1
|
Hellevik AM, Mardoum P, Hahn J, Kölsch Y, D'Orazi FD, Suzuki SC, Godinho L, Lawrence O, Rieke F, Shekhar K, Sanes JR, Baier H, Baden T, Wong RO, Yoshimatsu T. Ancient origin of the rod bipolar cell pathway in the vertebrate retina. Nat Ecol Evol 2024; 8:1165-1179. [PMID: 38627529 DOI: 10.1038/s41559-024-02404-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/20/2024] [Indexed: 04/30/2024]
Abstract
Vertebrates rely on rod photoreceptors for vision in low-light conditions. The specialized downstream circuit for rod signalling, called the primary rod pathway, is well characterized in mammals, but circuitry for rod signalling in non-mammals is largely unknown. Here we demonstrate that the mammalian primary rod pathway is conserved in zebrafish, which diverged from extant mammals ~400 million years ago. Using single-cell RNA sequencing, we identified two bipolar cell types in zebrafish that are related to mammalian rod bipolar cell (RBCs), the only bipolar type that directly carries rod signals from the outer to the inner retina in the primary rod pathway. By combining electrophysiology, histology and ultrastructural reconstruction of the zebrafish RBCs, we found that, similar to mammalian RBCs, both zebrafish RBC types connect with all rods in their dendritic territory and provide output largely onto amacrine cells. The wiring pattern of the amacrine cells postsynaptic to one RBC type is strikingly similar to that of mammalian RBCs and their amacrine partners, suggesting that the cell types and circuit design of the primary rod pathway emerged before the divergence of teleost fish and mammals. The second RBC type, which forms separate pathways, was either lost in mammals or emerged in fish.
Collapse
Affiliation(s)
- Ayana M Hellevik
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Philip Mardoum
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Joshua Hahn
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; Vision Sciences Graduate Program; California Institute of Quantitative Biosciences (QB3), University of California Berkley, Berkeley, CA, USA
| | - Yvonne Kölsch
- Department Genes - Circuits - Behavior, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Florence D D'Orazi
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Sachihiro C Suzuki
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Leanne Godinho
- Institute of Neuronal Cell Biology, Technische Universität München, Munich, Germany
| | - Owen Lawrence
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
- Vision Science Center, University of Washington, Seattle, WA, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; Vision Sciences Graduate Program; California Institute of Quantitative Biosciences (QB3), University of California Berkley, Berkeley, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Herwig Baier
- Department Genes - Circuits - Behavior, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Tom Baden
- School of Life Sciences, University of Sussex, Brighton, UK
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Takeshi Yoshimatsu
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis School of Medicine, St Louis, MO, USA.
- BioRTC, Yobe State University, Damatsuru, Yobe, Nigeria.
| |
Collapse
|
2
|
Baden T. Ancestral photoreceptor diversity as the basis of visual behaviour. Nat Ecol Evol 2024; 8:374-386. [PMID: 38253752 DOI: 10.1038/s41559-023-02291-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/10/2023] [Indexed: 01/24/2024]
Abstract
Animal colour vision is based on comparing signals from different photoreceptors. It is generally assumed that processing different spectral types of photoreceptor mainly serves colour vision. Here I propose instead that photoreceptors are parallel feature channels that differentially support visual-motor programmes like motion vision behaviours, prey capture and predator evasion. Colour vision may have emerged as a secondary benefit of these circuits, which originally helped aquatic vertebrates to visually navigate and segment their underwater world. Specifically, I suggest that ancestral vertebrate vision was built around three main systems, including a high-resolution general purpose greyscale system based on ancestral red cones and rods to mediate visual body stabilization and navigation, a high-sensitivity specialized foreground system based on ancestral ultraviolet cones to mediate threat detection and prey capture, and a net-suppressive system based on ancestral green and blue cones for regulating red/rod and ultraviolet circuits. This ancestral strategy probably still underpins vision today, and different vertebrate lineages have since adapted their original photoreceptor circuits to suit their diverse visual ecologies.
Collapse
Affiliation(s)
- Tom Baden
- University of Sussex, Sussex Neuroscience, Sussex Center for Sensory Neuroscience and Computation, Brighton, UK.
| |
Collapse
|
3
|
Hellevik AM, Mardoum P, Hahn J, Kölsch Y, D’Orazi FD, Suzuki SC, Godinho L, Lawrence O, Rieke F, Shekhar K, Sanes JR, Baier H, Baden T, Wong RO, Yoshimatsu T. Ancient origin of the rod bipolar cell pathway in the vertebrate retina. RESEARCH SQUARE 2023:rs.3.rs-3411693. [PMID: 37886445 PMCID: PMC10602083 DOI: 10.21203/rs.3.rs-3411693/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Vertebrates rely on rod photoreceptors for vision in low-light conditions. Mammals have a specialized downstream circuit for rod signaling called the primary rod pathway, which comprises specific cell types and wiring patterns that are thought to be unique to this lineage. Thus, it has been long assumed that the primary rod pathway evolved in mammals. Here, we challenge this view by demonstrating that the mammalian primary rod pathway is conserved in zebrafish, which diverged from extant mammals ~400 million years ago. Using single-cell RNA-sequencing, we identified two bipolar cell (BC) types in zebrafish that are related to mammalian rod BCs (RBCs) of the primary rod pathway. By combining electrophysiology, histology, and ultrastructural reconstruction of the zebrafish RBCs, we found that, like mammalian RBCs, both zebrafish RBC types connect with all rods in their dendritic territory, and provide output largely onto amacrine cells. The wiring pattern of the amacrine cells post-synaptic to one RBC type is strikingly similar to that of mammalian RBCs, suggesting that the cell types and circuit design of the primary rod pathway have emerged before the divergence of teleost fish and amniotes. The second RBC type, which forms separate pathways, is either lost in mammals or emerged in fish.
Collapse
Affiliation(s)
- Ayana M Hellevik
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Philip Mardoum
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Joshua Hahn
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; Vision Sciences Graduate Program; California Institute of Quantitative Biosciences (QB3), University of California Berkley, Berkeley, CA 94720, USA
| | - Yvonne Kölsch
- Department of Molecular & Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Max Planck Institute for Biological Intelligence, Department Genes – Circuits – Behavior, 82152 Martinsried, Germany
| | - Florence D D’Orazi
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Sachihiro C. Suzuki
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Leanne Godinho
- Institute of Neuronal Cell Biology, Technische Universität München, 80802 Munich, Germany
| | - Owen Lawrence
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
- Vision Science Center, University of Washington, Seattle, WA 98195, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; Vision Sciences Graduate Program; California Institute of Quantitative Biosciences (QB3), University of California Berkley, Berkeley, CA 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Joshua R Sanes
- Department of Molecular & Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Herwig Baier
- Max Planck Institute for Biological Intelligence, Department Genes – Circuits – Behavior, 82152 Martinsried, Germany
| | - Tom Baden
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, 72076, Germany
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Takeshi Yoshimatsu
- Department of Ophthalmology & Visual Sciences, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
- BioRTC, Yobe State University, Damatsuru, Yobe 620101, Nigeria
| |
Collapse
|
4
|
Hellevik AM, Mardoum P, Hahn J, Kölsch Y, D’Orazi FD, Suzuki SC, Godinho L, Lawrence O, Rieke F, Shekhar K, Sanes JR, Baier H, Baden T, Wong RO, Yoshimatsu T. Ancient origin of the rod bipolar cell pathway in the vertebrate retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557433. [PMID: 37771914 PMCID: PMC10525478 DOI: 10.1101/2023.09.12.557433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Vertebrates rely on rod photoreceptors for vision in low-light conditions1. Mammals have a specialized downstream circuit for rod signaling called the primary rod pathway, which comprises specific cell types and wiring patterns that are thought to be unique to this lineage2-6. Thus, it has been long assumed that the primary rod pathway evolved in mammals3,5-7. Here, we challenge this view by demonstrating that the mammalian primary rod pathway is conserved in zebrafish, which diverged from extant mammals ~400 million years ago. Using single-cell RNA-sequencing, we identified two bipolar cell (BC) types in zebrafish that are related to mammalian rod BCs (RBCs) of the primary rod pathway. By combining electrophysiology, histology, and ultrastructural reconstruction of the zebrafish RBCs, we found that, like mammalian RBCs8, both zebrafish RBC types connect with all rods and red-cones in their dendritic territory, and provide output largely onto amacrine cells. The wiring pattern of the amacrine cells post-synaptic to one RBC type is strikingly similar to that of mammalian RBCs. This suggests that the cell types and circuit design of the primary rod pathway may have emerged before the divergence of teleost fish and amniotes (mammals, bird, reptiles). The second RBC type in zebrafish, which forms separate pathways from the first RBC type, is either lost in mammals or emerged in fish to serve yet unknown roles.
Collapse
Affiliation(s)
- Ayana M Hellevik
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Philip Mardoum
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Joshua Hahn
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; Vision Sciences Graduate Program; California Institute of Quantitative Biosciences (QB3), University of California Berkley, Berkeley, CA 94720, USA
| | - Yvonne Kölsch
- Department of Molecular & Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Max Planck Institute for Biological Intelligence, Department Genes – Circuits – Behavior, 82152 Martinsried, Germany
| | - Florence D D’Orazi
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Sachihiro C. Suzuki
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Leanne Godinho
- Institute of Neuronal Cell Biology, Technische Universität München, 80802 Munich, Germany
| | - Owen Lawrence
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
- Vision Science Center, University of Washington, Seattle, WA 98195, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; Vision Sciences Graduate Program; California Institute of Quantitative Biosciences (QB3), University of California Berkley, Berkeley, CA 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Joshua R Sanes
- Department of Molecular & Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Herwig Baier
- Max Planck Institute for Biological Intelligence, Department Genes – Circuits – Behavior, 82152 Martinsried, Germany
| | - Tom Baden
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, 72076, Germany
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Takeshi Yoshimatsu
- Department of Ophthalmology & Visual Sciences, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
- BioRTC, Yobe State University, Damatsuru, Yobe 620101, Nigeria
| |
Collapse
|
5
|
Wang X, Roberts PA, Yoshimatsu T, Lagnado L, Baden T. Amacrine cells differentially balance zebrafish color circuits in the central and peripheral retina. Cell Rep 2023; 42:112055. [PMID: 36757846 DOI: 10.1016/j.celrep.2023.112055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/01/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
The vertebrate inner retina is driven by photoreceptors whose outputs are already pre-processed; in zebrafish, outer retinal circuits split "color" from "grayscale" information across four cone-photoreceptor types. It remains unclear how the inner retina processes incoming spectral information while also combining cone signals to shape grayscale functions. We address this question by imaging the light-driven responses of amacrine cells (ACs) and bipolar cells (BCs) in larval zebrafish in the presence and pharmacological absence of inner retinal inhibition. We find that ACs enhance opponency in some bipolar cells while at the same time suppressing pre-existing opponency in others, so that, depending on the retinal region, the net change in the number of color-opponent units is essentially zero. To achieve this "dynamic balance," ACs counteract intrinsic color opponency of BCs via the On channel. Consistent with these observations, Off-stratifying ACs are exclusively achromatic, while all color-opponent ACs stratify in the On sublamina.
Collapse
Affiliation(s)
- Xinwei Wang
- School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK.
| | - Paul A Roberts
- School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK
| | - Takeshi Yoshimatsu
- School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK
| | - Leon Lagnado
- School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK.
| | - Tom Baden
- School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK; Institute of Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany.
| |
Collapse
|
6
|
He L, He Y, Ma L, Huang T. A theoretical model reveals specialized synaptic depressions and temporal frequency tuning in retinal parallel channels. Front Comput Neurosci 2022; 16:1034446. [DOI: 10.3389/fncom.2022.1034446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022] Open
Abstract
In the Outer Plexiform Layer of a retina, a cone pedicle provides synaptic inputs for multiple cone bipolar cell (CBC) subtypes so that each subtype formats a parallelized processing channel to filter visual features from the environment. Due to the diversity of short-term depressions among cone-CBC contacts, these channels have different temporal frequency tunings. Here, we propose a theoretical model based on the hierarchy Linear-Nonlinear-Synapse framework to link the synaptic depression and the neural activities of the cone-CBC circuit. The model successfully captures various frequency tunings of subtype-specialized channels and infers synaptic depression recovery time constants inside circuits. Furthermore, the model can predict frequency-tuning behaviors based on synaptic activities. With the prediction of region-specialized UV cone parallel channels, we suggest the acute zone in the zebrafish retina supports detecting light-off events at high temporal frequencies.
Collapse
|
7
|
Abstract
Rapid and precise neuronal communication is enabled through a highly synchronous release of signaling molecules neurotransmitters within just milliseconds of the action potential. Yet neurotransmitter release lacks a theoretical framework that is both phenomenologically accurate and mechanistically realistic. Here, we present an analytic theory of the action-potential-triggered neurotransmitter release at the chemical synapse. The theory is demonstrated to be in detailed quantitative agreement with existing data on a wide variety of synapses from electrophysiological recordings in vivo and fluorescence experiments in vitro. Despite up to ten orders of magnitude of variation in the release rates among the synapses, the theory reveals that synaptic transmission obeys a simple, universal scaling law, which we confirm through a collapse of the data from strikingly diverse synapses onto a single master curve. This universality is complemented by the capacity of the theory to readily extract, through a fit to the data, the kinetic and energetic parameters that uniquely identify each synapse. The theory provides a means to detect cooperativity among the SNARE complexes that mediate vesicle fusion and reveals such cooperativity in several existing data sets. The theory is further applied to establish connections between molecular constituents of synapses and synaptic function. The theory allows competing hypotheses of short-term plasticity to be tested and identifies the regimes where particular mechanisms of synaptic facilitation dominate or, conversely, fail to account for the existing data for the paired-pulse ratio. The derived trade-off relation between the transmission rate and fidelity shows how transmission failure can be controlled by changing the microscopic properties of the vesicle pool and SNARE complexes. The established condition for the maximal synaptic efficacy reveals that no fine tuning is needed for certain synapses to maintain near-optimal transmission. We discuss the limitations of the theory and propose possible routes to extend it. These results provide a quantitative basis for the notion that the molecular-level properties of synapses are crucial determinants of the computational and information-processing functions in synaptic transmission.
Collapse
Affiliation(s)
- Bin Wang
- Department of Physics, University of California, San DiegoLa JollaUnited States
| | - Olga K Dudko
- Department of Physics, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
8
|
Yoshimatsu T, Bartel P, Schröder C, Janiak FK, St-Pierre F, Berens P, Baden T. Ancestral circuits for vertebrate color vision emerge at the first retinal synapse. SCIENCE ADVANCES 2021; 7:eabj6815. [PMID: 34644120 PMCID: PMC8514090 DOI: 10.1126/sciadv.abj6815] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
For color vision, retinal circuits separate information about intensity and wavelength. In vertebrates that use the full complement of four “ancestral” cone types, the nature and implementation of this computation remain poorly understood. Here, we establish the complete circuit architecture of outer retinal circuits underlying color processing in larval zebrafish. We find that the synaptic outputs of red and green cones efficiently rotate the encoding of natural daylight in a principal components analysis–like manner to yield primary achromatic and spectrally opponent axes, respectively. Blue cones are tuned to capture most remaining variance when opposed to green cones, while UV cone present a UV achromatic axis for prey capture. We note that fruitflies use essentially the same strategy. Therefore, rotating color space into primary achromatic and chromatic axes at the eye’s first synapse may thus be a fundamental principle of color vision when using more than two spectrally well-separated photoreceptor types.
Collapse
Affiliation(s)
| | - Philipp Bartel
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Cornelius Schröder
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | | | - François St-Pierre
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA
| | - Philipp Berens
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Tom Baden
- School of Life Sciences, University of Sussex, Brighton, UK
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Corresponding author.
| |
Collapse
|
9
|
Schröder C, Oesterle J, Berens P, Yoshimatsu T, Baden T. Distinct synaptic transfer functions in same-type photoreceptors. eLife 2021; 10:e67851. [PMID: 34269177 PMCID: PMC8318593 DOI: 10.7554/elife.67851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/13/2021] [Indexed: 01/22/2023] Open
Abstract
Many sensory systems use ribbon-type synapses to transmit their signals to downstream circuits. The properties of this synaptic transfer fundamentally dictate which aspects in the original stimulus will be accentuated or suppressed, thereby partially defining the detection limits of the circuit. Accordingly, sensory neurons have evolved a wide variety of ribbon geometries and vesicle pool properties to best support their diverse functional requirements. However, the need for diverse synaptic functions does not only arise across neuron types, but also within. Here we show that UV-cones, a single type of photoreceptor of the larval zebrafish eye, exhibit striking differences in their synaptic ultrastructure and consequent calcium to glutamate transfer function depending on their location in the eye. We arrive at this conclusion by combining serial section electron microscopy and simultaneous 'dual-colour' two-photon imaging of calcium and glutamate signals from the same synapse in vivo. We further use the functional dataset to fit a cascade-like model of the ribbon synapse with different vesicle pool sizes, transfer rates, and other synaptic properties. Exploiting recent developments in simulation-based inference, we obtain full posterior estimates for the parameters and compare these across different retinal regions. The model enables us to extrapolate to new stimuli and to systematically investigate different response behaviours of various ribbon configurations. We also provide an interactive, easy-to-use version of this model as an online tool. Overall, we show that already on the synaptic level of single-neuron types there exist highly specialised mechanisms which are advantageous for the encoding of different visual features.
Collapse
Affiliation(s)
- Cornelius Schröder
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
- Center for Integrative Neuroscience, University of TübingenTübingenGermany
| | - Jonathan Oesterle
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
- Center for Integrative Neuroscience, University of TübingenTübingenGermany
| | - Philipp Berens
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
- Center for Integrative Neuroscience, University of TübingenTübingenGermany
- Bernstein Center for Computational Neuroscience,Centre for Integrative Neuroscience, all: University of TubingenTubingenGermany
| | | | - Tom Baden
- Institute for Ophthalmic Research, University of TübingenTübingenGermany
- School of Life Sciences,University of SussexSussexUnited Kingdom
| |
Collapse
|