1
|
Xiong X, Lee HC, Lu T. Impact of Sorbs2 dysfunction on cardiovascular diseases. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167813. [PMID: 40139410 PMCID: PMC12037213 DOI: 10.1016/j.bbadis.2025.167813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Despite significant advancements in prevention and treatment over the past decades, cardiovascular diseases (CVDs) remain the leading cause of death worldwide. CVDs involve multifactorial inheritance, but our understanding of the genetic impact on these diseases is still incomplete. Sorbin and SH3 domain-containing protein 2 (Sorbs2) is ubiquitously expressed in various tissues, including the cardiovascular system. Increasing evidence suggests that Sorbs2 malfunction contributes to CVDs. This manuscript will review our current understanding of the potential mechanisms underlying Sorbs2 dysregulation in the development of CVDs.
Collapse
Affiliation(s)
- Xiaowei Xiong
- The Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Hon-Chi Lee
- The Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Tong Lu
- The Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
2
|
Zhang X, Qi M, Fu Q. Molecular genetics of congenital heart disease. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2861-9. [PMID: 40163266 DOI: 10.1007/s11427-024-2861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/08/2025] [Indexed: 04/02/2025]
Abstract
Congenital heart disease (CHD) is the most prevalent human birth defect and remains a leading cause of mortality in childhood. Although advancements in surgical and medical interventions have significantly reduced mortality rates among infants with critical CHDs, many survivors experience substantial cardiac and extracardiac comorbidities that affect their quality of life. The etiology of CHD is multifactorial, involving both genetic and environmental factors, yet a definitive cause remains unidentified in many cases. Recent advancements in genetic testing technologies have improved our ability to identify the genetic causes of CHD. This review presents an updated summary of the established genetic contributions to CHD, including chromosomal aberrations and mutations in genes associated with transcription factors, cardiac structural proteins, chromatin modifiers, cilia-related proteins, and cell signaling pathways. Furthermore, we discuss recent findings that support the roles of non-coding mutations and complex inheritance in the etiology of CHD.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Molecular Diagnosis for Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ming Qi
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
- Key Laboratory of Molecular Diagnosis for Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qihua Fu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Key Laboratory of Molecular Diagnosis for Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, 610072, China.
| |
Collapse
|
3
|
Timmer LT, den Hertog E, Versteeg D, Post H, Verdonschot JAJ, Monshouwer-Kloots J, Kyriakopoulou E, Perini I, Koopmans T, van der Kraak P, Zentilin L, Heymans SRB, Vink A, Giacca M, Heck AJR, van Rooij E. Cardiomyocyte SORBS2 expression increases in heart failure and regulates integrin interactions and extracellular matrix composition. Cardiovasc Res 2025:cvaf021. [PMID: 39957251 DOI: 10.1093/cvr/cvaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/26/2024] [Accepted: 12/05/2024] [Indexed: 02/18/2025] Open
Abstract
AIMS In this study, we aimed to uncover genes associated with stressed cardiomyocytes by combining single-cell transcriptomic datasets from failing cardiac tissue from both humans and mice. METHODS AND RESULTS Our bioinformatic analysis identified SORBS2 as conserved NPPA correlated gene. Using mouse models and cardiac tissue from human heart failure patients, we demonstrated that SORBS2 expression is consistently increased during pathological remodeling, correlates to disease severity and is regulated by GATA4. By affinity-purification mass-spectrometry, we showed SORBS2 to interact with the integrin-cytoskeleton connections. Cardiomyocyte-specific genetic loss of Sorbs2 in adult mice changed integrin interactions, indicated by the increased expression of several integrins and altered extracellular matrix components connecting to these integrins, leading to an exacerbated fibrotic response during pathological remodeling. CONCLUSIONS Sorbs2 is a cardiomyocyte-enriched gene that is increased during progression to heart failure in a GATA4-dependent manner and correlates to phenotypical hallmarks of cardiac failure.Our data indicate SORBS2 to function as a crucial regulator of integrin interactions and cardiac fibrosis.
Collapse
Affiliation(s)
- Louk T Timmer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elvira den Hertog
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Danielle Versteeg
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Job A J Verdonschot
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Cardiology, Cardiovascular Research Institute (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Jantine Monshouwer-Kloots
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eirini Kyriakopoulou
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ilaria Perini
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tim Koopmans
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Petra van der Kraak
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lorena Zentilin
- Molecular Medicine Laboratory, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Stephane R B Heymans
- Department of Cardiology, Cardiovascular Research Institute (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Center for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- School of Cardiovascular and Metabolic Medicine & Sciences and British Heart Foundation Centre of Research Excellence, King's College London, London, UK
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Hu B, Liu X, Xiong S, Gong Q, Yang J, Shi H, Zhang M, Liang F, Zhang Z. Increased cardiac macrophages in Sorbs2-deficient hearts: revealing a potential role for macrophage in responding to embryonic myocardial abnormalities. Front Genet 2025; 15:1525931. [PMID: 39882075 PMCID: PMC11774933 DOI: 10.3389/fgene.2024.1525931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
Macrophages are known to support cardiac development and homeostasis, contributing to tissue remodeling and repair in the adult heart. However, it remains unclear whether embryonic macrophages also respond to abnormalities in the developing heart. Previously, we reported that the structural protein Sorbs2 promotes the development of the second heart field, with its deficiency resulting in atrial septal defects (ASD). In analyzing RNA-seq data, we noted an upregulation of macrophage-related genes in Sorbs2 -/- hearts. Immunostaining and lineage-tracing confirmed an increase in macrophage numbers, underscoring a macrophage response to myocardial abnormalities. Partial depletion of macrophages led to downregulation of genes involved in lipid metabolism, muscle development and organ regeneration, alongside upregulation of genes associated with DNA damage-induced senescence and cardiomyopathy. Additionally, a non-significant increase in septal defects in macrophage-depleted Sorbs2 -/- hearts suggests a potential reparative function for macrophages in maintaining structural integrity. Valve formation, however, remained unaffected. Our findings suggest that embryonic macrophages might sense abnormalities in embryonic cardiomyocytes and could adaptively support cardiac structure and function development in response to myocardial abnormalities.
Collapse
Affiliation(s)
- Beibei Hu
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyang Liu
- School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Shanshan Xiong
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Gong
- Shanghai United International School (Gubei Campus), Shanghai, China
| | - Junjie Yang
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjun Shi
- School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Min Zhang
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Liang
- Neonatal Intensive Care Unit, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Zhang
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Collaborative Innovative Center of Intelligent Medical Device and Active Health, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
5
|
Harling LC, Zafar MA, Ziganshin B, Elefteriades JA. Gene Commonality in Arterial Circuits Throughout the Body. AORTA (STAMFORD, CONN.) 2024; 12:8-12. [PMID: 39532283 PMCID: PMC11606663 DOI: 10.1055/s-0044-1791667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/01/2024] [Indexed: 11/16/2024]
Abstract
The common genetic underpinnings of thoracic aortic aneurysms and aneurysms and dissections of several other major arterial circuits have been described in the literature. These include thoracic and abdominal aortic aneurysms, thoracic and intracranial aneurysms, thoracic aortic aneurysms, and spontaneous coronary artery dissections. In this study, we provide a unified report of these observations and investigate any genetic commonality between the above four arterial circulations.
Collapse
Affiliation(s)
- Lisa C. Harling
- Aortic Institute at Yale New Haven, Yale Medicine Department of Surgery, Yale University, New Haven, Connecticut
- Otto von Guericke University Medical School, Magdeburg, Germany
| | - Mohammad A. Zafar
- Aortic Institute at Yale New Haven, Yale Medicine Department of Surgery, Yale University, New Haven, Connecticut
| | - Bulat Ziganshin
- Aortic Institute at Yale New Haven, Yale Medicine Department of Surgery, Yale University, New Haven, Connecticut
| | - John A. Elefteriades
- Aortic Institute at Yale New Haven, Yale Medicine Department of Surgery, Yale University, New Haven, Connecticut
| |
Collapse
|
6
|
Rizzuto A, Faggiano A, Macchi C, Carugo S, Perrino C, Ruscica M. Extracellular vesicles in cardiomyopathies: A narrative review. Heliyon 2024; 10:e23765. [PMID: 38192847 PMCID: PMC10772622 DOI: 10.1016/j.heliyon.2023.e23765] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound particles released by all cells under physiological and pathological conditions. EVs constitute a potential tool to unravel cell-specific pathophysiological mechanisms at the root of disease states and retain the potential to act as biomarkers for cardiac diseases. By being able to carry bioactive cargo (such as proteins and miRNAs), EVs harness great potential as accessible "liquid biopsies", given their ability to reflect the state of their cell of origin. Cardiomyopathies encompass a variety of myocardial disorders associated with mechanical, functional and/or electric dysfunction. These diseases exhibit different phenotypes, including inappropriate ventricular hypertrophy, dilatation, scarring, fibro-fatty replacement, dysfunction, and may stem from multiple aetiologies, most often genetic. Thus, the aims of this narrative review are to summarize the current knowledge on EVs and cardiomyopathies (e.g., hypertrophic, dilated and arrhythmogenic), to elucidate the potential role of EVs in the paracrine cell-to-cell communication among cardiac tissue compartments, in aiding the diagnosis of the diverse subtypes of cardiomyopathies in a minimally invasive manner, and finally to address whether certain molecular and phenotypical characteristics of EVs may correlate with cardiomyopathy disease phenotype and severity.
Collapse
Affiliation(s)
- A.S. Rizzuto
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - A. Faggiano
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Italy
| | - C. Macchi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Milan, Italy
| | - S. Carugo
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Italy
| | - C. Perrino
- Department of Advanced Biomedical Sciences, Federico II University, 80131, Naples, Italy
| | - M. Ruscica
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Italy
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
7
|
Kutsuna S, Sugiyama G, Komiyama T, Kamohara H, Ohyama Y, Kumamaru W, Yamada T. TNF-α-induced Inhibition of Protein Myristoylation Via Binding Between NMT1 and Sorbs2 in Osteoblasts. In Vivo 2024; 38:107-113. [PMID: 38148048 PMCID: PMC10756471 DOI: 10.21873/invivo.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND/AIM Bone resolution due to tumor invasion often occurs on the surface of the jaw and is important for clinical prognosis. Although cytokines, such as TNF-α are known to impair osteoblasts, the underlying mechanism remains unclear. Protein myristoylation, a post-translational modification, plays an important role in the development of immune responses and cancerization of cells. A clear understanding of the mechanisms underlying this involvement will provide insights into molecular-targeted therapies. N-myristoyltransferase1 (NMT1), a specific enzyme involved in myristoylation, is expressed in cancer cells and in other normal cells, suggesting that changes in myristoylation may result from the regulation of NMT1 in cancer cells. MATERIALS AND METHODS Using newly emerging state-of-the-art techniques such as the Click-it assay, RNA interference, mass spectrometry, immunoprecipitation, immunocytochemistry, and western blotting, the expression of myristoylated proteins and the role of TNF-α stimulation on NMT1 and Sorbs2 binding were evaluated in a murine osteoblastic cell line (MC3T3-E1). RESULTS The expression of myristoylated proteins was detected; however, TNF-α stimulation resulted in their inhibition in MC3T3-E1 cells. The expression of NMT1 also increased. Immunoprecipitation and mass spectrometry identified Sorbs2 as a novel binding protein of NMT1, which upon TNF-α stimulation, inhibited myristoylation. CONCLUSION The binding between NMT1 and Sorbs2 can regulate myristoylation, and NMT1 can be considered as a potential target molecule for tumor invasion.
Collapse
Affiliation(s)
- Shigehiko Kutsuna
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Goro Sugiyama
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takuma Komiyama
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hanae Kamohara
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yukiko Ohyama
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Wataru Kumamaru
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Tomohiro Yamada
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
8
|
Li L, Shi G, Zhang X, Wang T, Wang B, Gao Y, You G, Fu Q, Xiang Y, Zhang X. Novel dominant-negative FOXJ1 mutation in a family with heterotaxy plus mouse model. Transl Pediatr 2023; 12:1476-1489. [PMID: 37692537 PMCID: PMC10485651 DOI: 10.21037/tp-23-27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/28/2023] [Indexed: 09/12/2023] Open
Abstract
Background Primary ciliary dyskinesia (PCD) is a clinically heterogeneous group of autosomal or, less frequently, X-chromosomal recessive inheritance syndrome of motile cilia dysfunction characterized by neonatal respiratory distress, oto-sino-pulmonary disease, infertility and situs inversus. Recently, type 43 PCD (CILD43, OMIM#618699) was established by autosomal-dominant loss-of-function mutations identified in Forkhead box J1 (FOXJ1). However, the functional validation of FOXJ1 mutations in humans and mice has not been fully performed. Here we studied a three-generation family with heterotaxy and proband with complex congenital heart disease (CHD). Methods We performed whole-exome sequencing to investigate the causative variant of this family and generated gene knock-in mice carrying the human equivalent mutation by homologous recombination. Then, microscopy analysis was used to characterize the phenotype and ciliary ultrastructure of the model. Effects of the variant on heart anomaly were preliminarily explored through transcriptome sequencing. Results A novel heterozygous deletion variant (c.1129delC/p.Leu377Trpfs*76) of FOXJ1 was discovered that exerts a dominant-negative effect (DNE) in vitro. Notably, both homozygous (Foxj1c.1129delT/c.1129delT) and heterozygous (Foxj1+/c.1129delT) mice developed situs inversus, hydrocephalus and showed a disruption of trachea cilia structure, whereas these abnormalities were only observed in previously reported Foxj1-/-, not Foxj1+/- mice. Thus, a more severe phenotype and higher expressivity of our mouse model further indicated the DNE of this mutation. Meanwhile, several cardiomyopathy-related genes were differentially expressed in the homozygous Foxj1 knock-in mouse hearts, pointing to a probable function in cardiac pathology. Conclusions Overall, our study results showed that c.1129delC mutation in FOXJ1 was regarded as the cause of situs inversus in this family and this mutant showed a capacity of DNE over wild-type FOXJ1, causing more serious consequences than the allelic deletion of Foxj1.
Collapse
Affiliation(s)
- Lulu Li
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guocheng Shi
- Department of Cardiothoracic Surgery, Congenital Heart Center, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingyu Zhang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Teng Wang
- Shanghai Institute of Precision Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Wang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, China
| | - Yunqian Gao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, China
| | - Guoling You
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, China
- Department of Laboratory Medicine, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qihua Fu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, China
| | - Ying Xiang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, China
| | - Xiaoqing Zhang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, China
| |
Collapse
|
9
|
McLendon JM, Zhang X, Matasic DS, Kumar M, Koval OM, Grumbach IM, Sadayappan S, London B, Boudreau RL. Knockout of Sorbin And SH3 Domain Containing 2 (Sorbs2) in Cardiomyocytes Leads to Dilated Cardiomyopathy in Mice. J Am Heart Assoc 2022; 11:e025687. [PMID: 35730644 PMCID: PMC9333371 DOI: 10.1161/jaha.122.025687] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Sorbin and SH3 domain containing 2 (Sorbs2) protein is a cytoskeletal adaptor with an emerging role in cardiac biology and disease; yet, its potential relevance to adult‐onset cardiomyopathies remains underexplored. Sorbs2 global knockout mice display lethal arrhythmogenic cardiomyopathy; however, the causative mechanisms remain unclear. Herein, we examine Sorbs2 dysregulation in heart failure, characterize novel Sorbs2 cardiomyocyte‐specific knockout mice (Sorbs2‐cKO), and explore associations between Sorbs2 genetic variations and human cardiovascular disease. Methods and Results Bioinformatic analyses show myocardial Sorbs2 mRNA is consistently upregulated in humans with adult‐onset cardiomyopathies and in heart failure models. We generated Sorbs2‐cKO mice and report that they develop progressive systolic dysfunction and enlarged cardiac chambers, and they die with congestive heart failure at about 1 year old. After 3 months, Sorbs2‐cKO mice begin to show atrial enlargement and P‐wave anomalies, without dysregulation of action potential–associated ion channel and gap junction protein expressions. After 6 months, Sorbs2‐cKO mice exhibit impaired contractility in dobutamine‐treated hearts and skinned myofibers, without dysregulation of contractile protein expressions. From our comprehensive survey of potential mechanisms, we found that within 4 months, Sorbs2‐cKO hearts have defective microtubule polymerization and compensatory upregulation of structural cytoskeletal and adapter proteins, suggesting that this early intracellular structural remodeling is responsible for contractile dysfunction. Finally, we identified genetic variants that associate with decreased Sorbs2 expression and human cardiac phenotypes, including conduction abnormalities, atrial enlargement, and dilated cardiomyopathy, consistent with Sorbs2‐cKO mice phenotypes. Conclusions Our studies show that Sorbs2 is essential for maintaining structural integrity in cardiomyocytes, likely through strengthening the interactions between microtubules and other cytoskeletal proteins at cross‐link sites.
Collapse
Affiliation(s)
- Jared M McLendon
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Abboud Cardiovascular Research Center University of Iowa Carver College of Medicine Iowa City IA
| | - Xiaoming Zhang
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Abboud Cardiovascular Research Center University of Iowa Carver College of Medicine Iowa City IA
| | - Daniel S Matasic
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Department of Molecular Physiology and Biophysics University of Iowa Carver College of Medicine Iowa City IA
| | - Mohit Kumar
- Department of Pharmacology and Systems Physiology University of Cincinnati OH.,Division of Cardiovascular Health and Disease Department of Internal Medicine Heart, Lung, and Vascular Institute University of Cincinnati OH
| | - Olha M Koval
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Abboud Cardiovascular Research Center University of Iowa Carver College of Medicine Iowa City IA
| | - Isabella M Grumbach
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Abboud Cardiovascular Research Center University of Iowa Carver College of Medicine Iowa City IA
| | - Sakthivel Sadayappan
- Department of Pharmacology and Systems Physiology University of Cincinnati OH.,Division of Cardiovascular Health and Disease Department of Internal Medicine Heart, Lung, and Vascular Institute University of Cincinnati OH
| | - Barry London
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Abboud Cardiovascular Research Center University of Iowa Carver College of Medicine Iowa City IA
| | - Ryan L Boudreau
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Abboud Cardiovascular Research Center University of Iowa Carver College of Medicine Iowa City IA
| |
Collapse
|
10
|
Tang CSM, Mononen M, Lam WY, Jin SC, Zhuang X, Garcia-Barcelo MM, Lin Q, Yang Y, Sahara M, Eroglu E, Chien KR, Hong H, Tam PK, Gruber PJ. Sequencing of a Chinese tetralogy of fallot cohort reveals clustering mutations in myogenic heart progenitors. JCI Insight 2021; 7:152198. [PMID: 34905512 PMCID: PMC8855809 DOI: 10.1172/jci.insight.152198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
Tetralogy of Fallot (TOF) is the most common cyanotic heart defect, yet the underlying genetic mechanisms remain poorly understood. Here, we performed whole-genome sequencing analysis on 146 nonsyndromic TOF parent-offspring trios of Chinese ethnicity. Comparison of de novo variants and recessive genotypes of this data set with data from a European cohort identified both overlapping and potentially novel gene loci and revealed differential functional enrichment between cohorts. To assess the impact of these mutations on early cardiac development, we integrated single-cell and spatial transcriptomics of early human heart development with our genetic findings. We discovered that the candidate gene expression was enriched in the myogenic progenitors of the cardiac outflow tract. Moreover, subsets of the candidate genes were found in specific gene coexpression modules along the cardiomyocyte differentiation trajectory. These integrative functional analyses help dissect the pathogenesis of TOF, revealing cellular hotspots in early heart development resulting in cardiac malformations.
Collapse
Affiliation(s)
- Clara Sze Man Tang
- Department of Surgery, The University of Hong Kong, Hong Kong, Hong Kong
| | - Mimmi Mononen
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Wai-Yee Lam
- Department of Surgery, The University of Hong Kong, Hong Kong, Hong Kong
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, United States of America
| | - Xuehan Zhuang
- Department of Surgery, The University of Hong Kong, Hong Kong, Hong Kong
| | | | - Qiongfen Lin
- Department of Surgery, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yujia Yang
- Department of Surgery, Yale University School of Medicine, New Haven, United States of America
| | - Makoto Sahara
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Elif Eroglu
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Haifa Hong
- Department of Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai, China
| | - Paul Kh Tam
- Department of Surgery, The University of Hong Kong, Hong Kong, Hong Kong
| | - Peter J Gruber
- Yale University School of Medicine, New Haven, United States of America
| |
Collapse
|
11
|
Meza-Espinoza JP, Contreras-Gutiérrez JA, Arámbula-Meraz E, González-García JR, Domínguez-Quezada MG, García-Magallanes N, Madueña-Molina J, Benítez-Pascual J, Partida-Pérez M, Picos-Cárdenas VJ. Cytogenomic characterization of a de novo 4q34.1 deletion in a girl with mild dysmorphic features and a coagulation disorder. Mol Cytogenet 2021; 14:43. [PMID: 34481514 PMCID: PMC8418750 DOI: 10.1186/s13039-021-00564-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/07/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND 4q deletion syndrome is a rare chromosomal disorder that mostly arises de novo. The syndrome is characterized by craniofacial dysmorphism, digital abnormalities, skeletal alterations, heart malformations, developmental delay, growth retardation, Pierre Robin sequence, autistic spectrum and attention deficit-hyperactivity disorder, although not every patient shows the same features. Array comparative genomic hybridization (aCGH) use improves the detection of tiny chromosomal deletions and allows for a better understanding of genotype-phenotype correlations in affected patients. We report the case of a 6-year-old female patient showing mild dysmorphic features, mild mental disabilities and a coagulation disorder as a consequence of a de novo del(4)(q34.1) characterized by aCGH. CASE PRESENTATION A 6-year-old female patient exhibited special craniofacial features, such as backward-rotated ears, upslanted palpebral fissures, broad nasal bridges, anteverted nares, broad nasal alae, smooth philtrums, smooth nasolabial folds, thin lips, horizontal labial commissures, and retrognathia. In the oral cavity, maxillary deformation, a high arched palate, agenesis of both mandibular canines and fusion of two mandibular incisors were observed. She also displayed bilateral implantation of the proximal thumbs, widely spaced nipples, dorsal kyphosis, hyperlordosis, and clitoral hypertrophy. In addition, the patient presented with coagulopathy, psychomotor delay, attention deficit-hyperactivity disorder, and mild mental disability. A chromosomal study showed the karyotype 46,XX,del(4)(q34.1), while an aCGH analysis revealed an 18.9 Mb deletion of a chromosome 4q subtelomeric region spanning 93 known genes. CONCLUSION The clinical manifestations of this patient were similar to those reported in other individuals with 4q deletion syndrome. Although most of the patients with a 4q34 terminal deletion share similarities, variations in phenotype are also common. In general, clinical effects of chromosomal deletion syndromes depend on the length of the deleted chromosomal segment and, consequently, on the number of lost genes; however, in all of these syndromes, there is no simple correlation between the phenotype and the chromosomal region involved, particularly in cases of 4q deletion.
Collapse
Affiliation(s)
- Juan Pablo Meza-Espinoza
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros, Tamps., Mexico
| | | | - Eliakym Arámbula-Meraz
- Laboratorio de Genética y Biología Molecular, Posgrado en Ciencias Biomédicas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sin., Mexico
| | - Juan Ramón González-García
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| | - Ma Guadalupe Domínguez-Quezada
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| | - Noemí García-Magallanes
- Laboratorio de Biomedicina y Biología Molecular, Unidad Académica de Ingeniería en Biotecnología, Universidad Politécnica de Sinaloa, Mazatlán, Sin., Mexico
| | | | | | - Miriam Partida-Pérez
- Departamento de Ciencias Médicas, Centro Universitario de La Costa (CUCosta), Universidad de Guadalajara, Puerto Vallarta, Jalisco, México
| | - Verónica Judith Picos-Cárdenas
- Laboratorio de Genética, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Sin., Mexico.
- Servicio de Medicina Genética, Hospital General de Culiacán, Culiacán, Sin., Mexico.
- Núcleo Académico Básico del Programa de Posgrado de la Facultad de Ciencias de la Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacán, Sin., Mexico.
| |
Collapse
|