1
|
Qi S, Shi Z, Yu H. Genome folding by cohesin. Curr Opin Genet Dev 2025; 91:102310. [PMID: 39827577 DOI: 10.1016/j.gde.2025.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/22/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Chromosomes in eukaryotic cells undergo compaction at multiple levels and are folded into hierarchical structures to fit into the nucleus with limited dimensions. Three-dimensional genome organization needs to be coordinated with chromosome-templated processes, including DNA replication and gene transcription. As an ATPase molecular machine, the cohesin complex is a major driver of genome folding, which regulates transcription by modulating promoter-enhancer contacts. Here, we review our current understanding of genome folding by cohesin. We summarize the available evidence supporting a role of loop extrusion by cohesin in forming chromatin loops and topologically associating domains. We describe different conformations of cohesin and discuss the regulation of loop extrusion by cohesin-binding factors and loop-extrusion barriers. Finally, we propose a dimeric inchworm model for cohesin-mediated loop extrusion.
Collapse
Affiliation(s)
- Shutao Qi
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; New Cornerstone Science Laboratory, Westlake University, Hangzhou, Zhejiang, China
| | - Zhubing Shi
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| | - Hongtao Yu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; New Cornerstone Science Laboratory, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Kumari P, Hegde V, Bakshi A, Suguna M, Prasad MD, Gnanesh Kumar BS, Usharani D, Sharan K, Kumar R. A novel regulatory motif at the hinge dimer interface of the MksB mediates dimerization and DNA binding activity. Biochimie 2025; 230:68-85. [PMID: 39550000 DOI: 10.1016/j.biochi.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/19/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
The Structural Maintenance of Chromosome (SMC) protein is essential for various cellular processes, including chromosome organization, DNA repair, and genome stability. MksB, an alternative SMC protein present in prokaryotes, comprises a hinge dimerization domain and an ABC ATPase head domain linked by a coiled-coil arm. While hinge dimerization in bacterial and eukaryotic SMCs is attributed to conserved glycines, our study unveils the critical role of a novel KDDR motif located at a loop near the hinge dimer interface in Mycobacterium smegmatis MksB (MsMksB). We demonstrate the regulatory role of this motif in MsMksB dimerization and DNA binding activity. The K600D mutation in the KDDR motif induces MsMksB dimer-to-monomer conversion, highlighting the significance of this motif in MsMksB dimerization. Mass spectrometry-based mapping of the DNA binding site revealed the lysine's involvement in protein-DNA interaction. Monomers of the hinge domain lose DNA binding activity, and MsMksB single-arm mutants exhibit reduced DNA binding and ATPase activity, underscoring the importance of hinge-mediated dimerization in MsMksB function. Notably, the R603D mutant retains dimerization but shows compromised ATPase and DNA binding activities. Mutants with defective ATPase activity exhibit impaired DNA condensation in vivo. These findings provide novel regulatory insight into the mechanism of MksB dimerization and DNA binding, uncovering the fundamental processes of chromosome condensation and segregation.
Collapse
Affiliation(s)
- Pratibha Kumari
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vinayak Hegde
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570020, India
| | - Anant Bakshi
- Department of Food Safety and Analytical Quality Control Laboratory, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570020, India
| | - M Suguna
- Prosetta Bioconformatics Private Limited, #67B, Hootagalli, Karnataka, 570018, India
| | - M Dharma Prasad
- Prosetta Bioconformatics Private Limited, #67B, Hootagalli, Karnataka, 570018, India
| | - B S Gnanesh Kumar
- Department of Biochemistry, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dandamudi Usharani
- Department of Food Safety and Analytical Quality Control Laboratory, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ravi Kumar
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
3
|
Valdés A, Haering CH. Adding a twist to the loops: the role of DNA superhelicity in the organization of chromosomes by SMC protein complexes. Biochem Soc Trans 2024; 52:2487-2497. [PMID: 39700017 PMCID: PMC11668287 DOI: 10.1042/bst20240650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024]
Abstract
Structural maintenance of chromosomes (SMC) protein complexes, including cohesin, condensin, and the Smc5/6 complex, are integral to various processes in chromosome biology. Despite their distinct roles, these complexes share two key properties: the ability to extrude DNA into large loop structures and the capacity to alter the superhelicity of the DNA double helix. In this review, we explore the influence of eukaryotic SMC complexes on DNA topology, debate its potential physiological function, and discuss new structural insights that may explain how these complexes mediate changes in DNA topology.
Collapse
Affiliation(s)
- Antonio Valdés
- Chair of Biochemistry and Cell Biology, Biocenter, Julius-Maximilians-Universität of Würzburg, Wurzburg, Germany
| | - Christian H. Haering
- Chair of Biochemistry and Cell Biology, Biocenter, Julius-Maximilians-Universität of Würzburg, Wurzburg, Germany
| |
Collapse
|
4
|
Janissen R, Barth R, Davidson IF, Peters JM, Dekker C. All eukaryotic SMC proteins induce a twist of -0.6 at each DNA loop extrusion step. SCIENCE ADVANCES 2024; 10:eadt1832. [PMID: 39671477 PMCID: PMC11641105 DOI: 10.1126/sciadv.adt1832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/08/2024] [Indexed: 12/15/2024]
Abstract
Eukaryotes carry three types of structural maintenance of chromosome (SMC) protein complexes, condensin, cohesin, and SMC5/6, which are ATP-dependent motor proteins that remodel the genome via DNA loop extrusion (LE). SMCs modulate DNA supercoiling but remains incompletely understood how this is achieved. Using a single-molecule magnetic tweezers assay that directly measures how much twist is induced by individual SMCs in each LE step, we demonstrate that all three SMC complexes induce the same large negative twist (i.e., linking number change [Formula: see text] of ~-0.6 at each LE step) into the extruded loop, independent of step size and DNA tension. Using ATP hydrolysis mutants and nonhydrolyzable ATP analogs, we find that ATP binding is the twist-inducing event during the ATPase cycle, coinciding with the force-generating LE step. The fact that all three eukaryotic SMC proteins induce the same amount of twist indicates a common DNA-LE mechanism among these SMC complexes.
Collapse
Affiliation(s)
- Richard Janissen
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2629HZ, Netherlands
- BITZ Transformation Lab, Deggendorf Institute of Technology, Oberschneiding, 94363, Germany
| | - Roman Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2629HZ, Netherlands
| | - Iain F. Davidson
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, 1030, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, 1030, Austria
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2629HZ, Netherlands
| |
Collapse
|
5
|
Li Q, Zhang J, Haluska C, Zhang X, Wang L, Liu G, Wang Z, Jin D, Cheng T, Wang H, Tian Y, Wang X, Sun L, Zhao X, Chen Z, Wang L. Cryo-EM structures of Smc5/6 in multiple states reveal its assembly and functional mechanisms. Nat Struct Mol Biol 2024; 31:1532-1542. [PMID: 38890552 PMCID: PMC11479838 DOI: 10.1038/s41594-024-01319-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 04/17/2024] [Indexed: 06/20/2024]
Abstract
Smc5/6 is a member of the eukaryotic structural maintenance of chromosomes (SMC) family of complexes with important roles in genome maintenance and viral restriction. However, limited structural understanding of Smc5/6 hinders the elucidation of its diverse functions. Here, we report cryo-EM structures of the budding yeast Smc5/6 complex in eight-subunit, six-subunit and five-subunit states. Structural maps throughout the entire length of these complexes reveal modularity and key elements in complex assembly. We show that the non-SMC element (Nse)2 subunit supports the overall shape of the complex and uses a wedge motif to aid the stability and function of the complex. The Nse6 subunit features a flexible hook region for attachment to the Smc5 and Smc6 arm regions, contributing to the DNA repair roles of the complex. Our results also suggest a structural basis for the opposite effects of the Nse1-3-4 and Nse5-6 subcomplexes in regulating Smc5/6 ATPase activity. Collectively, our integrated structural and functional data provide a framework for understanding Smc5/6 assembly and function.
Collapse
Affiliation(s)
- Qian Li
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences,University of Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Zhang
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences,University of Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cory Haluska
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiang Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Fifth People's Hospital, Shanghai Public Health Clinical Center, Institutes of Biomedical Sciences, School of Basic Medical Sciences,Fudan University, Shanghai, China
| | - Lei Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics,Chinese Academy of Sciences, Beijing, China
| | - Guangfeng Liu
- National Center for Protein Science Shanghai, Shanghai Advanced Research Institute,Chinese Academy of Sciences, Shanghai, China
| | - Zhaoning Wang
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences,University of Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Duo Jin
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences,University of Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tong Cheng
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences,University of Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongxia Wang
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences,University of Chinese Academy of Sciences, Shanghai, China
| | - Yuan Tian
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences,University of Chinese Academy of Sciences, Shanghai, China
| | - Xiangxi Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics,Chinese Academy of Sciences, Beijing, China
| | - Lei Sun
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Fifth People's Hospital, Shanghai Public Health Clinical Center, Institutes of Biomedical Sciences, School of Basic Medical Sciences,Fudan University, Shanghai, China
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Zhenguo Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Fifth People's Hospital, Shanghai Public Health Clinical Center, Institutes of Biomedical Sciences, School of Basic Medical Sciences,Fudan University, Shanghai, China.
| | - Lanfeng Wang
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences,University of Chinese Academy of Sciences, Shanghai, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Vitoria Gomes M, Landwerlin P, Diebold-Durand ML, Shaik TB, Durand A, Troesch E, Weber C, Brillet K, Lemée MV, Decroos C, Dulac L, Antony P, Watrin E, Ennifar E, Golzio C, Romier C. The cohesin ATPase cycle is mediated by specific conformational dynamics and interface plasticity of SMC1A and SMC3 ATPase domains. Cell Rep 2024; 43:114656. [PMID: 39240714 DOI: 10.1016/j.celrep.2024.114656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/17/2024] [Accepted: 08/02/2024] [Indexed: 09/08/2024] Open
Abstract
Cohesin is key to eukaryotic genome organization and acts throughout the cell cycle in an ATP-dependent manner. The mechanisms underlying cohesin ATPase activity are poorly understood. Here, we characterize distinct steps of the human cohesin ATPase cycle and show that the SMC1A and SMC3 ATPase domains undergo specific but concerted structural rearrangements along this cycle. Specifically, whereas the proximal coiled coil of the SMC1A ATPase domain remains conformationally stable, that of the SMC3 displays an intrinsic flexibility. The ATP-dependent formation of the heterodimeric SMC1A/SMC3 ATPase module (engaged state) favors this flexibility, which is counteracted by NIPBL and DNA binding (clamped state). Opening of the SMC3/RAD21 interface (open-engaged state) stiffens the SMC3 proximal coiled coil, thus constricting together with that of SMC1A the ATPase module DNA-binding chamber. The plasticity of the ATP-dependent interface between the SMC1A and SMC3 ATPase domains enables these structural rearrangements while keeping the ATP gate shut. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Marina Vitoria Gomes
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, 67400 Illkirch, France
| | - Pauline Landwerlin
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, 67400 Illkirch, France
| | - Marie-Laure Diebold-Durand
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, 67400 Illkirch, France
| | - Tajith B Shaik
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, 67400 Illkirch, France
| | - Alexandre Durand
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, 67400 Illkirch, France
| | - Edouard Troesch
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, 67400 Illkirch, France
| | - Chantal Weber
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, 67400 Illkirch, France
| | - Karl Brillet
- Architecture et Réactivité de l'ARN, IBMC CNRS UPR 9002, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Marianne Victoria Lemée
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, 67400 Illkirch, France
| | - Christophe Decroos
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, 67400 Illkirch, France
| | - Ludivine Dulac
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, 67400 Illkirch, France
| | - Pierre Antony
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, 67400 Illkirch, France
| | - Erwan Watrin
- CNRS, Université de Rennes, IGDR UMR 6290, 35000 Rennes, France
| | - Eric Ennifar
- Architecture et Réactivité de l'ARN, IBMC CNRS UPR 9002, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Christelle Golzio
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, 67400 Illkirch, France
| | - Christophe Romier
- Université de Strasbourg, IGBMC UMR 7104 - UMR-S 1258, 67400 Illkirch, France; CNRS, UMR 7104, 67400 Illkirch, France; INSERM, UMR-S 1258, 67400 Illkirch, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Integrated Structural Biology, 67400 Illkirch, France.
| |
Collapse
|
7
|
Vaculíková J, Holá M, Králová B, Lelkes E, Štefanovie B, Vágnerová R, Angelis KJ, Paleček JJ. NSE5 subunit interacts with distant regions of the SMC arms in the Physcomitrium patens SMC5/6 complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38858852 DOI: 10.1111/tpj.16869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
Structural maintenance of chromosome (SMC) complexes play roles in cohesion, condensation, replication, transcription, and DNA repair. Their cores are composed of SMC proteins with a unique structure consisting of an ATPase head, long arm, and hinge. SMC complexes form long rod-like structures, which can change to ring-like and elbow-bent conformations upon binding ATP, DNA, and other regulatory factors. These SMC dynamic conformational changes are involved in their loading, translocation, and DNA loop extrusion. Here, we examined the binding and role of the PpNSE5 regulatory factor of Physcomitrium patens PpSMC5/6 complex. We found that the PpNSE5 C-terminal half (aa230-505) is required for binding to its PpNSE6 partner, while the N-terminal half (aa1-230) binds PpSMC subunits. Specifically, the first 71 amino acids of PpNSE5 were required for binding to PpSMC6. Interestingly, the PpNSE5 binding required the PpSMC6 head-proximal joint region and PpSMC5 hinge-proximal arm, suggesting a long distance between binding sites on PpSMC5 and PpSMC6 arms. Therefore, we hypothesize that PpNSE5 either links two antiparallel SMC5/6 complexes or binds one SMC5/6 in elbow-bent conformation, the later model being consistent with the role of NSE5/NSE6 dimer as SMC5/6 loading factor to DNA lesions. In addition, we generated the P. patens Ppnse5KO1 mutant line with an N-terminally truncated version of PpNSE5, which exhibited DNA repair defects while keeping a normal number of rDNA repeats. As the first 71 amino acids of PpNSE5 are required for PpSMC6 binding, our results suggest the role of PpNSE5-PpSMC6 interaction in SMC5/6 loading to DNA lesions.
Collapse
Affiliation(s)
- Jitka Vaculíková
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Marcela Holá
- Institute of Experimental Botany Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Barbora Králová
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Edit Lelkes
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Barbora Štefanovie
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Radka Vágnerová
- Institute of Experimental Botany Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Karel J Angelis
- Institute of Experimental Botany Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Jan J Paleček
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| |
Collapse
|
8
|
Liu Y, Min Y, Liu Y, Watanabe Y. Phosphorylation of Rec8 cohesin complexes regulates mono-orientation of kinetochores in meiosis I. Life Sci Alliance 2024; 7:e202302556. [PMID: 38448160 PMCID: PMC10917647 DOI: 10.26508/lsa.202302556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024] Open
Abstract
In meiosis I, unlike in mitosis, sister kinetochores are captured by microtubules emanating from the same spindle pole (mono-orientation) and centromeric cohesion mediated by cohesin is protected in the following anaphase I. The conserved meiosis-specific kinetochore protein meikin (Moa1 in fission yeast) associates with polo-like kinase: Plo1 and regulates both mono-orientation and cohesion protection. Although the phosphorylation of Rec8-S450 by Plo1 associated with Moa1 plays a key role in cohesion protection, how Moa1-Plo1 regulates mono-orientation remains elusive. Here, we identify Plo1 phosphorylation sites in the cohesin subunits, Rec8 and Psm3. The non-phosphorylatable mutations at these sites showed specific defects in mono-orientation. These results enabled the genetic dissection of meikin functions at the centromeres.
Collapse
Affiliation(s)
- Yu Liu
- School of Bioengineering, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Yu Min
- School of Bioengineering, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Yongxin Liu
- School of Bioengineering, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | | |
Collapse
|
9
|
Rittenhouse NL, Dowen JM. Cohesin regulation and roles in chromosome structure and function. Curr Opin Genet Dev 2024; 85:102159. [PMID: 38382406 PMCID: PMC10947815 DOI: 10.1016/j.gde.2024.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/23/2024]
Abstract
Chromosome structure regulates DNA-templated processes such as transcription of genes. Dynamic changes to chromosome structure occur during development and in disease contexts. The cohesin complex is a molecular motor that regulates chromosome structure by generating DNA loops that bring two distal genomic sites into close spatial proximity. There are many open questions regarding the formation and dissolution of DNA loops, as well as the role(s) of DNA loops in regulating transcription of the interphase genome. This review focuses on recent discoveries that provide molecular insights into the role of cohesin and chromosome structure in gene transcription during development and disease.
Collapse
Affiliation(s)
- Natalie L Rittenhouse
- Curriculum in Genetics & Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jill M Dowen
- Department of Biophysics & Biochemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Nasmyth KA, Lee BG, Roig MB, Löwe J. What AlphaFold tells us about cohesin's retention on and release from chromosomes. eLife 2023; 12:RP88656. [PMID: 37975572 PMCID: PMC10656103 DOI: 10.7554/elife.88656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Cohesin is a trimeric complex containing a pair of SMC proteins (Smc1 and Smc3) whose ATPase domains at the end of long coiled coils (CC) are interconnected by Scc1. During interphase, it organizes chromosomal DNA topology by extruding loops in a manner dependent on Scc1's association with two large hook-shaped proteins called SA (yeast: Scc3) and Nipbl (Scc2). The latter's replacement by Pds5 recruits Wapl, which induces release from chromatin via a process requiring dissociation of Scc1's N-terminal domain (NTD) from Smc3. If blocked by Esco (Eco)-mediated Smc3 acetylation, cohesin containing Pds5 merely maintains pre-existing loops, but a third fate occurs during DNA replication, when Pds5-containing cohesin associates with Sororin and forms structures that hold sister DNAs together. How Wapl induces and Sororin blocks release has hitherto remained mysterious. In the 20 years since their discovery, not a single testable hypothesis has been proposed as to their role. Here, AlphaFold 2 (AF) three-dimensional protein structure predictions lead us to propose formation of a quarternary complex between Wapl, SA, Pds5, and Scc1's NTD, in which the latter is juxtaposed with (and subsequently sequestered by) a highly conserved cleft within Wapl's C-terminal domain. AF also reveals how Scc1's dissociation from Smc3 arises from a distortion of Smc3's CC induced by engagement of SMC ATPase domains, how Esco acetyl transferases are recruited to Smc3 by Pds5, and how Sororin prevents release by binding to the Smc3/Scc1 interface. Our hypotheses explain the phenotypes of numerous existing mutations and are highly testable.
Collapse
Affiliation(s)
- Kim A Nasmyth
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Byung-Gil Lee
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | | | - Jan Löwe
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| |
Collapse
|
11
|
Moon KW, Ryu JK. Current working models of SMC-driven DNA-loop extrusion. Biochem Soc Trans 2023; 51:1801-1810. [PMID: 37767565 DOI: 10.1042/bst20220898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Structural maintenance of chromosome (SMC) proteins play a key roles in the chromosome organization by condensing two meters of DNA into cell-sized structures considered as the SMC protein extrudes DNA loop. Recent sequencing-based high-throughput chromosome conformation capture technique (Hi-C) and single-molecule experiments have provided direct evidence of DNA-loop extrusion. However, the molecular mechanism by which SMCs extrude a DNA loop is still under debate. Here, we review DNA-loop extrusion studies with single-molecule assays and introduce recent structural studies of how the ATP-hydrolysis cycle is coupled to the conformational changes of SMCs for DNA-loop extrusion. In addition, we explain the conservation of the DNA-binding sites that are vital for dynamic DNA-loop extrusion by comparing Cryo-EM structures of SMC complexes. Based on this information, we compare and discuss four compelling working models that explain how the SMC complex extrudes a DNA loop.
Collapse
Affiliation(s)
- Kyoung-Wook Moon
- Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Je-Kyung Ryu
- Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| |
Collapse
|
12
|
Lyu X, Rowley MJ, Kulik MJ, Dalton S, Corces VG. Regulation of CTCF loop formation during pancreatic cell differentiation. Nat Commun 2023; 14:6314. [PMID: 37813869 PMCID: PMC10562423 DOI: 10.1038/s41467-023-41964-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
Transcription reprogramming during cell differentiation involves targeting enhancers to genes responsible for establishment of cell fates. To understand the contribution of CTCF-mediated chromatin organization to cell lineage commitment, we analyzed 3D chromatin architecture during the differentiation of human embryonic stem cells into pancreatic islet organoids. We find that CTCF loops are formed and disassembled at different stages of the differentiation process by either recruitment of CTCF to new anchor sites or use of pre-existing sites not previously involved in loop formation. Recruitment of CTCF to new sites in the genome involves demethylation of H3K9me3 to H3K9me2, demethylation of DNA, recruitment of pioneer factors, and positioning of nucleosomes flanking the new CTCF sites. Existing CTCF sites not involved in loop formation become functional loop anchors via the establishment of new cohesin loading sites containing NIPBL and YY1 at sites between the new anchors. In both cases, formation of new CTCF loops leads to strengthening of enhancer promoter interactions and increased transcription of genes adjacent to loop anchors. These results suggest an important role for CTCF and cohesin in controlling gene expression during cell differentiation.
Collapse
Affiliation(s)
- Xiaowen Lyu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China.
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China.
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Michael J Kulik
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, 30602, USA
- Center for Molecular Medicine, The University of Georgia, Athens, GA, 30602, USA
| | - Stephen Dalton
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, 30602, USA
- Center for Molecular Medicine, The University of Georgia, Athens, GA, 30602, USA
- School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
13
|
Chen J, Floyd EN, Dawson DS, Rankin S. Cornelia de Lange Syndrome mutations in SMC1A cause cohesion defects in yeast. Genetics 2023; 225:iyad159. [PMID: 37650609 PMCID: PMC10550314 DOI: 10.1093/genetics/iyad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023] Open
Abstract
Cornelia de Lange Syndrome (CdLS) is a developmental disorder characterized by limb truncations, craniofacial abnormalities, and cognitive delays. CdLS is caused mainly by mutations in genes encoding subunits or regulators of the cohesin complex. Cohesin plays 2 distinct roles in chromosome dynamics as follows: it promotes looping, organization, and compaction of individual chromosomes, and it holds newly replicated sister chromatids together until cell division. CdLS-associated mutations result in altered gene expression likely by affecting chromosome architecture. Whether CdLS mutations cause phenotypes through impact on sister chromatid cohesion is less clear. Here, we show that CdLS-associated mutations introduced into the SMC1A gene of budding yeast had measurable impacts on sister chromatid cohesion, mitotic progression, and DNA damage sensitivity. These data suggest that sister chromatid cohesion-related defects may contribute to phenotypes seen in CdLS affected individuals.
Collapse
Affiliation(s)
- Jingrong Chen
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th St. Oklahoma City, OK 73104, USA
| | - Erin N Floyd
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th St. Oklahoma City, OK 73104, USA
| | - Dean S Dawson
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th St. Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Susannah Rankin
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th St. Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
14
|
Alonso-Gil D, Losada A. NIPBL and cohesin: new take on a classic tale. Trends Cell Biol 2023; 33:860-871. [PMID: 37062615 DOI: 10.1016/j.tcb.2023.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 04/18/2023]
Abstract
Cohesin folds the genome in dynamic chromatin loops and holds the sister chromatids together. NIPBLScc2 is currently considered the cohesin loader, a role that may need reevaluation. NIPBL activates the cohesin ATPase, which is required for topological entrapment of sister DNAs and to fuel DNA loop extrusion, but is not required for chromatin association. Mechanistic dissection of these processes suggests that both NIPBL and the cohesin STAG subunit bind DNA. NIPBL also regulates conformational switches of the complex. Interactions of NIPBL with chromatin factors, including remodelers, replication proteins, and the transcriptional machinery, affect cohesin loading and distribution. Here, we discuss recent research addressing how NIPBL modulates cohesin activities and how its mutation causes a developmental disorder, Cornelia de Lange Syndrome (CdLS).
Collapse
Affiliation(s)
- Dácil Alonso-Gil
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
15
|
Kaushik A, Than T, Petela NJ, Voulgaris M, Percival C, Daniels P, Rafferty JB, Nasmyth KA, Hu B. Conformational dynamics of cohesin/Scc2 loading complex are regulated by Smc3 acetylation and ATP binding. Nat Commun 2023; 14:5929. [PMID: 37739959 PMCID: PMC10516938 DOI: 10.1038/s41467-023-41596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 09/11/2023] [Indexed: 09/24/2023] Open
Abstract
The ring-shaped cohesin complex is a key player in sister chromatid cohesion, DNA repair, and gene transcription. The loading of cohesin to chromosomes requires the loader Scc2 and is regulated by ATP. This process is hindered by Smc3 acetylation. However, the molecular mechanism underlying this inhibition remains mysterious. Here, using Saccharomyces cerevisiae as a model system, we identify a novel configuration of Scc2 with pre-engaged cohesin and reveal dynamic conformations of the cohesin/Scc2 complex in the loading reaction. We demonstrate that Smc3 acetylation blocks the association of Scc2 with pre-engaged cohesin by impairing the interaction of Scc2 with Smc3's head. Lastly, we show that ATP binding induces the cohesin/Scc2 complex to clamp DNA by promoting the interaction between Scc2 and Smc3 coiled coil. Our results illuminate a dynamic reconfiguration of the cohesin/Scc2 complex during loading and indicate how Smc3 acetylation and ATP regulate this process.
Collapse
Affiliation(s)
- Aditi Kaushik
- The Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Thane Than
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Naomi J Petela
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | | | - Charlotte Percival
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Peter Daniels
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - John B Rafferty
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Kim A Nasmyth
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Bin Hu
- The Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
16
|
Litwin I, Nowicka M, Markowska K, Maciaszczyk-Dziubińska E, Tomaszewska P, Wysocki R, Kramarz K. ISW1a modulates cohesin distribution in centromeric and pericentromeric regions. Nucleic Acids Res 2023; 51:9101-9121. [PMID: 37486771 PMCID: PMC10516642 DOI: 10.1093/nar/gkad612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023] Open
Abstract
Cohesin is a highly conserved, multiprotein complex whose canonical function is to hold sister chromatids together to ensure accurate chromosome segregation. Cohesin association with chromatin relies on the Scc2-Scc4 cohesin loading complex that enables cohesin ring opening and topological entrapment of sister DNAs. To better understand how sister chromatid cohesion is regulated, we performed a proteomic screen in budding yeast that identified the Isw1 chromatin remodeler as a cohesin binding partner. In addition, we found that Isw1 also interacts with Scc2-Scc4. Lack of Isw1 protein, the Ioc3 subunit of ISW1a or Isw1 chromatin remodeling activity resulted in increased accumulation of cohesin at centromeres and pericentromeres, suggesting that ISW1a may promote efficient translocation of cohesin from the centromeric site of loading to neighboring regions. Consistent with the role of ISW1a in the chromatin organization of centromeric regions, Isw1 was found to be recruited to centromeres. In its absence we observed changes in the nucleosomal landscape at centromeres and pericentromeres. Finally, we discovered that upon loss of RSC functionality, ISW1a activity leads to reduced cohesin binding and cohesion defect. Taken together, our results support the notion of a key role of chromatin remodelers in the regulation of cohesin distribution on chromosomes.
Collapse
Affiliation(s)
- Ireneusz Litwin
- Academic Excellence Hub - Research Centre for DNA Repair and Replication, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Małgorzata Nowicka
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Katarzyna Markowska
- Academic Excellence Hub - Research Centre for DNA Repair and Replication, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Ewa Maciaszczyk-Dziubińska
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Paulina Tomaszewska
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Robert Wysocki
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Karol Kramarz
- Academic Excellence Hub - Research Centre for DNA Repair and Replication, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| |
Collapse
|
17
|
Elias M, Gani S, Lerner Y, Yamin K, Tor C, Patel A, Matityahu A, Dessau M, Qvit N, Onn I. Developing a peptide to disrupt cohesin head domain interactions. iScience 2023; 26:107498. [PMID: 37664609 PMCID: PMC10470313 DOI: 10.1016/j.isci.2023.107498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/16/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
Cohesin mediates the 3-D structure of chromatin and is involved in maintaining genome stability and function. The cohesin core comprises Smc1 and Smc3, elongated-shaped proteins that dimerize through globular domains at their edges, called head and hinge. ATP binding to the Smc heads induces their dimerization and the formation of two active sites, while ATP hydrolysis results in head disengagement. This ATPase cycle is essential for driving cohesin activity. We report on the development of the first cohesin-inhibiting peptide (CIP). The CIP binds Smc3 in vitro and inhibits the ATPase activity of the holocomplex. Treating yeast cells with the CIP prevents cohesin's tethering activity and, interestingly, leads to the accumulation of cohesin on chromatin. CIP3 also affects cohesin activity in human cells. Altogether, we demonstrate the power of peptides to inhibit cohesin in cells and discuss the potential application of CIPs as a therapeutic approach.
Collapse
Affiliation(s)
- Maria Elias
- Chromosome Instability and Dynamics Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Samar Gani
- Protein-Protein Interactions Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Yana Lerner
- Protein-Protein Interactions Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Katreen Yamin
- Chromosome Instability and Dynamics Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Chen Tor
- Chromosome Instability and Dynamics Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Adarsh Patel
- The Lab for Structural Biology of Infectious Diseases, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Avi Matityahu
- Chromosome Instability and Dynamics Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Moshe Dessau
- The Lab for Structural Biology of Infectious Diseases, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Nir Qvit
- Protein-Protein Interactions Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Itay Onn
- Chromosome Instability and Dynamics Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
18
|
Bürmann F, Löwe J. Structural biology of SMC complexes across the tree of life. Curr Opin Struct Biol 2023; 80:102598. [PMID: 37104976 PMCID: PMC10512200 DOI: 10.1016/j.sbi.2023.102598] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 04/29/2023]
Abstract
Structural maintenance of chromosomes (SMC) complexes guard and organize the three-dimensional structure of chromosomal DNA across the tree of life. Many SMC functions can be explained by an inherent motor activity that extrudes large DNA loops while the complexes move along their substrate. Here, we review recent structural insights into the architecture and conservation of these molecular machines, their interaction with DNA, and the conformational changes that are linked to their ATP hydrolysis cycle.
Collapse
Affiliation(s)
- Frank Bürmann
- MRC Laboratory of Molecular Biology, Structural Studies Division, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Structural Studies Division, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| |
Collapse
|
19
|
Peng XP, Zhao X. The multi-functional Smc5/6 complex in genome protection and disease. Nat Struct Mol Biol 2023; 30:724-734. [PMID: 37336994 PMCID: PMC10372777 DOI: 10.1038/s41594-023-01015-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/05/2023] [Indexed: 06/21/2023]
Abstract
Structural maintenance of chromosomes (SMC) complexes are ubiquitous genome regulators with a wide range of functions. Among the three types of SMC complexes in eukaryotes, cohesin and condensin fold the genome into different domains and structures, while Smc5/6 plays direct roles in promoting chromosomal replication and repair and in restraining pathogenic viral extra-chromosomal DNA. The importance of Smc5/6 for growth, genotoxin resistance and host defense across species is highlighted by its involvement in disease prevention in plants and animals. Accelerated progress in recent years, including structural and single-molecule studies, has begun to provide greater insights into the mechanisms underlying Smc5/6 functions. Here we integrate a broad range of recent studies on Smc5/6 to identify emerging features of this unique SMC complex and to explain its diverse cellular functions and roles in disease pathogenesis. We also highlight many key areas requiring further investigation for achieving coherent views of Smc5/6-driven mechanisms.
Collapse
Affiliation(s)
- Xiao P Peng
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Sloan Kettering Cancer Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
20
|
Massari LF, Marston AL. Chromosome organization by fine-tuning an ATPase. Genes Dev 2023; 37:259-260. [PMID: 37045607 PMCID: PMC10153462 DOI: 10.1101/gad.350627.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Cohesin is an ATPase that drives chromosome organization through the generation of intramolecular loops and sister chromatid cohesion. Cohesin's ATPase is stimulated by Scc2 binding but attenuated by acetylation of its Smc3 subunit. In this issue of Genes & Development, Boardman and colleagues (pp. 277-290) take a genetic approach to generate a mechanistic model for the opposing regulation of cohesin's ATPase by Scc2 and Smc3 acetylation. Their findings provide in vivo insight into how this important genome organizer functions in vivo.
Collapse
Affiliation(s)
- Lucia F Massari
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Adele L Marston
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
21
|
Minamino M, Bouchoux C, Canal B, Diffley JFX, Uhlmann F. A replication fork determinant for the establishment of sister chromatid cohesion. Cell 2023; 186:837-849.e11. [PMID: 36693376 DOI: 10.1016/j.cell.2022.12.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/08/2022] [Accepted: 12/22/2022] [Indexed: 01/24/2023]
Abstract
Concomitant with DNA replication, the chromosomal cohesin complex establishes cohesion between newly replicated sister chromatids. Cohesion establishment requires acetylation of conserved cohesin lysine residues by Eco1 acetyltransferase. Here, we explore how cohesin acetylation is linked to DNA replication. Biochemical reconstitution of replication-coupled cohesin acetylation reveals that transient DNA structures, which form during DNA replication, control the acetylation reaction. As polymerases complete lagging strand replication, strand displacement synthesis produces DNA flaps that are trimmed to result in nicked double-stranded DNA. Both flaps and nicks stimulate cohesin acetylation, while subsequent nick ligation to complete Okazaki fragment maturation terminates the acetylation reaction. A flapped or nicked DNA substrate constitutes a transient molecular clue that directs cohesin acetylation to a window behind the replication fork, next to where cohesin likely entraps both sister chromatids. Our results provide an explanation for how DNA replication is linked to sister chromatid cohesion establishment.
Collapse
Affiliation(s)
- Masashi Minamino
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Céline Bouchoux
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Berta Canal
- Chromosome Replication Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - John F X Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
22
|
Choudhary K, Kupiec M. The cohesin complex of yeasts: sister chromatid cohesion and beyond. FEMS Microbiol Rev 2023; 47:6825453. [PMID: 36370456 DOI: 10.1093/femsre/fuac045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
Each time a cell divides, it needs to duplicate the genome and then separate the two copies. In eukaryotes, which usually have more than one linear chromosome, this entails tethering the two newly replicated DNA molecules, a phenomenon known as sister chromatid cohesion (SCC). Cohesion ensures proper chromosome segregation to separate poles during mitosis. SCC is achieved by the presence of the cohesin complex. Besides its canonical function, cohesin is essential for chromosome organization and DNA damage repair. Surprisingly, yeast cohesin is loaded in G1 before DNA replication starts but only acquires its binding activity during DNA replication. Work in microorganisms, such as Saccharomyces cerevisiae and Schizosaccharomyces pombe has greatly contributed to the understanding of cohesin composition and functions. In the last few years, much progress has been made in elucidating the role of cohesin in chromosome organization and compaction. Here, we discuss the different functions of cohesin to ensure faithful chromosome segregation and genome stability during the mitotic cell division in yeast. We describe what is known about its composition and how DNA replication is coupled with SCC establishment. We also discuss current models for the role of cohesin in chromatin loop extrusion and delineate unanswered questions about the activity of this important, conserved complex.
Collapse
Affiliation(s)
- Karan Choudhary
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Martin Kupiec
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
23
|
Freitag M, Jaklin S, Padovani F, Radzichevici E, Zernia S, Schmoller KM, Stigler J. Single-molecule experiments reveal the elbow as an essential folding guide in SMC coiled-coil arms. Biophys J 2022; 121:4702-4713. [PMID: 36242515 PMCID: PMC9748247 DOI: 10.1016/j.bpj.2022.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/16/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022] Open
Abstract
Structural maintenance of chromosome (SMC) complexes form ring-like structures through exceptional elongated coiled-coils (CCs). Recent studies found that variable CC conformations, including open and collapsed forms, which might result from discontinuities in the CC, facilitate the diverse functions of SMCs in DNA organization. However, a detailed description of the SMC CC architecture is still missing. Here, we study the structural composition and mechanical properties of SMC proteins with optical tweezers unfolding experiments using the isolated Psm3 CC as a model system. We find a comparatively unstable protein with three unzipping intermediates, which we could directly assign to CC features by crosslinking experiments and state-of-the-art prediction software. Particularly, the CC elbow is shown to be a flexible, potentially non-structured feature, which divides the CC into sections, induces a pairing shift from one CC strand to the other and could facilitate large-scale conformational changes, most likely via thermal fluctuations of the flanking CC sections. A replacement of the elbow amino acids hinders folding of the consecutive CC region and frequently leads to non-native misalignments, revealing the elbow as a guide for proper folding. Additional in vivo manipulation of the elbow flexibility resulted in impaired cohesin complexes, which directly link the sensitive CC architecture to the biological function of cohesin.
Collapse
Affiliation(s)
- Marvin Freitag
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sigrun Jaklin
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Francesco Padovani
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Sarah Zernia
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kurt M Schmoller
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Johannes Stigler
- Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
24
|
Matityahu A, Onn I. It's all in the numbers: Cohesin stoichiometry. Front Mol Biosci 2022; 9:1010894. [PMID: 36330215 PMCID: PMC9623059 DOI: 10.3389/fmolb.2022.1010894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/05/2022] [Indexed: 01/09/2024] Open
Abstract
Cohesin, a structural maintenance of chromosome (SMC) complex, organizes chromatin into three-dimensional structures by threading chromatin into loops and stabilizing long-range chromatin interactions. Four subunits in a 1:1:1:1 ratio compose the cohesin core, which is regulated by auxiliary factors that interact with or modify the core subunits. An ongoing debate about cohesin's mechanism of action regards its stoichiometry. Namely, is cohesin activity mediated by a single complex or cooperation between several complexes that organize into dimers or oligomers? Several investigations that used various experimental approaches have tried to resolve this dispute. Some have convincingly demonstrated that the cohesin monomer is the active unit. However, others have revealed the formation of cohesin dimers and higher-order clusters on and off chromosomes. Elucidating the biological function of cohesin clusters and determining what regulates their formation are just two of the many new questions raised by these findings. We briefly review the history of the argument about cohesin stoichiometry and the central evidence for cohesin activity as a monomer vs. an oligomer. Finally, we discuss the possible biological significance of cohesin oligomerization and present open questions that remain to be answered.
Collapse
Affiliation(s)
| | - Itay Onn
- The Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Safed, Israel
| |
Collapse
|
25
|
Coiled-coil structure of meiosis protein TEX12 and conformational regulation by its C-terminal tip. Commun Biol 2022; 5:921. [PMID: 36071143 PMCID: PMC9452514 DOI: 10.1038/s42003-022-03886-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/24/2022] [Indexed: 11/12/2022] Open
Abstract
Meiosis protein TEX12 is an essential component of the synaptonemal complex (SC), which mediates homologous chromosome synapsis. It is also recruited to centrosomes in meiosis, and aberrantly in certain cancers, leading to centrosome dysfunction. Within the SC, TEX12 forms an intertwined complex with SYCE2 that undergoes fibrous assembly, driven by TEX12’s C-terminal tip. However, we hitherto lack structural information regarding SYCE2-independent functions of TEX12. Here, we report X-ray crystal structures of TEX12 mutants in three distinct conformations, and utilise solution light and X-ray scattering to determine its wild-type dimeric four-helical coiled-coil structure. TEX12 undergoes conformational change upon C-terminal tip mutations, indicating that the sequence responsible for driving SYCE2-TEX12 assembly within the SC also controls the oligomeric state and conformation of isolated TEX12. Our findings provide the structural basis for SYCE2-independent roles of TEX12, including the possible regulation of SC assembly, and its known functions in meiotic centrosomes and cancer. The X-ray crystal structures of C-terminal mutants of the coiled-coil protein cancer testis antigen TEX12 in combination with modeling of the TEX12 wild-type dimer reveal the protein’s control of its oligomeric state, which resembles assembly of its complex with synaptonemal complex central element protein SYCE2.
Collapse
|
26
|
Hallett ST, Campbell Harry I, Schellenberger P, Zhou L, Cronin N, Baxter J, Etheridge T, Murray J, Oliver A. Cryo-EM structure of the Smc5/6 holo-complex. Nucleic Acids Res 2022; 50:9505-9520. [PMID: 35993814 PMCID: PMC9458440 DOI: 10.1093/nar/gkac692] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/14/2022] [Accepted: 07/30/2022] [Indexed: 01/06/2023] Open
Abstract
The Smc5/6 complex plays an essential role in the resolution of recombination intermediates formed during mitosis or meiosis, or as a result of the cellular response to replication stress. It also functions as a restriction factor preventing viral replication. Here, we report the cryogenic EM (cryo-EM) structure of the six-subunit budding yeast Smc5/6 holo-complex, reconstituted from recombinant proteins expressed in insect cells - providing both an architectural overview of the entire complex and an understanding of how the Nse1/3/4 subcomplex binds to the hetero-dimeric SMC protein core. In addition, we demonstrate that a region within the head domain of Smc5, equivalent to the 'W-loop' of Smc4 or 'F-loop' of Smc1, mediates an important interaction with Nse1. Notably, mutations that alter the surface-charge profile of the region of Nse1 which accepts the Smc5-loop, lead to a slow-growth phenotype and a global reduction in the chromatin-associated fraction of the Smc5/6 complex, as judged by single molecule localisation microscopy experiments in live yeast. Moreover, when taken together, our data indicates functional equivalence between the structurally unrelated KITE and HAWK accessory subunits associated with SMC complexes.
Collapse
Affiliation(s)
- Stephen T Hallett
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | - Isabella Campbell Harry
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | - Pascale Schellenberger
- Electron Microscopy Imaging Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | - Lihong Zhou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | - Nora B Cronin
- London Consortium for CryoEM (LonCEM) Facility, The Francis Crick Institute, London, UK
| | - Jonathan Baxter
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | - Thomas J Etheridge
- Correspondence may also be addressed to Thomas J. Etheridge. Tel: +44 1273 678123;
| | - Johanne M Murray
- Correspondence may also be addressed to Johanne M. Murray. Tel: +44 1273 877191;
| | - Antony W Oliver
- To whom correspondence should be addressed. Tel: +44 1273 678349;
| |
Collapse
|
27
|
Cohesin ATPase activities regulate DNA binding and coiled-coil configuration. Proc Natl Acad Sci U S A 2022; 119:e2208004119. [PMID: 35939705 PMCID: PMC9388089 DOI: 10.1073/pnas.2208004119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cohesin is a heteropentameric protein complex consisting of two structural maintenance of chromosomes (SMC) subunits and three non-SMC subunits. The two SMC subunits form a heterodimer with an ATPase head and hinge that are connected by long coiled coils. Isolation of ATPase mutants followed by comprehensive identification of suppressor mutations in SMC subunits that can bypass ATPase defects was performed. Locations and properties of mutant alleles reflect how ATPase activities could be compromised by structural adaptation. ATP-driven conformational changes may enhance DNA anchoring by the head, alter interactions of coiled coils at the head with other subunits for DNA to go through, and fold/extend coiled coils near break sites around midpoint to bring together DNA elements far from each other. The cohesin complex is required for sister chromatid cohesion and genome compaction. Cohesin coiled coils (CCs) can fold at break sites near midpoints to bring head and hinge domains, located at opposite ends of coiled coils, into proximity. Whether ATPase activities in the head play a role in this conformational change is yet to be known. Here, we dissected functions of cohesin ATPase activities in cohesin dynamics in Schizosaccharomyces pombe. Isolation and characterization of cohesin ATPase temperature-sensitive (ts) mutants indicate that both ATPase domains are required for proper chromosome segregation. Unbiased screening of spontaneous suppressor mutations rescuing the temperature lethality of cohesin ATPase mutants identified several suppressor hotspots in cohesin that located outside of ATPase domains. Then, we performed comprehensive saturation mutagenesis targeted to these suppressor hotspots. Large numbers of the identified suppressor mutations indicated several different ways to compensate for the ATPase mutants: 1) Substitutions to amino acids with smaller side chains in coiled coils at break sites around midpoints may enable folding and extension of coiled coils more easily; 2) substitutions to arginine in the DNA binding region of the head may enhance DNA binding; or 3) substitutions to hydrophobic amino acids in coiled coils, connecting the head and interacting with other subunits, may alter conformation of coiled coils close to the head. These results reflect serial structural changes in cohesin driven by its ATPase activities potentially for packaging DNAs.
Collapse
|
28
|
Cryo-EM structure of DNA-bound Smc5/6 reveals DNA clamping enabled by multi-subunit conformational changes. Proc Natl Acad Sci U S A 2022; 119:e2202799119. [PMID: 35648833 PMCID: PMC9191643 DOI: 10.1073/pnas.2202799119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Smc5/6 complex plays multiple roles in DNA replication and repair. Its genome-protecting functions rely on its interaction with DNA; however, how this complex engages DNA is poorly understood. We report on a cryogenic electron microscopy structure of DNA-bound budding yeast Smc5/6 complex, revealing that its subunits form a clamp to encircle a double-helical DNA. We define the multi-subunit interactions forming the DNA clamp and the DNA binding sites distributed among subunits. We identify subunit transformations upon DNA capture and functional effects conferred by its multiple DNA contact sites. Our findings, in conjunction with studies on other structural maintenance of chromosomes (SMC) complexes, suggest a common SMC DNA-clamp mechanism with individual complex specific features that enable diverse genome organization and protection functions by SMC family complexes. Structural maintenance of chromosomes (SMC) complexes are essential for chromatin organization and functions throughout the cell cycle. The cohesin and condensin SMCs fold and tether DNA, while Smc5/6 directly promotes DNA replication and repair. The functions of SMCs rely on their abilities to engage DNA, but how Smc5/6 binds and translocates on DNA remains largely unknown. Here, we present a 3.8 Å cryogenic electron microscopy (cryo-EM) structure of DNA-bound Saccharomyces cerevisiae Smc5/6 complex containing five of its core subunits, including Smc5, Smc6, and the Nse1-3-4 subcomplex. Intricate interactions among these subunits support the formation of a clamp that encircles the DNA double helix. The positively charged inner surface of the clamp contacts DNA in a nonsequence-specific manner involving numerous DNA binding residues from four subunits. The DNA duplex is held up by Smc5 and 6 head regions and positioned between their coiled-coil arm regions, reflecting an engaged-head and open-arm configuration. The Nse3 subunit secures the DNA from above, while the hook-shaped Nse4 kleisin forms a scaffold connecting DNA and all other subunits. The Smc5/6 DNA clamp shares similarities with DNA-clamps formed by other SMCs but also exhibits differences that reflect its unique functions. Mapping cross-linking mass spectrometry data derived from DNA-free Smc5/6 to the DNA-bound Smc5/6 structure identifies multi-subunit conformational changes that enable DNA capture. Finally, mutational data from cells reveal distinct DNA binding contributions from each subunit to Smc5/6 chromatin association and cell fitness. In summary, our integrative study illuminates how a unique SMC complex engages DNA in supporting genome regulation.
Collapse
|
29
|
van Ruiten MS, van Gent D, Sedeño Cacciatore Á, Fauster A, Willems L, Hekkelman ML, Hoekman L, Altelaar M, Haarhuis JHI, Brummelkamp TR, de Wit E, Rowland BD. The cohesin acetylation cycle controls chromatin loop length through a PDS5A brake mechanism. Nat Struct Mol Biol 2022; 29:586-591. [PMID: 35710836 PMCID: PMC9205776 DOI: 10.1038/s41594-022-00773-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/05/2022] [Indexed: 12/16/2022]
Abstract
Cohesin structures the genome through the formation of chromatin loops and by holding together the sister chromatids. The acetylation of cohesin's SMC3 subunit is a dynamic process that involves the acetyltransferase ESCO1 and deacetylase HDAC8. Here we show that this cohesin acetylation cycle controls the three-dimensional genome in human cells. ESCO1 restricts the length of chromatin loops, and of architectural stripes emanating from CTCF sites. HDAC8 conversely promotes the extension of such loops and stripes. This role in controlling loop length turns out to be distinct from the canonical role of cohesin acetylation that protects against WAPL-mediated DNA release. We reveal that acetylation controls the interaction of cohesin with PDS5A to restrict chromatin loop length. Our data support a model in which this PDS5A-bound state acts as a brake that enables the pausing and restart of loop enlargement. The cohesin acetylation cycle hereby provides punctuation in the process of genome folding.
Collapse
Affiliation(s)
- Marjon S van Ruiten
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Démi van Gent
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Astrid Fauster
- Division of Biochemistry, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Laureen Willems
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Maarten L Hekkelman
- Division of Biochemistry, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Maarten Altelaar
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University and Netherlands Proteomics Centre, Utrecht, the Netherlands
| | - Judith H I Haarhuis
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Thijn R Brummelkamp
- Division of Biochemistry, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Benjamin D Rowland
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
30
|
Nomidis SK, Carlon E, Gruber S, Marko JF. DNA tension-modulated translocation and loop extrusion by SMC complexes revealed by molecular dynamics simulations. Nucleic Acids Res 2022; 50:4974-4987. [PMID: 35474142 PMCID: PMC9122525 DOI: 10.1093/nar/gkac268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 12/19/2022] Open
Abstract
Structural Maintenance of Chromosomes (SMC) complexes play essential roles in genome organization across all domains of life. To determine how the activities of these large (≈50 nm) complexes are controlled by ATP binding and hydrolysis, we developed a molecular dynamics model that accounts for conformational motions of the SMC and DNA. The model combines DNA loop capture with an ATP-induced 'power stroke' to translocate the SMC complex along DNA. This process is sensitive to DNA tension: at low tension (0.1 pN), the model makes loop-capture steps of average 60 nm and up to 200 nm along DNA (larger than the complex itself), while at higher tension, a distinct inchworm-like translocation mode appears. By tethering DNA to an experimentally-observed additional binding site ('safety belt'), the model SMC complex can perform loop extrusion (LE). The dependence of LE on DNA tension is distinct for fixed DNA tension vs. fixed DNA end points: LE reversal occurs above 0.5 pN for fixed tension, while LE stalling without reversal occurs at about 2 pN for fixed end points. Our model matches recent experimental results for condensin and cohesin, and makes testable predictions for how specific structural variations affect SMC function.
Collapse
Affiliation(s)
- Stefanos K Nomidis
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
- Flemish Institute for Technological Research (VITO), Boeretang 200, B-2400 Mol, Belgium
| | - Enrico Carlon
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Stephan Gruber
- Départment de Microbiologie Fondamentale, Université de Lausanne, 1015 Lausanne, Switzerland
| | - John F Marko
- Department of Physics and Astronomy, and Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
31
|
A walk through the SMC cycle: From catching DNAs to shaping the genome. Mol Cell 2022; 82:1616-1630. [PMID: 35477004 DOI: 10.1016/j.molcel.2022.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 02/02/2022] [Accepted: 04/04/2022] [Indexed: 12/16/2022]
Abstract
SMC protein complexes are molecular machines that provide structure to chromosomes. These complexes bridge DNA elements and by doing so build DNA loops in cis and hold together the sister chromatids in trans. We discuss how drastic conformational changes allow SMC complexes to build such intricate DNA structures. The tight regulation of these complexes controls fundamental chromosomal processes such as transcription, recombination, repair, and mitosis.
Collapse
|
32
|
Xu X, Kanai R, Wang L, Yanagida M. Single amino acid substitutions in hydrophobic cores at a head-coiled coil junction region of cohesin facilitate its release of DNA during anaphase. Open Biol 2022; 12:210275. [PMID: 35472286 PMCID: PMC9042573 DOI: 10.1098/rsob.210275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/14/2022] [Indexed: 01/07/2023] Open
Abstract
Cohesin holds sister chromatids together and is cleaved by separase/Cut1 to release DNA during the transition from mitotic metaphase to anaphase. The cohesin complex consists of heterodimeric structural maintenance of chromosomes (SMC) subunits (Psm1 and Psm3), which possess a head and a hinge, separated by long coiled coils. Non-SMC subunits (Rad21, Psc3 and Mis4) bind to the SMC heads. Kleisin/Rad21's N-terminal domain (Rad21-NTD) interacts with Psm3's head-coiled coil junction (Psm3-HCJ). Spontaneous mutations that rescued the cleavage defects in temperature-sensitive (ts) separase mutants were identified in the interaction interface, but the underlying mechanism is yet to be understood. Here, we performed site-directed random mutagenesis to introduce single amino acid substitutions in Psm3-HCJ and Rad21-NTD, and then identified 300 mutations that rescued the cohesin-releasing defects in a separase ts mutant. Mutational analysis indicated that the amino acids involved in hydrophobic cores (which may be in close contact) in Psm3-HCJ and Rad21-NTD are hotspots, since 80 mutations (approx. 27%) were mapped in these locations. Properties of these substitutions indicate that they destabilize the interaction between the Psm3 head and Rad21-NTD. Thus, they may facilitate sister chromatid separation in a cleavage-independent way through cohesin structural re-arrangement.
Collapse
Affiliation(s)
- Xingya Xu
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Ryuta Kanai
- Institute of Quantitative Biosciences, The University of Tokyo, 113-0032 Tokyo, Japan
| | - Li Wang
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Mitsuhiro Yanagida
- G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
33
|
Bauer BW, Davidson IF, Canena D, Wutz G, Tang W, Litos G, Horn S, Hinterdorfer P, Peters JM. Cohesin mediates DNA loop extrusion by a "swing and clamp" mechanism. Cell 2021; 184:5448-5464.e22. [PMID: 34624221 PMCID: PMC8563363 DOI: 10.1016/j.cell.2021.09.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/02/2021] [Accepted: 09/09/2021] [Indexed: 10/28/2022]
Abstract
Structural maintenance of chromosomes (SMC) complexes organize genome topology in all kingdoms of life and have been proposed to perform this function by DNA loop extrusion. How this process works is unknown. Here, we have analyzed how loop extrusion is mediated by human cohesin-NIPBL complexes, which enable chromatin folding in interphase cells. We have identified DNA binding sites and large-scale conformational changes that are required for loop extrusion and have determined how these are coordinated. Our results suggest that DNA is translocated by a spontaneous 50 nm-swing of cohesin's hinge, which hands DNA over to the ATPase head of SMC3, where upon binding of ATP, DNA is clamped by NIPBL. During this process, NIPBL "jumps ship" from the hinge toward the SMC3 head and might thereby couple the spontaneous hinge swing to ATP-dependent DNA clamping. These results reveal mechanistic principles of how cohesin-NIPBL and possibly other SMC complexes mediate loop extrusion.
Collapse
Affiliation(s)
- Benedikt W Bauer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC) Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Iain F Davidson
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC) Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Daniel Canena
- Insitute for Biophysics, Johannes Kepler University Linz, Life Science Center, Gruberstrasse 40, 4020 Linz, Austria
| | - Gordana Wutz
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC) Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Wen Tang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC) Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Gabriele Litos
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC) Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Sabrina Horn
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC) Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030 Vienna, Austria
| | - Peter Hinterdorfer
- Insitute for Biophysics, Johannes Kepler University Linz, Life Science Center, Gruberstrasse 40, 4020 Linz, Austria
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC) Campus-Vienna-Biocenter 1, 1030 Vienna, Austria.
| |
Collapse
|