Hassan O, Mitchell B. Novel centriolar defects underlie a primary ciliary dyskinesia phenotype in an adenylate kinase 7 deficient ciliated epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550535. [PMID: 37546962 PMCID: PMC10402086 DOI: 10.1101/2023.07.25.550535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The skin of Xenopus embryos contains numerous multiciliated cells (MCCs), which collectively generate a directed fluid flow across the epithelial surface essential for distributing the overlaying mucous. MCCs develop into highly specialized cells to generate this flow, containing approximately 150 evenly spaced centrioles that give rise to motile cilia. MCC-driven fluid flow can be impaired when ciliary dysfunction occurs, resulting in primary ciliary dyskinesia (PCD) in humans. Mutations in a large number of genes (~50) have been found to be causative to PCD. Recently, studies have linked low levels of Adenylate Kinase 7 (AK7) gene expression to patients with PCD; however, the mechanism for this link remains unclear. Additionally, AK7 mutations have been linked to multiple PCD patients. Adenylate kinases modulate ATP production and consumption, with AK7 explicitly associated with motile cilia. Here we reproduce an AK7 PCD-like phenotype in Xenopus and describe the cellular consequences that occur with manipulation of AK7 levels. We show that AK7 localizes throughout the cilia in a DPY30 domain-dependent manner, suggesting a ciliary function. Additionally, we find that AK7 overexpression increases centriole number, suggesting a role in regulating centriole biogenesis. We find that in AK7-depleted embryos, cilia number, length, and beat frequency are all reduced, which in turn, significantly decreases the tissue-wide mucociliary flow. Additionally, we find a decrease in centriole number and an increase in sub-apical centrioles, implying that AK7 influences both centriole biogenesis and docking, which we propose underlie its defect in ciliogenesis. We propose that AK7 plays a role in PCD by impacting centriole biogenesis and apical docking, ultimately leading to ciliogenesis defects that impair mucociliary clearance.
Collapse
Affiliation(s)
- Jennifer Sheridan
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
| | - Aline Grata
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
| | - Eve E. Suva
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
| | - Enzo Bresteau
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
| | - Linus R. Mitchell
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
| | - Osama Hassan
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
| | - Brian Mitchell
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
- Northwestern University, Lurie Cancer Center
| |
Collapse
|
12
|
Yaganoglu S, Kalyviotis K, Vagena-Pantoula C, Jülich D, Gaub BM, Welling M, Lopes T, Lachowski D, Tang SS, Del Rio Hernandez A, Salem V, Müller DJ, Holley SA, Vermot J, Shi J, Helassa N, Török K, Pantazis P. Highly specific and non-invasive imaging of Piezo1-dependent activity across scales using GenEPi. Nat Commun 2023; 14:4352. [PMID: 37468521 PMCID: PMC10356793 DOI: 10.1038/s41467-023-40134-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
Mechanosensing is a ubiquitous process to translate external mechanical stimuli into biological responses. Piezo1 ion channels are directly gated by mechanical forces and play an essential role in cellular mechanotransduction. However, readouts of Piezo1 activity are mainly examined by invasive or indirect techniques, such as electrophysiological analyses and cytosolic calcium imaging. Here, we introduce GenEPi, a genetically-encoded fluorescent reporter for non-invasive optical monitoring of Piezo1-dependent activity. We demonstrate that GenEPi has high spatiotemporal resolution for Piezo1-dependent stimuli from the single-cell level to that of the entire organism. GenEPi reveals transient, local mechanical stimuli in the plasma membrane of single cells, resolves repetitive contraction-triggered stimulation of beating cardiomyocytes within microtissues, and allows for robust and reliable monitoring of Piezo1-dependent activity in vivo. GenEPi will enable non-invasive optical monitoring of Piezo1 activity in mechanochemical feedback loops during development, homeostatic regulation, and disease.
Collapse
Affiliation(s)
- Sine Yaganoglu
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | | | | | - Dörthe Jülich
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Benjamin M Gaub
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | - Maaike Welling
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
- Department of Bioengineering, Imperial College London, London, UK
| | - Tatiana Lopes
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| | | | - See Swee Tang
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Victoria Salem
- Department of Bioengineering, Imperial College London, London, UK
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | - Scott A Holley
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Julien Vermot
- Department of Bioengineering, Imperial College London, London, UK
| | - Jian Shi
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, University of Leeds, Leeds, UK
| | - Nordine Helassa
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Katalin Török
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Periklis Pantazis
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland.
- Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
13
|
Ringers C, Bialonski S, Ege M, Solovev A, Hansen JN, Jeong I, Friedrich BM, Jurisch-Yaksi N. Novel analytical tools reveal that local synchronization of cilia coincides with tissue-scale metachronal waves in zebrafish multiciliated epithelia. eLife 2023; 12:77701. [PMID: 36700548 PMCID: PMC9940908 DOI: 10.7554/elife.77701] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 01/25/2023] [Indexed: 01/27/2023] Open
Abstract
Motile cilia are hair-like cell extensions that beat periodically to generate fluid flow along various epithelial tissues within the body. In dense multiciliated carpets, cilia were shown to exhibit a remarkable coordination of their beat in the form of traveling metachronal waves, a phenomenon which supposedly enhances fluid transport. Yet, how cilia coordinate their regular beat in multiciliated epithelia to move fluids remains insufficiently understood, particularly due to lack of rigorous quantification. We combine experiments, novel analysis tools, and theory to address this knowledge gap. To investigate collective dynamics of cilia, we studied zebrafish multiciliated epithelia in the nose and the brain. We focused mainly on the zebrafish nose, due to its conserved properties with other ciliated tissues and its superior accessibility for non-invasive imaging. We revealed that cilia are synchronized only locally and that the size of local synchronization domains increases with the viscosity of the surrounding medium. Even though synchronization is local only, we observed global patterns of traveling metachronal waves across the zebrafish multiciliated epithelium. Intriguingly, these global wave direction patterns are conserved across individual fish, but different for left and right noses, unveiling a chiral asymmetry of metachronal coordination. To understand the implications of synchronization for fluid pumping, we used a computational model of a regular array of cilia. We found that local metachronal synchronization prevents steric collisions, i.e., cilia colliding with each other, and improves fluid pumping in dense cilia carpets, but hardly affects the direction of fluid flow. In conclusion, we show that local synchronization together with tissue-scale cilia alignment coincide and generate metachronal wave patterns in multiciliated epithelia, which enhance their physiological function of fluid pumping.
Collapse
Affiliation(s)
- Christa Ringers
- Department of Clinical and Molecular Medicine, Norwegian University of Science and TechnologyTrondheimNorway
- Kavli Institute for Systems, Neuroscience and Centre for Neural Computation, Norwegian University of Science and TechnologyTrondheimNorway
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Stephan Bialonski
- Institute for Data-Driven Technologies, Aachen University of Applied SciencesJülichGermany
- Center for Advancing Electronics, Technical University DresdenDresdenGermany
| | - Mert Ege
- Department of Clinical and Molecular Medicine, Norwegian University of Science and TechnologyTrondheimNorway
| | - Anton Solovev
- Center for Advancing Electronics, Technical University DresdenDresdenGermany
- Cluster of Excellence 'Physics of Life', Technical University DresdenDresdenGermany
| | - Jan Niklas Hansen
- Kavli Institute for Systems, Neuroscience and Centre for Neural Computation, Norwegian University of Science and TechnologyTrondheimNorway
| | - Inyoung Jeong
- Department of Clinical and Molecular Medicine, Norwegian University of Science and TechnologyTrondheimNorway
| | - Benjamin M Friedrich
- Center for Advancing Electronics, Technical University DresdenDresdenGermany
- Cluster of Excellence 'Physics of Life', Technical University DresdenDresdenGermany
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Norwegian University of Science and TechnologyTrondheimNorway
- Kavli Institute for Systems, Neuroscience and Centre for Neural Computation, Norwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
14
|
Ventura G, Sedzinski J. Emerging concepts on the mechanical interplay between migrating cells and microenvironment in vivo. Front Cell Dev Biol 2022; 10:961460. [PMID: 36238689 PMCID: PMC9551290 DOI: 10.3389/fcell.2022.961460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
During embryogenesis, tissues develop into elaborate collectives through a myriad of active mechanisms, with cell migration being one of the most common. As cells migrate, they squeeze through crowded microenvironments to reach the positions where they ultimately execute their function. Much of our knowledge of cell migration has been based on cells' ability to navigate in vitro and how cells respond to the mechanical properties of the extracellular matrix (ECM). These simplified and largely passive surroundings contrast with the complexity of the tissue environments in vivo, where different cells and ECM make up the milieu cells migrate in. Due to this complexity, comparatively little is known about how the physical interactions between migrating cells and their tissue environment instruct cell movement in vivo. Work in different model organisms has been instrumental in addressing this question. Here, we explore various examples of cell migration in vivo and describe how the physical interplay between migrating cells and the neighboring microenvironment controls cell behavior. Understanding this mechanical cooperation in vivo will provide key insights into organ development, regeneration, and disease.
Collapse
Affiliation(s)
| | - Jakub Sedzinski
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Barbeito P, Garcia-Gonzalo FR. One master to rule them all. eLife 2022; 11:82873. [PMID: 36149392 PMCID: PMC9507122 DOI: 10.7554/elife.82873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Multiciliated cells rely on the same master regulator as dividing cells to amplify the number of centrioles needed to generate the hair-like structures that coat their cell surface.
Collapse
Affiliation(s)
- Pablo Barbeito
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas, Madrid, Spain.,CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Francesc R Garcia-Gonzalo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas, Madrid, Spain.,CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
16
|
Soh AWJ, Pearson CG. Ciliate cortical organization and dynamics for cell motility: Comparing ciliates and vertebrates. J Eukaryot Microbiol 2022; 69:e12880. [PMID: 34897878 PMCID: PMC9188629 DOI: 10.1111/jeu.12880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The generation of efficient fluid flow is crucial for organismal development and homeostasis, sexual reproduction, and motility. Multi-ciliated cells possess fields of motile cilia that beat in synchrony to propel fluid. Ciliary arrays are remarkably conserved in their organization and function. Ciliates have polarized multi-ciliary arrays (MCAs) to promote fluid flow for cell motility. The ciliate cortex is decorated with hundreds of basal bodies (BB) forming linear rows along the cell's anterior-posterior axis. BBs scaffold and position cilia to form the organized ciliary array. Nascent BBs assemble at the base of BBs. As nascent BBs mature, they integrate into the cortical BB and cytoskeletal network and nucleate their own cilium. The organization of MCAs is balanced between cortical stability and cortical dynamism. The cortical cytoskeletal network both establishes and maintains a stable organization of the MCA in the face of mechanical forces exerted by ciliary beating. At the same time, MCA organization is plastic, such that it remodels for optimal ciliary mobility during development and in response to environmental conditions. Such plasticity promotes effective feeding and ecological behavior required for these organisms. Together, these properties allow an organism to effectively sense, adapt to, and move through its environment.
Collapse
Affiliation(s)
- Adam W. J. Soh
- Anschutz Medical Campus, Department of Cell and Developmental Biology, University of Colorado, Aurora, CO 80045
| | - Chad G. Pearson
- Anschutz Medical Campus, Department of Cell and Developmental Biology, University of Colorado, Aurora, CO 80045
| |
Collapse
|
17
|
Salman HE, Jurisch-Yaksi N, Yalcin HC. Computational Modeling of Motile Cilia-Driven Cerebrospinal Flow in the Brain Ventricles of Zebrafish Embryo. Bioengineering (Basel) 2022; 9:bioengineering9090421. [PMID: 36134967 PMCID: PMC9495466 DOI: 10.3390/bioengineering9090421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Motile cilia are hair-like microscopic structures which generate directional flow to provide fluid transport in various biological processes. Ciliary beating is one of the sources of cerebrospinal flow (CSF) in brain ventricles. In this study, we investigated how the tilt angle, quantity, and phase relationship of cilia affect CSF flow patterns in the brain ventricles of zebrafish embryos. For this purpose, two-dimensional computational fluid dynamics (CFD) simulations are performed to determine the flow fields generated by the motile cilia. The cilia are modeled as thin membranes with prescribed motions. The cilia motions were obtained from a two-day post-fertilization zebrafish embryo previously imaged via light sheet fluorescence microscopy. We observed that the cilium angle significantly alters the generated flow velocity and mass flow rates. As the cilium angle gets closer to the wall, higher flow velocities are observed. Phase difference between two adjacent beating cilia also affects the flow field as the cilia with no phase difference produce significantly lower mass flow rates. In conclusion, our simulations revealed that the most efficient method for cilia-driven fluid transport relies on the alignment of multiple cilia beating with a phase difference, which is also observed in vivo in the developing zebrafish brain.
Collapse
Affiliation(s)
- Huseyin Enes Salman
- Department of Mechanical Engineering, TOBB University of Economics and Technology, Ankara 06510, Turkey
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | | |
Collapse
|
18
|
LoMastro GM, Drown CG, Maryniak AL, Jewett CE, Strong MA, Holland AJ. PLK4 drives centriole amplification and apical surface area expansion in multiciliated cells. eLife 2022; 11:80643. [PMID: 35969030 PMCID: PMC9507127 DOI: 10.7554/elife.80643] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/12/2022] [Indexed: 11/19/2022] Open
Abstract
Multiciliated cells (MCCs) are terminally differentiated epithelia that assemble multiple motile cilia used to promote fluid flow. To template these cilia, MCCs dramatically expand their centriole content during a process known as centriole amplification. In cycling cells, the master regulator of centriole assembly Polo-like kinase 4 (PLK4) is essential for centriole duplication; however recent work has questioned the role of PLK4 in centriole assembly in MCCs. To address this discrepancy, we created genetically engineered mouse models and demonstrated that both PLK4 protein and kinase activity are critical for centriole amplification in MCCs. Tracheal epithelial cells that fail centriole amplification accumulate large assemblies of centriole proteins and do not undergo apical surface area expansion. These results show that the initial stages of centriole assembly are conserved between cycling cells and MCCs and suggest that centriole amplification and surface area expansion are coordinated events. Every day, we inhale thousands of viruses, bacteria and pollution particles. To protect against these threats, cells in our airways produce mucus that traps inhaled particles before they reach the lungs. This mucus then needs to be removed to prevent it from becoming a breeding ground for microbes that may cause a respiratory infection. This is the responsibility of cells covered in tiny hair-like structures called cilia that move together to propel the mucus-trapped particles out of the airways. These specialized cells can have up to 300 motile cilia on their surface, which grow from structures called centrioles that then anchor the cilia in place. Multiciliated cells are generated from precursor cells that only have two centrioles. Therefore, as these precursors develop, they must produce large numbers of centrioles, considerably more than other cells that only need a couple of extra centrioles during cell division. However, recent studies have questioned whether the precursors of multiciliated cells rely on the same regulatory proteins to produce centrioles as dividing cells. To help answer this question, LoMastro et al. created genetically engineered mice that lacked or had an inactive form of PLK4, a protein which controls centriole formation in all cell types lacking multiple cilia. This showed that multiciliated cells also need this protein to produce centrioles. LoMastro et al. also found that multiciliated cells became larger while building centrioles, suggesting that this amplification process helps control the cell’s final size. Defects in motile cilia activity can lead to fluid build-up in the brain, respiratory infections and infertility. Unfortunately, these disorders are difficult to diagnose currently and there is no cure. The findings of LoMastro et al. further our understanding of how motile cilia are built and maintained, and may help future scientists to develop better diagnostic tools and treatments for patients.
Collapse
Affiliation(s)
- Gina M LoMastro
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Chelsea G Drown
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Aubrey L Maryniak
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Cayla E Jewett
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Margaret A Strong
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Andrew Jon Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
19
|
Mahjoub MR, Nanjundappa R, Harvey MN. Development of a multiciliated cell. Curr Opin Cell Biol 2022; 77:102105. [PMID: 35716530 DOI: 10.1016/j.ceb.2022.102105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
Abstract
Multiciliated cells (MCC) are evolutionary conserved, highly specialized cell types that contain dozens to hundreds of motile cilia that they use to propel fluid directionally. To template these cilia, each MCC produces between 30 and 500 basal bodies via a process termed centriole amplification. Much progress has been made in recent years in understanding the pathways involved in MCC fate determination, differentiation, and ciliogenesis. Recent studies using mammalian cell culture systems, mice, Xenopus, and other model organisms have started to uncover the mechanisms involved in centriole and cilia biogenesis. Yet, how MCC progenitor cells regulate the precise number of centrioles and cilia during their differentiation remains largely unknown. In this review, we will examine recent findings that address this fundamental question.
Collapse
Affiliation(s)
- Moe R Mahjoub
- Department of Medicine (Nephrology Division), Washington University, St Louis, MO, USA; Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA.
| | - Rashmi Nanjundappa
- Department of Medicine (Nephrology Division), Washington University, St Louis, MO, USA
| | - Megan N Harvey
- Department of Medicine (Nephrology Division), Washington University, St Louis, MO, USA
| |
Collapse
|
20
|
Zhao H, Sun J, Insinna C, Lu Q, Wang Z, Nagashima K, Stauffer J, Andresson T, Specht S, Perera S, Daar IO, Westlake CJ. Male infertility-associated Ccdc108 regulates multiciliogenesis via the intraflagellar transport machinery. EMBO Rep 2022; 23:e52775. [PMID: 35201641 PMCID: PMC8982597 DOI: 10.15252/embr.202152775] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Motile cilia on the cell surface generate movement and directional fluid flow that is crucial for various biological processes. Dysfunction of these cilia causes human diseases such as sinopulmonary disease and infertility. Here, we show that Ccdc108, a protein linked to male infertility, has an evolutionarily conserved requirement in motile multiciliation. Using Xenopus laevis embryos, Ccdc108 is shown to be required for the migration and docking of basal bodies to the apical membrane in epidermal multiciliated cells (MCCs). We demonstrate that Ccdc108 interacts with the IFT‐B complex, and the ciliation requirement for Ift74 overlaps with Ccdc108 in MCCs. Both Ccdc108 and IFT‐B proteins localize to migrating centrioles, basal bodies, and cilia in MCCs. Importantly, Ccdc108 governs the centriolar recruitment of IFT while IFT licenses the targeting of Ccdc108 to the cilium. Moreover, Ccdc108 is required for the centriolar recruitment of Drg1 and activated RhoA, factors that help establish the apical actin network in MCCs. Together, our studies indicate that Ccdc108 and IFT‐B complex components cooperate in multiciliogenesis.
Collapse
Affiliation(s)
- Huijie Zhao
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Jian Sun
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Christine Insinna
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Quanlong Lu
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Ziqiu Wang
- Cancer Research Technology Program, Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Kunio Nagashima
- Cancer Research Technology Program, Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Jimmy Stauffer
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory (PCL) Mass Spectrometry Center, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Suzanne Specht
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Sumeth Perera
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Ira O Daar
- Cancer & Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Christopher J Westlake
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
21
|
Lee M, Nagashima K, Yoon J, Sun J, Wang Z, Carpenter C, Lee HK, Hwang YS, Westlake CJ, Daar IO. CEP97 phosphorylation by Dyrk1a is critical for centriole separation during multiciliogenesis. J Cell Biol 2022; 221:e202102110. [PMID: 34787650 PMCID: PMC8719716 DOI: 10.1083/jcb.202102110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/18/2021] [Accepted: 10/04/2021] [Indexed: 11/22/2022] Open
Abstract
Proper cilia formation in multiciliated cells (MCCs) is necessary for appropriate embryonic development and homeostasis. Multicilia share many structural characteristics with monocilia and primary cilia, but there are still significant gaps in our understanding of the regulation of multiciliogenesis. Using the Xenopus embryo, we show that CEP97, which is known as a negative regulator of primary cilia formation, interacts with dual specificity tyrosine phosphorylation regulated kinase 1A (Dyrk1a) to modulate multiciliogenesis. We show that Dyrk1a phosphorylates CEP97, which in turn promotes the recruitment of Polo-like kinase 1 (Plk1), which is a critical regulator of MCC maturation that functions to enhance centriole disengagement in cooperation with the enzyme Separase. Knockdown of either CEP97 or Dyrk1a disrupts cilia formation and centriole disengagement in MCCs, but this defect is rescued by overexpression of Separase. Thus, our study reveals that Dyrk1a and CEP97 coordinate with Plk1 to promote Separase function to properly form multicilia in vertebrate MCCs.
Collapse
Affiliation(s)
| | - Kunio Nagashima
- Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Jaeho Yoon
- National Cancer Institute, Frederick, MD
| | - Jian Sun
- National Cancer Institute, Frederick, MD
| | - Ziqiu Wang
- Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Christina Carpenter
- Electron Microscopy Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | | | | | - Christopher J. Westlake
- Laboratory of Cellular and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
| | | |
Collapse
|