1
|
Hoffmann C, Ruff KM, Edu IA, Shinn MK, Tromm JV, King MR, Pant A, Ausserwöger H, Morgan JR, Knowles TPJ, Pappu RV, Milovanovic D. Synapsin Condensation is Governed by Sequence-Encoded Molecular Grammars. J Mol Biol 2025; 437:168987. [PMID: 39947282 PMCID: PMC11903162 DOI: 10.1016/j.jmb.2025.168987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/04/2025] [Accepted: 02/06/2025] [Indexed: 02/19/2025]
Abstract
Multiple biomolecular condensates coexist at the pre- and post- synapse to enable vesicle dynamics and controlled neurotransmitter release in the brain. In pre-synapses, intrinsically disordered regions (IDRs) of synaptic proteins are drivers of condensation that enable clustering of synaptic vesicles (SVs). Using computational analysis, we show that the IDRs of SV proteins feature evolutionarily conserved non-random compositional biases and sequence patterns. Synapsin-1 is essential for condensation of SVs, and its C-terminal IDR has been shown to be a key driver of condensation. Focusing on this IDR, we dissected the contributions of two conserved features namely the segregation of polar and proline residues along the linear sequence, and the compositional preference for arginine over lysine. Scrambling the blocks of polar and proline residues weakens the driving forces for forming micron-scale condensates. However, the extent of clustering in subsaturated solutions remains equivalent to that of the wild-type synapsin-1. In contrast, substituting arginine with lysine significantly weakens both the driving forces for condensation and the extent of clustering in subsaturated solutions. Co-expression of the scrambled variant of synapsin-1 with synaptophysin results in a gain-of-function phenotype in cells, whereas arginine to lysine substitutions eliminate condensation in cells. We report an emergent consequence of synapsin-1 condensation, which is the generation of interphase pH gradients that is realized via differential partitioning of protons between coexisting phases. This pH gradient is likely to be directly relevant for vesicular ATPase functions and the loading of neurotransmitters. Our studies highlight how conserved IDR grammars serve as drivers of synapsin-1 condensation.
Collapse
Affiliation(s)
- Christian Hoffmann
- Laboratory of Molecular Neuroscience Berlin, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Kiersten M Ruff
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Irina A Edu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Min Kyung Shinn
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Johannes V Tromm
- Laboratory of Molecular Neuroscience Berlin, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Matthew R King
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Avnika Pant
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Hannes Ausserwöger
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jennifer R Morgan
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom; Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Road, Cambridge CB3 0HE, United Kingdom
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience Berlin, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany; Einstein Center for Neuroscience, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; Whitman Center, Marine Biological Laboratory, 02543 Woods Hole, MA, USA.
| |
Collapse
|
2
|
Wan Y, Hudson R, Smith J, Forman-Kay JD, Ditlev JA. Protein interactions, calcium, phosphorylation, and cholesterol modulate CFTR cluster formation on membranes. Proc Natl Acad Sci U S A 2025; 122:e2424470122. [PMID: 40063811 PMCID: PMC11929494 DOI: 10.1073/pnas.2424470122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/07/2025] [Indexed: 03/25/2025] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel whose dysfunction leads to intracellular accumulation of chloride ions, dehydration of cell surfaces, and subsequent damage to airway and ductal organs. Beyond its function as a chloride channel, interactions between CFTR, epithelium sodium channel, and solute carrier (SLC) transporter family membrane proteins and cytoplasmic proteins, including calmodulin and Na+/H+ exchanger regulatory factor-1 (NHERF-1), coregulate ion homeostasis. CFTR has also been observed to form mesoscale membrane clusters. However, the contributions of multivalent protein and lipid interactions to cluster formation are not well understood. Using a combination of computational modeling and biochemical reconstitution assays, we demonstrate that multivalent interactions with CFTR protein binding partners, calcium, and membrane cholesterol can induce mesoscale CFTR cluster formation on model membranes. Phosphorylation of the intracellular domains of CFTR also promotes mesoscale cluster formation in the absence of calcium, indicating that multiple mechanisms can contribute to CFTR cluster formation. Our findings reveal that coupling of multivalent protein and lipid interactions promotes CFTR cluster formation consistent with membrane-associated biological phase separation.
Collapse
Affiliation(s)
- Yimei Wan
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Rhea Hudson
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Jordyn Smith
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Julie D. Forman-Kay
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| | - Jonathon A. Ditlev
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Program in Cell and Systems Biology, Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
| |
Collapse
|
3
|
Dollinger C, Potolitsyna E, Martin AG, Anand A, Datar GK, Schmit JD, Riback JA. Nanometer condensate organization in live cells derived from partitioning measurements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.640428. [PMID: 40060647 PMCID: PMC11888449 DOI: 10.1101/2025.02.26.640428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Biomolecules associate, forming condensates that house essential biochemical processes, including ribosome biogenesis. Unraveling how condensates shape macromolecular assembly and transport requires cellular measurements of nanoscale structure. Here, we determine the organization around and between specific proteins at nanometer resolution within condensates, deploying thermodynamic principles to interpret partitioning measurements of designed protein probes. When applied to the nucleolus as a proof of principle, the data reveals considerable inhomogeneity, deviating from that expected within a liquid-like phase. The inhomogeneity can be attributed to ribosome biogenesis, with the local meshwork weakening as biogenesis progresses, facilitating transport. Beyond introducing an innovative modality for biophysical interrogation, our results suggest condensates are far from uniform, simple liquids, a property we conjecture enables regulation and proofreading.
Collapse
Affiliation(s)
- Christina Dollinger
- Department of Molecular and Cellular Biology, Baylor College of Medicine; Houston, TX 77030, United States of America
| | - Evdokiia Potolitsyna
- Department of Molecular and Cellular Biology, Baylor College of Medicine; Houston, TX 77030, United States of America
| | - Abigail G. Martin
- Department of Molecular and Cellular Biology, Baylor College of Medicine; Houston, TX 77030, United States of America
| | - Archish Anand
- Department of Molecular and Cellular Biology, Baylor College of Medicine; Houston, TX 77030, United States of America
| | - Gandhar K. Datar
- Department of Molecular and Cellular Biology, Baylor College of Medicine; Houston, TX 77030, United States of America
- Medical Scientist Training Program, Baylor College of Medicine; Houston, TX 77030, United States of America
| | - Jeremy D. Schmit
- Department of Physics, Kansas State University, Manhattan, KS 66506, United States of America
| | - Joshua A. Riback
- Department of Molecular and Cellular Biology, Baylor College of Medicine; Houston, TX 77030, United States of America
| |
Collapse
|
4
|
Zechner C, Jülicher F. Concentration buffering and noise reduction in non-equilibrium phase-separating systems. Cell Syst 2025; 16:101168. [PMID: 39922189 DOI: 10.1016/j.cels.2025.101168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/10/2024] [Accepted: 01/02/2025] [Indexed: 02/10/2025]
Abstract
Biomolecular condensates have been proposed to buffer intracellular concentrations and reduce noise. However, concentrations need not be buffered in multicomponent systems, leading to a non-constant saturation concentration (csat) when individual components are varied. Simplified equilibrium considerations suggest that noise reduction might be closely related to concentration buffering and that a fixed saturation concentration is required for noise reduction to be effective. Here, we present a theoretical analysis to demonstrate that these suggestions do not apply to mesoscopic fluctuating systems. We show that concentration buffering and noise reduction are distinct concepts, which cannot be used interchangeably. We further demonstrate that concentration buffering and a constant csat are neither necessary nor sufficient for noise reduction to be effective. Clarity about these concepts is important for studying the role of condensates in controlling cellular noise and for the interpretation of concentration relationships in cells. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Christoph Zechner
- Center for Systems Biology Dresden, Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany; Faculty of Computer Science, TU Dresden, Dresden, Germany.
| | - Frank Jülicher
- Center for Systems Biology Dresden, Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
| |
Collapse
|
5
|
Mosca I, Beck C, Jalarvo NH, Matsarskaia O, Roosen-Runge F, Schreiber F, Seydel T. Continuity of Short-Time Dynamics Crossing the Liquid-Liquid Phase Separation in Charge-Tuned Protein Solutions. J Phys Chem Lett 2024; 15:12051-12059. [PMID: 39589726 PMCID: PMC11756533 DOI: 10.1021/acs.jpclett.4c02533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
Liquid-liquid phase separation (LLPS) constitutes a crucial phenomenon in biological self-organization, not only intervening in the formation of membraneless organelles but also triggering pathological protein aggregation, which is a hallmark in neurodegenerative diseases. Employing incoherent quasi-elastic neutron spectroscopy (QENS), we examine the short-time self-diffusion of a model protein undergoing LLPS as a function of phase splitting and temperature to access information on the nanosecond hydrodynamic response to the cluster formation both within and outside the LLPS regime. We investigate the samples as they dissociate into microdroplets of a dense protein phase dispersed in a dilute phase as well as the separated dense and dilute phases obtained from centrifugation. By interpreting the QENS results in terms of the local concentrations in the two phases determined by UV-vis spectroscopy, we hypothesize that the short-time transient protein cluster size distribution is conserved at the transition point while the local volume fractions separate.
Collapse
Affiliation(s)
- Ilaria Mosca
- Institut
für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
- Institut
Max von Laue−Paul Langevin, 71 Av. des Martyrs, 38042 Grenoble, France
| | - Christian Beck
- Institut
für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
- Institut
Max von Laue−Paul Langevin, 71 Av. des Martyrs, 38042 Grenoble, France
| | - Niina H. Jalarvo
- Neutron
Scattering Division, Oak Ridge National
Laboratory, 5200, 1 Bethel Valley Rd, Oak Ridge, Tennessee 37830, United States
| | - Olga Matsarskaia
- Institut
Max von Laue−Paul Langevin, 71 Av. des Martyrs, 38042 Grenoble, France
| | - Felix Roosen-Runge
- Division
of Physical Chemistry, Lund University, Naturvetarvägen 14, 22362 Lund, Sweden
| | - Frank Schreiber
- Institut
für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Tilo Seydel
- Institut
Max von Laue−Paul Langevin, 71 Av. des Martyrs, 38042 Grenoble, France
| |
Collapse
|
6
|
Cui W, Wang X, Han S, Guo W, Meng N, Li J, Sun B, Zhang X. Research progress of tartaric acid stabilization on wine characteristics. Food Chem X 2024; 23:101728. [PMID: 39253017 PMCID: PMC11381372 DOI: 10.1016/j.fochx.2024.101728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 09/11/2024] Open
Abstract
Tartaric acid is one of the characteristic acids in wine, playing a crucial role in wine characteristics. However, superabundant tartaric acid will form insoluble salts and precipitate in the form of crystals, affecting consumers' purchasing appetite. Therefore, tartaric stability is also one of the important indices for controlling the wine quality. At present, the main processing methods for tartaric stability include cold stabilization, ion exchange treatment, electrodialysis and the addition of exogenous components (gum arabic, metatartaric acid, carboxymethyl cellulose, mannoprotein and potassium polyaspartate). This review summarizes and analyzes the origin of tartaric acid in wine, factors influencing the tartaric stability, detection methods, treatments for tartaric stabilization, and the effects of these methods on the sensory quality of wine. Comparing the effects of these methods on wine quality can provide a basis for the further study of tartaric stabilization methods in order to select an appropriate tartaric stabilization method.
Collapse
Affiliation(s)
- Wenwen Cui
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education,Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoqin Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education,Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Shuang Han
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education,Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Wentao Guo
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education,Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Nan Meng
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education,Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Jinchen Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education,Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education,Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Xinke Zhang
- The Bedt and Road' International Institute of Grape and Wine Industry Innovation, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
7
|
Heredia-Torrejón M, Montañez R, González-Meneses A, Carcavilla A, Medina MA, Lechuga-Sancho AM. VUS next in rare diseases? Deciphering genetic determinants of biomolecular condensation. Orphanet J Rare Dis 2024; 19:327. [PMID: 39243101 PMCID: PMC11380411 DOI: 10.1186/s13023-024-03307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 08/06/2024] [Indexed: 09/09/2024] Open
Abstract
The diagnostic odysseys for rare disease patients are getting shorter as next-generation sequencing becomes more widespread. However, the complex genetic diversity and factors influencing expressivity continue to challenge accurate diagnosis, leaving more than 50% of genetic variants categorized as variants of uncertain significance.Genomic expression intricately hinges on localized interactions among its products. Conventional variant prioritization, biased towards known disease genes and the structure-function paradigm, overlooks the potential impact of variants shaping the composition, location, size, and properties of biomolecular condensates, genuine membraneless organelles swiftly sensing and responding to environmental changes, and modulating expressivity.To address this complexity, we propose to focus on the nexus of genetic variants within biomolecular condensates determinants. Scrutinizing variant effects in these membraneless organelles could refine prioritization, enhance diagnostics, and unveil the molecular underpinnings of rare diseases. Integrating comprehensive genome sequencing, transcriptomics, and computational models can unravel variant pathogenicity and disease mechanisms, enabling precision medicine. This paper presents the rationale driving our proposal and describes a protocol to implement this approach. By fusing state-of-the-art knowledge and methodologies into the clinical practice, we aim to redefine rare diseases diagnosis, leveraging the power of scientific advancement for more informed medical decisions.
Collapse
Affiliation(s)
- María Heredia-Torrejón
- Inflammation, Nutrition, Metabolism and Oxidative Stress Research Laboratory, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, Spain
- Mother and Child Health and Radiology Department. Area of Clinical Genetics, University of Cadiz. Faculty of Medicine, Cadiz, Spain
| | - Raúl Montañez
- Inflammation, Nutrition, Metabolism and Oxidative Stress Research Laboratory, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, Spain.
- Department of Molecular Biology and Biochemistry, University of Malaga, Andalucía Tech, E-29071, Málaga, Spain.
| | - Antonio González-Meneses
- Division of Dysmorphology, Department of Paediatrics, Virgen del Rocio University Hospital, Sevilla, Spain
- Department of Paediatrics, Medical School, University of Sevilla, Sevilla, Spain
| | - Atilano Carcavilla
- Pediatric Endocrinology Department, Hospital Universitario La Paz, 28046, Madrid, Spain
- Multidisciplinary Unit for RASopathies, Hospital Universitario La Paz, 28046, Madrid, Spain
| | - Miguel A Medina
- Department of Molecular Biology and Biochemistry, University of Malaga, Andalucía Tech, E-29071, Málaga, Spain.
- Biomedical Research Institute and nanomedicine platform of Málaga IBIMA-BIONAND, E-29071, Málaga, Spain.
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, E-28029, Madrid, Spain.
| | - Alfonso M Lechuga-Sancho
- Inflammation, Nutrition, Metabolism and Oxidative Stress Research Laboratory, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, Spain
- Division of Endocrinology, Department of Paediatrics, Puerta del Mar University Hospital, Cádiz, Spain
- Area of Paediatrics, Department of Child and Mother Health and Radiology, Medical School, University of Cadiz, Cadiz, Spain
| |
Collapse
|
8
|
Chattaraj A, Baltaci Z, Chung S, Mayer BJ, Loew LM, Ditlev JA. Measurement of solubility product reveals the interplay of oligomerization and self-association for defining condensate formation. Mol Biol Cell 2024; 35:ar122. [PMID: 39046778 PMCID: PMC11449392 DOI: 10.1091/mbc.e24-01-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/06/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Cellular condensates often consist of 10s to 100s of distinct interacting molecular species. Because of the complexity of these interactions, predicting the point at which they will undergo phase separation is daunting. Using experiments and computation, we therefore studied a simple model system consisting of polySH3 and polyPRM designed for pentavalent heterotypic binding. We tested whether the peak solubility product, or the product of the dilute phase concentration of each component, is a predictive parameter for the onset of phase separation. Titrating up equal total concentrations of each component showed that the maximum solubility product does approximately coincide with the threshold for phase separation in both experiments and models. However, we found that measurements of dilute phase concentration include small oligomers and monomers; therefore, a quantitative comparison of the experiments and models required inclusion of small oligomers in the model analysis. Even with the inclusion of small polyPRM and polySH3 oligomers, models did not predict experimental results. This led us to perform dynamic light scattering experiments, which revealed homotypic binding of polyPRM. Addition of this interaction to our model recapitulated the experimentally observed asymmetry. Thus, comparing experiments with simulation reveals that the solubility product can be predictive of the interactions underlying phase separation, even if small oligomers and low affinity homotypic interactions complicate the analysis.
Collapse
Affiliation(s)
- Aniruddha Chattaraj
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Zeynep Baltaci
- Program in Molecular Medicine, Toronto, ON M5G 1E8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Steve Chung
- Program in Molecular Medicine, Toronto, ON M5G 1E8, Canada
| | - Bruce J. Mayer
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030
- Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Leslie M. Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Jonathon A. Ditlev
- Program in Molecular Medicine, Toronto, ON M5G 1E8, Canada
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1E8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
9
|
Qian D, Ausserwoger H, Sneideris T, Farag M, Pappu RV, Knowles TPJ. Dominance analysis to assess solute contributions to multicomponent phase equilibria. Proc Natl Acad Sci U S A 2024; 121:e2407453121. [PMID: 39102550 PMCID: PMC11331137 DOI: 10.1073/pnas.2407453121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024] Open
Abstract
Phase separation in aqueous solutions of macromolecules underlies the generation of biomolecular condensates in cells. Condensates are membraneless bodies, representing dense, macromolecule-rich phases that coexist with the dilute, macromolecule-deficient phases. In cells, condensates comprise hundreds of different macromolecular and small molecule solutes. How do different solutes contribute to the driving forces for phase separation? To answer this question, we introduce a formalism we term energy dominance analysis. This approach rests on analysis of shapes of the dilute phase boundaries, slopes of tie lines, and changes to dilute phase concentrations in response to perturbations of concentrations of different solutes. The framework is based solely on conditions for phase equilibria in systems with arbitrary numbers of macromolecules and solution components. Its practical application relies on being able to measure dilute phase concentrations of the components of interest. The dominance framework is both theoretically facile and experimentally applicable. We present the formalism that underlies dominance analysis and establish its accuracy and flexibility by deploying it to analyze phase diagrams probed in simulations and in experiments.
Collapse
Affiliation(s)
- Daoyuan Qian
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EWCambridge, United Kingdom
| | - Hannes Ausserwoger
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EWCambridge, United Kingdom
| | - Tomas Sneideris
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EWCambridge, United Kingdom
| | - Mina Farag
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO63130
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO63130
| | - Tuomas P. J. Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EWCambridge, United Kingdom
- Cavendish Laboratory, Department of Physics, University of Cambridge, CB3 0HECambridge, United Kingdom
| |
Collapse
|
10
|
Chauhan G, Bremer A, Dar F, Mittag T, Pappu RV. Crowder titrations enable the quantification of driving forces for macromolecular phase separation. Biophys J 2024; 123:1376-1392. [PMID: 37717144 PMCID: PMC11163301 DOI: 10.1016/j.bpj.2023.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/03/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
Macromolecular solubility is an important contributor to the driving forces for phase separation. Formally, the driving forces in a binary mixture comprising a macromolecule dissolved in a solvent can be quantified in terms of the saturation concentration, which is the threshold macromolecular concentration above which the mixture separates into coexisting dense and dilute phases. In addition, the second virial coefficient, which measures the effective strength of solvent-mediated intermolecular interactions provides direct assessments of solvent quality. The sign and magnitude of second virial coefficients will be governed by a combination of solution conditions and the nature of the macromolecule of interest. Here, we show, using a combination of theory, simulation, and in vitro experiments, that titrations of crowders, providing they are true depletants, can be used to extract the intrinsic driving forces for macromolecular phase separation. This refers to saturation concentrations in the absence of crowders and the second virial coefficients that quantify the magnitude of the incompatibility between macromolecules and the solvent. Our results show how the depletion-mediated attractions afforded by crowders can be leveraged to obtain comparative assessments of macromolecule-specific, intrinsic driving forces for phase separation.
Collapse
Affiliation(s)
- Gaurav Chauhan
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Anne Bremer
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Furqan Dar
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James F. McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri.
| |
Collapse
|
11
|
Hedtfeld M, Dammers A, Koerner C, Musacchio A. A validation strategy to assess the role of phase separation as a determinant of macromolecular localization. Mol Cell 2024; 84:1783-1801.e7. [PMID: 38614097 DOI: 10.1016/j.molcel.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/11/2023] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
Liquid-liquid phase separation (LLPS) of putative assembly scaffolds has been proposed to drive the biogenesis of membraneless compartments. LLPS scaffolds are usually identified through in vitro LLPS assays with single macromolecules (homotypic), but the predictive value of these assays remains poorly characterized. Here, we apply a strategy to evaluate the robustness of homotypic LLPS assays. When applied to the chromosomal passenger complex (CPC), which undergoes LLPS in vitro and localizes to centromeres to promote chromosome biorientation, LLPS propensity in vitro emerged as an unreliable predictor of subcellular localization. In vitro CPC LLPS in aqueous buffers was enhanced by commonly used crowding agents. Conversely, diluted cytomimetic media dissolved condensates of the CPC and of several other proteins. We also show that centromeres do not seem to nucleate LLPS, nor do they promote local, spatially restrained LLPS of the CPC. Our strategy can be adapted to purported LLPS scaffolds of other membraneless compartments.
Collapse
Affiliation(s)
- Marius Hedtfeld
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Alicia Dammers
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Carolin Koerner
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
12
|
Chattaraj A, Baltaci Z, Mayer BJ, Loew LM, Ditlev JA. Measurement of solubility product in a model condensate reveals the interplay of small oligomerization and self-association. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576869. [PMID: 38328089 PMCID: PMC10849621 DOI: 10.1101/2024.01.23.576869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Cellular condensates often consist of 10s to 100s of distinct interacting molecular species. Because of the complexity of these interactions, predicting the point at which they will undergo phase separation into discrete compartments is daunting. Using experiments and computation, we therefore studied a simple model system consisting of 2 proteins, polySH3 and polyPRM, designed for pentavalent heterotypic binding. We tested whether the peak solubility product, the product of dilute phase monomer concentrations, is a predictive parameter for the onset of phase separation. Titrating up equal total concentrations of each component showed that the maximum solubility product does approximately coincide with the threshold for phase separation in both the experiments and models. However, we found that measurements of dilute phase concentration include contributions from small oligomers, not just monomers; therefore, a quantitative comparison of the experiments and models required inclusion of small oligomers in the model analysis. We also examined full phase diagrams where the model results were almost symmetric along the diagonal, but the experimental results were highly asymmetric. This led us to perform dynamic light scattering experiments, where we discovered a weak homotypic interaction for polyPRM; when this was added to the computational model, it was able to recapitulate the experimentally observed asymmetry. Thus, comparing experiments to simulation reveals that the solubility product can be predictive of phase separation, even if small oligomers and low affinity homotypic interactions preclude experimental measurement of monomer concentration.
Collapse
Affiliation(s)
- Aniruddha Chattaraj
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut, United States of America
| | - Zeynep Baltaci
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Bruce J. Mayer
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut, United States of America
- Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, Connecticut, United States of America
| | - Leslie M. Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut, United States of America
| | - Jonathon A. Ditlev
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Yamada R, Takada S. Postsynaptic protein assembly in three and two dimensions studied by mesoscopic simulations. Biophys J 2023; 122:3395-3410. [PMID: 37496268 PMCID: PMC10465727 DOI: 10.1016/j.bpj.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/25/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023] Open
Abstract
Recently, cellular biomolecular condensates formed via phase separation have received considerable attention. While they can be formed either in cytosol (denoted as 3D) or beneath the membrane (2D), the underlying difference between the two has not been well clarified. To compare the phase behaviors in 3D and 2D, postsynaptic density (PSD) serves as a model system. PSD is a protein condensate located under the postsynaptic membrane that influences the localization of glutamate receptors and thus contributes to synaptic plasticity. Recent in vitro studies have revealed the formation of droplets of various soluble PSD proteins via liquid-liquid phase separation. However, it is unclear how these protein condensates are formed beneath the membrane and how they specifically affect the localization of glutamate receptors in the membrane. In this study, focusing on the mixture of a glutamate receptor complex, AMPAR-TARP, and a ubiquitous scaffolding protein, PSD-95, we constructed a mesoscopic model of protein-domain interactions in PSD and performed comparative molecular simulations. The results showed a sharp contrast in the phase behaviors of protein assemblies in 3D and those under the membrane (2D). A mixture of a soluble variant of the AMPAR-TARP complex and PSD-95 in the 3D system resulted in a phase-separated condensate, which was consistent with the experimental results. However, with identical domain interactions, AMPAR-TARP embedded in the membrane formed clusters with PSD-95, but did not form a stable separated phase. Thus, the cluster formation behaviors of PSD proteins in the 3D and 2D systems were distinct. The current study suggests that, more generally, stable phase separation can be more difficult to achieve in and beneath the membrane than in 3D systems.
Collapse
Affiliation(s)
- Risa Yamada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
14
|
Chauhan G, Bremer A, Dar F, Mittag T, Pappu RV. Crowder titrations enable the quantification of driving forces for macromolecular phase separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547544. [PMID: 37461587 PMCID: PMC10350001 DOI: 10.1101/2023.07.03.547544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Macromolecular solubility is an important contributor to the driving forces for phase separation. Formally, the driving forces in a binary mixture comprising a macromolecule dissolved in a solvent can be quantified in terms of the saturation concentration, which is the threshold macromolecular concentration above which the mixture separates into coexisting dense and dilute phases. Additionally, the second virial coefficient, which measures the effective strength of solvent-mediated intermolecular interactions provides direct assessments of solvent quality. The sign and magnitude of second virial coefficients will be governed by a combination of solution conditions and the nature of the macromolecule of interest. Here, we show, using a combination of theory, simulation, and in vitro experiments, that titrations of crowders, providing they are true depletants, can be used to extract the intrinsic driving forces for macromolecular phase separation. This refers to saturation concentrations in the absence of crowders and the second virial coefficients that quantify the magnitude of the incompatibility between macromolecules and the solvent. Our results show how the depletion-mediated attractions afforded by crowders can be leveraged to obtain comparative assessments of macromolecule-specific, intrinsic driving forces for phase separation. SIGNIFICANCE Phase separation has emerged as a process of significant relevance to sorting macromolecules into distinct compartments, thereby enabling spatial and temporal control over cellular matter. Considerable effort is being invested into uncovering the driving forces that enable the separation of macromolecular solutions into coexisting phases. At its heart, this process is governed by the balance of macromolecule-solvent, inter-macromolecule, and solvent-solvent interactions. We show that the driving forces for phase separation, including the coefficients that measure interaction strengths between macromolecules, can be extracted by titrating the concentrations of crowders that enable macromolecules to phase separate at lower concentrations. Our work paves the way to leverage specific categories of measurements for quantitative characterizations of driving forces for phase separation.
Collapse
|
15
|
Hou XN, Tang C. The pros and cons of ubiquitination on the formation of protein condensates. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1084-1098. [PMID: 37294105 PMCID: PMC10423694 DOI: 10.3724/abbs.2023096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/19/2023] [Indexed: 06/10/2023] Open
Abstract
Ubiquitination, a post-translational modification that attaches one or more ubiquitin (Ub) molecules to another protein, plays a crucial role in the phase-separation processes. Ubiquitination can modulate the formation of membrane-less organelles in two ways. First, a scaffold protein drives phase separation, and Ub is recruited to the condensates. Second, Ub actively phase-separates through the interactions with other proteins. Thus, the role of ubiquitination and the resulting polyUb chains ranges from bystanders to active participants in phase separation. Moreover, long polyUb chains may be the primary driving force for phase separation. We further discuss that the different roles can be determined by the lengths and linkages of polyUb chains which provide preorganized and multivalent binding platforms for other client proteins. Together, ubiquitination adds a new layer of regulation for the flow of material and information upon cellular compartmentalization of proteins.
Collapse
Affiliation(s)
- Xue-Ni Hou
- Beijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Chun Tang
- Beijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
- Center for Quantitate BiologyPKU-Tsinghua Center for Life ScienceAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
| |
Collapse
|
16
|
Chattaraj A, Nalagandla I, Loew LM, Blinov ML. MolClustPy: a Python package to characterize multivalent biomolecular clusters. Bioinformatics 2023; 39:btad385. [PMID: 37326981 PMCID: PMC10290549 DOI: 10.1093/bioinformatics/btad385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/14/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023] Open
Abstract
SUMMARY Low-affinity interactions among multivalent biomolecules may lead to the formation of molecular complexes that undergo phase transitions to become supply-limited large clusters. In stochastic simulations, such clusters display a wide range of sizes and compositions. We have developed a Python package, MolClustPy, which performs multiple stochastic simulation runs using NFsim (Network-Free stochastic simulator); MolClustPy characterizes and visualizes the distribution of cluster sizes, molecular composition, and bonds across molecular clusters. The statistical analysis offered by MolClustPy is readily applicable to other stochastic simulation software, such as SpringSaLaD and ReaDDy. AVAILABILITY AND IMPLEMENTATION The software is implemented in Python. A detailed Jupyter notebook is provided to enable convenient running. Code, user guide, and examples are freely available at https://molclustpy.github.io/.
Collapse
Affiliation(s)
- Aniruddha Chattaraj
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030, United States
| | - Indivar Nalagandla
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030, United States
| | - Leslie M Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030, United States
| | - Michael L Blinov
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030, United States
| |
Collapse
|
17
|
Chattaraj A, Loew LM. The maximum solubility product marks the threshold for condensation of multivalent biomolecules. Biophys J 2023; 122:1678-1690. [PMID: 36987392 PMCID: PMC10183374 DOI: 10.1016/j.bpj.2023.03.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/08/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Clustering of weakly interacting multivalent biomolecules underlies the formation of membraneless compartments known as condensates. As opposed to single-component (homotypic) systems, the concentration dependence of multicomponent (heterotypic) condensate formation is not well understood. We previously proposed the solubility product (SP), the product of monomer concentrations in the dilute phase, as a tool for understanding the concentration dependence of multicomponent systems. In this study, we further explore the limits of the SP concept using spatial Langevin dynamics and rule-based stochastic simulations. We show, for a variety of idealized molecular structures, how the maximum SP coincides with the onset of the phase transition, i.e., the formation of large clusters. We reveal the importance of intracluster binding in steering the free and cluster phase molecular distributions. We also show how structural features of biomolecules shape the SP profiles. The interplay of flexibility, length, and steric hindrance of linker regions controls the phase transition threshold. Remarkably, when SPs are normalized to nondimensional variables and plotted against the concentration scaled to the threshold for phase transition, the curves all coincide independent of the structural features of the binding partners. Similar coincidence is observed for the normalized clustering versus concentration plots. Overall, the principles derived from these systematic models will help guide and interpret in vitro and in vivo experiments on the biophysics of biomolecular condensates.
Collapse
Affiliation(s)
- Aniruddha Chattaraj
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Leslie M Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, Connecticut.
| |
Collapse
|
18
|
Chattaraj A, Nalagandla I, Loew LM, Blinov ML. MolClustPy: A Python Package to Characterize Multivalent Biomolecular Clusters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532640. [PMID: 36993613 PMCID: PMC10055112 DOI: 10.1101/2023.03.14.532640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
S ummary Low-affinity interactions among multivalent biomolecules may lead to the formation of molecular complexes that undergo phase transitions to become extra-large clusters. Characterizing the physical properties of these clusters is important in recent biophysical research. Due to weak interactions such clusters are highly stochastic, demonstrating a wide range of sizes and compositions. We have developed a Python package to perform multiple stochastic simulation runs using NFsim (Network-Free stochastic simulator), characterize and visualize the distribution of cluster sizes, molecular composition, and bonds across molecular clusters and individual molecules of different types. A vailability and implementation The software is implemented in Python. A detailed Jupyter notebook is provided to enable convenient running. Code, user guide and examples are freely available at https://molclustpy.github.io/. C ontact achattaraj007@gmail.com , blinov@uchc.edu. S upplementary information Available at https://molclustpy.github.io/.
Collapse
Affiliation(s)
- Aniruddha Chattaraj
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Indivar Nalagandla
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Leslie M Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Michael L Blinov
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| |
Collapse
|
19
|
Wysocka EM, Page M, Snowden J, Simpson TI. Comparison of rule- and ordinary differential equation-based dynamic model of DARPP-32 signalling network. PeerJ 2022; 10:e14516. [PMID: 36540795 PMCID: PMC9760030 DOI: 10.7717/peerj.14516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022] Open
Abstract
Dynamic modelling has considerably improved our understanding of complex molecular mechanisms. Ordinary differential equations (ODEs) are the most detailed and popular approach to modelling the dynamics of molecular systems. However, their application in signalling networks, characterised by multi-state molecular complexes, can be prohibitive. Contemporary modelling methods, such as rule- based (RB) modelling, have addressed these issues. The advantages of RB modelling over ODEs have been presented and discussed in numerous reviews. In this study, we conduct a direct comparison of the time courses of a molecular system founded on the same reaction network but encoded in the two frameworks. To make such a comparison, a set of reactions that underlie an ODE model was manually encoded in the Kappa language, one of the RB implementations. A comparison of the models was performed at the level of model specification and dynamics, acquired through model simulations. In line with previous reports, we confirm that the Kappa model recapitulates the general dynamics of its ODE counterpart with minor differences. These occur when molecules have multiple sites binding the same interactor. Furthermore, activation of these molecules in the RB model is slower than in the ODE one. As reported for other molecular systems, we find that, also for the DARPP-32 reaction network, the RB representation offers a more expressive and flexible syntax that facilitates access to fine details of the model, easing model reuse. In parallel with these analyses, we report a refactored model of the DARPP-32 interaction network that can serve as a canvas for the development of more complex dynamic models to study this important molecular system.
Collapse
Affiliation(s)
- Emilia M. Wysocka
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - T. Ian Simpson
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
20
|
Iwasa JH, Lyons B, Johnson GT. The dawn of interoperating spatial models in cell biology. Curr Opin Biotechnol 2022; 78:102838. [PMID: 36402095 DOI: 10.1016/j.copbio.2022.102838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 06/01/2022] [Accepted: 10/07/2022] [Indexed: 11/18/2022]
Abstract
Spatial simulations are becoming an increasingly ubiquitous component in the cycle of discovery, experimentation, and communication across the sciences. In cell biology, many researchers share a vision of developing multiscale models that recapitulate observable behaviors spanning from atoms to cells to tissues. For this dream to become a reality, however, simulation technologies must provide a means for integration and interoperability as they advance. Already, the field has developed numerous methods that span scales of length, time, and complexity to create an extensive body of effective simulation approaches, and although these approaches rarely interoperate, they collectively cover a large spectrum of knowledge that future models may handle in a more unified manner. Here, we discuss the importance of making the data, workflows, and outputs of spatial simulations shareable and interoperable; and how democratization could encourage diverse biologists to participate more easily in developing models to advance our understanding of biological systems.
Collapse
Affiliation(s)
| | - Blair Lyons
- Visualization & Data Integration, Allen Institute for Cell Science, USA
| | - Graham T Johnson
- Visualization & Data Integration, Allen Institute for Cell Science, USA.
| |
Collapse
|
21
|
Murata Y, Niina T, Takada S. The stoichiometric interaction model for mesoscopic MD simulations of liquid-liquid phase separation. Biophys J 2022; 121:4382-4393. [PMID: 36199253 PMCID: PMC9703007 DOI: 10.1016/j.bpj.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/28/2022] [Accepted: 09/30/2022] [Indexed: 12/14/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) has received considerable attention in recent years for explaining the formation of cellular biomolecular condensates. The fluidity and the complexity of their components make molecular simulation approaches indispensable for gaining structural insights. Domain-resolution mesoscopic model simulations have been explored for cases in which condensates are formed by multivalent proteins with tandem domains. One problem with this approach is that interdomain pairwise interactions cannot regulate the valency of the binding domains. To overcome this problem, we propose a new potential, the stoichiometric interaction (SI) potential. First, we verified that the SI potential maintained the valency of the interacting domains for the test systems. We then examined a well-studied LLPS model system containing tandem repeats of SH3 domains and proline-rich motifs. We found that the SI potential alone cannot reproduce the phase diagram of LLPS quantitatively. We had to combine the SI and a pairwise interaction; the former and the latter represent the specific and nonspecific interactions, respectively. Biomolecular condensates with the mixed SI and pairwise interaction exhibited fluidity, whereas those with the pairwise interaction alone showed no detectable diffusion. We also compared the phase diagrams of the systems containing different numbers of tandem domains with those obtained from the experiments and found quantitative agreement in all but one case.
Collapse
Affiliation(s)
- Yutaka Murata
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Toru Niina
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
22
|
Vazquez DS, Toledo PL, Gianotti AR, Ermácora MR. Protein conformation and biomolecular condensates. Curr Res Struct Biol 2022; 4:285-307. [PMID: 36164646 PMCID: PMC9508354 DOI: 10.1016/j.crstbi.2022.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 10/27/2022] Open
Abstract
Protein conformation and cell compartmentalization are fundamental concepts and subjects of vast scientific endeavors. In the last two decades, we have witnessed exciting advances that unveiled the conjunction of these concepts. An avalanche of studies highlighted the central role of biomolecular condensates in membraneless subcellular compartmentalization that permits the spatiotemporal organization and regulation of myriads of simultaneous biochemical reactions and macromolecular interactions. These studies have also shown that biomolecular condensation, driven by multivalent intermolecular interactions, is mediated by order-disorder transitions of protein conformation and by protein domain architecture. Conceptually, protein condensation is a distinct level in protein conformational landscape in which collective folding of large collections of molecules takes place. Biomolecular condensates arise by the physical process of phase separation and comprise a variety of bodies ranging from membraneless organelles to liquid condensates to solid-like conglomerates, spanning lengths from mesoscopic clusters (nanometers) to micrometer-sized objects. In this review, we summarize and discuss recent work on the assembly, composition, conformation, material properties, thermodynamics, regulation, and functions of these bodies. We also review the conceptual framework for future studies on the conformational dynamics of condensed proteins in the regulation of cellular processes.
Collapse
Affiliation(s)
- Diego S. Vazquez
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Argentina
| | - Pamela L. Toledo
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Argentina
| | - Alejo R. Gianotti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Argentina
| | - Mario R. Ermácora
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Argentina
| |
Collapse
|
23
|
Mittag T, Pappu RV. A conceptual framework for understanding phase separation and addressing open questions and challenges. Mol Cell 2022; 82:2201-2214. [PMID: 35675815 PMCID: PMC9233049 DOI: 10.1016/j.molcel.2022.05.018] [Citation(s) in RCA: 353] [Impact Index Per Article: 117.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/04/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022]
Abstract
Macromolecular phase separation is being recognized for its potential importance and relevance as a driver of spatial organization within cells. Here, we describe a framework based on synergies between networking (percolation or gelation) and density (phase separation) transitions. Accordingly, the phase transitions in question are referred to as phase separation coupled to percolation (PSCP). The condensates that result from PSCP are viscoelastic network fluids. Such systems have sequence-, composition-, and topology-specific internal network structures that give rise to time-dependent interplays between viscous and elastic properties. Unlike pure phase separation, the process of PSCP gives rise to sequence-, chemistry-, and structure-specific distributions of clusters that can form at concentrations that lie well below the threshold concentration for phase separation. PSCP, influenced by specific versus solubility-determining interactions, also provides a bridge between different observations and helps answer questions and address challenges that have arisen regarding the role of macromolecular phase separation in biology.
Collapse
Affiliation(s)
- Tanja Mittag
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
24
|
The Simularium Viewer: an interactive online tool for sharing spatiotemporal biological models. Nat Methods 2022; 19:513-515. [PMID: 35379948 DOI: 10.1038/s41592-022-01442-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Nedelsky NB, Taylor JP. Pathological phase transitions in ALS-FTD impair dynamic RNA-protein granules. RNA (NEW YORK, N.Y.) 2022; 28:97-113. [PMID: 34706979 PMCID: PMC8675280 DOI: 10.1261/rna.079001.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The genetics of human disease serves as a robust and unbiased source of insight into human biology, both revealing fundamental cellular processes and exposing the vulnerabilities associated with their dysfunction. Over the last decade, the genetics of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have epitomized this concept, as studies of ALS-FTD-causing mutations have yielded fundamental discoveries regarding the role of biomolecular condensation in organizing cellular contents while implicating disturbances in condensate dynamics as central drivers of neurodegeneration. Here we review this genetic evidence, highlight its intersection with patient pathology, and discuss how studies in model systems have revealed a role for aberrant condensation in neuronal dysfunction and death. We detail how multiple, distinct types of disease-causing mutations promote pathological phase transitions that disturb the dynamics and function of ribonucleoprotein (RNP) granules. Dysfunction of RNP granules causes pleiotropic defects in RNA metabolism and can drive the evolution of these structures to end-stage pathological inclusions characteristic of ALS-FTD. We propose that aberrant phase transitions of these complex condensates in cells provide a parsimonious explanation for the widespread cellular abnormalities observed in ALS as well as certain histopathological features that characterize late-stage disease.
Collapse
Affiliation(s)
- Natalia B Nedelsky
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
26
|
Heterotypic amyloid interactions: Clues to polymorphic bias and selective cellular vulnerability? Curr Opin Struct Biol 2021; 72:176-186. [PMID: 34942566 DOI: 10.1016/j.sbi.2021.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/18/2022]
Abstract
The number of atomic-resolution structures of disease-associated amyloids has greatly increased in recent years. These structures have confirmed not only the polymorphic nature of amyloids but also the association of specific polymorphs to particular proteinopathies. These observations are strengthening the view that amyloid polymorphism is a marker for specific pathological subtypes (e.g. in tauopathies or synucleinopathies). The nature of this association and how it relates to the selective cellular vulnerability of amyloid nucleation, propagation and toxicity are still unclear. Here, we provide an overview of the mechanistic insights provided by recent patient-derived amyloid structures. We discuss the framework organisation of amyloid polymorphism and how heterotypic amyloid interactions with the physiological environment could modify the solubility and assembly of amyloidogenic proteins. We conclude by hypothesising how such interactions could contribute to selective cellular vulnerability.
Collapse
|