1
|
Heng JA, Woodford M, Polania R. Efficient numerosity estimation under limited time. PLoS Comput Biol 2025; 21:e1012790. [PMID: 40053561 PMCID: PMC12021274 DOI: 10.1371/journal.pcbi.1012790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/24/2025] [Accepted: 01/13/2025] [Indexed: 03/09/2025] Open
Abstract
The ability to rapidly estimate non-symbolic numerical quantities is a well-conserved sense across species with clear evolutionary advantages. However, despite its importance, this sense is surprisingly imprecise and biased, and a formal explanation for this seemingly irrational behavior remains unclear. We develop a unified normative theory of numerosity estimation that parsimoniously incorporates in a single framework information processing constraints alongside (i) Brownian diffusion noise to capture the effects of time exposure of sensory information, (ii) logarithmic encoding of numerosity representations, and (iii) optimal inference via Bayesian decoding. We show that for a given allowable biological capacity constraint our model naturally endogenizes time perception during noisy efficient encoding to predict the complete posterior distribution of numerosity estimates. This model accurately predicts many features of human numerosity estimation as a function of temporal exposure, indicating that humans can rapidly and efficiently sample numerosity information over time. Additionally, we demonstrate how our model fundamentally differs from a thermodynamically-inspired formalization of bounded rationality, where information processing is modeled as acting to shift away from default states. The mechanism we propose is the likely origin of a variety of numerical cognition patterns observed in humans and other animals.
Collapse
Affiliation(s)
- Joseph A. Heng
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| | - Michael Woodford
- Department of Economics, Columbia University, New York, New York, United States of America
| | - Rafael Polania
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Brus J, Heng JA, Beliaeva V, Gonzalez Pinto F, Cassarà AM, Neufeld E, Grueschow M, Imbach L, Polanía R. Causal phase-dependent control of non-spatial attention in human prefrontal cortex. Nat Hum Behav 2024; 8:743-757. [PMID: 38366104 PMCID: PMC11045450 DOI: 10.1038/s41562-024-01820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
Non-spatial attention is a fundamental cognitive mechanism that allows organisms to orient the focus of conscious awareness towards sensory information that is relevant to a behavioural goal while shifting it away from irrelevant stimuli. It has been suggested that attention is regulated by the ongoing phase of slow excitability fluctuations of neural activity in the prefrontal cortex, a hypothesis that has been challenged with no consensus. Here we developed a behavioural and non-invasive stimulation paradigm aiming at modulating slow excitability fluctuations of the inferior frontal junction. Using this approach, we show that non-spatial attention can be selectively modulated as a function of the ongoing phase of exogenously modulated excitability states of this brain structure. These results demonstrate that non-spatial attention relies on ongoing prefrontal excitability states, which are probably regulated by slow oscillatory dynamics, that orchestrate goal-oriented behaviour.
Collapse
Affiliation(s)
- Jeroen Brus
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, Zurich, Switzerland.
| | - Joseph A Heng
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| | - Valeriia Beliaeva
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| | - Fabian Gonzalez Pinto
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| | - Antonino Mario Cassarà
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
| | - Marcus Grueschow
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland
| | - Lukas Imbach
- Swiss Epilepsy Center (Klinik Lengg), Zurich, Switzerland
| | - Rafael Polanía
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Valdebenito-Oyarzo G, Martínez-Molina MP, Soto-Icaza P, Zamorano F, Figueroa-Vargas A, Larraín-Valenzuela J, Stecher X, Salinas C, Bastin J, Valero-Cabré A, Polania R, Billeke P. The parietal cortex has a causal role in ambiguity computations in humans. PLoS Biol 2024; 22:e3002452. [PMID: 38198502 PMCID: PMC10824459 DOI: 10.1371/journal.pbio.3002452] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/23/2024] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
Humans often face the challenge of making decisions between ambiguous options. The level of ambiguity in decision-making has been linked to activity in the parietal cortex, but its exact computational role remains elusive. To test the hypothesis that the parietal cortex plays a causal role in computing ambiguous probabilities, we conducted consecutive fMRI and TMS-EEG studies. We found that participants assigned unknown probabilities to objective probabilities, elevating the uncertainty of their decisions. Parietal cortex activity correlated with the objective degree of ambiguity and with a process that underestimates the uncertainty during decision-making. Conversely, the midcingulate cortex (MCC) encodes prediction errors and increases its connectivity with the parietal cortex during outcome processing. Disruption of the parietal activity increased the uncertainty evaluation of the options, decreasing cingulate cortex oscillations during outcome evaluation and lateral frontal oscillations related to value ambiguous probability. These results provide evidence for a causal role of the parietal cortex in computing uncertainty during ambiguous decisions made by humans.
Collapse
Affiliation(s)
- Gabriela Valdebenito-Oyarzo
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - María Paz Martínez-Molina
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - Patricia Soto-Icaza
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - Francisco Zamorano
- Unidad de Neuroimágenes Cuantitativas avanzadas (UNICA), Departamento de Imágenes, Clínica Alemana de Santiago, Santiago, Chile
- Facultad de Ciencias para el Cuidado de la Salud, Campus Los Leones, Universidad San Sebastián, Santiago, Chile
| | - Alejandra Figueroa-Vargas
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - Josefina Larraín-Valenzuela
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - Ximena Stecher
- Unidad de Neuroimágenes Cuantitativas avanzadas (UNICA), Departamento de Imágenes, Clínica Alemana de Santiago, Santiago, Chile
| | - César Salinas
- Unidad de Neuroimágenes Cuantitativas avanzadas (UNICA), Departamento de Imágenes, Clínica Alemana de Santiago, Santiago, Chile
| | - Julien Bastin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Antoni Valero-Cabré
- Causal Dynamics, Plasticity and Rehabilitation Group, FRONTLAB team, Institut du Cerveau et de la Moelle Epinière (ICM), CNRS UMR 7225, INSERM U 1127 and Sorbonne Université, Paris, France
- Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain
- Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University, School of Medicine, Boston, Massachusetts, United States of America
| | - Rafael Polania
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Pablo Billeke
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social, (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
4
|
Lupkin SM, McGinty VB. Monkeys exhibit human-like gaze biases in economic decisions. eLife 2023; 12:e78205. [PMID: 37497784 PMCID: PMC10465126 DOI: 10.7554/elife.78205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/25/2023] [Indexed: 07/28/2023] Open
Abstract
In economic decision-making individuals choose between items based on their perceived value. For both humans and nonhuman primates, these decisions are often carried out while shifting gaze between the available options. Recent studies in humans suggest that these shifts in gaze actively influence choice, manifesting as a bias in favor of the items that are viewed first, viewed last, or viewed for the overall longest duration in a given trial. This suggests a mechanism that links gaze behavior to the neural computations underlying value-based choices. In order to identify this mechanism, it is first necessary to develop and validate a suitable animal model of this behavior. To this end, we have created a novel value-based choice task for macaque monkeys that captures the essential features of the human paradigms in which gaze biases have been observed. Using this task, we identified gaze biases in the monkeys that were both qualitatively and quantitatively similar to those in humans. In addition, the monkeys' gaze biases were well-explained using a sequential sampling model framework previously used to describe gaze biases in humans-the first time this framework has been used to assess value-based decision mechanisms in nonhuman primates. Together, these findings suggest a common mechanism that can explain gaze-related choice biases across species, and open the way for mechanistic studies to identify the neural origins of this behavior.
Collapse
Affiliation(s)
- Shira M Lupkin
- Center for Molecular and Behavioral Neuroscience, Rutgers UniversityNewarkUnited States
- Behavioral and Neural Sciences Graduate Program, Rutgers UniversityNewarkUnited States
| | - Vincent B McGinty
- Center for Molecular and Behavioral Neuroscience, Rutgers UniversityNewarkUnited States
| |
Collapse
|