1
|
Ji Z, Lomi E, Jeffery K, Mitchell AS, Burgess N. Phase Precession Relative to Turning Angle in Theta-Modulated Head Direction Cells. Hippocampus 2025; 35:e70008. [PMID: 40071745 PMCID: PMC11898577 DOI: 10.1002/hipo.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/07/2025] [Accepted: 02/26/2025] [Indexed: 03/15/2025]
Abstract
Grid and place cells typically fire at progressively earlier phases within each cycle of the theta rhythm as rodents run across their firing fields, a phenomenon known as theta phase precession. Here, we report theta phase precession relative to turning angle in theta-modulated head direction cells within the anteroventral thalamic nucleus (AVN). As rodents turn their heads, these cells fire at progressively earlier phases as head direction sweeps over their preferred tuning direction. The degree of phase precession increases with angular head velocity. Moreover, phase precession is more pronounced in those theta-modulated head direction cells that exhibit theta skipping, with a stronger theta-skipping effect correlating with a higher degree of phase precession. These findings are consistent with a ring attractor model that integrates external theta input with internal firing rate adaptation-a phenomenon we identified in head direction cells within AVN. Our results broaden the range of information known to be subject to neural phase coding and enrich our understanding of the neural dynamics supporting spatial orientation and navigation.
Collapse
Affiliation(s)
- Zilong Ji
- UCL Institute of Cognitive Neuroscience, University College LondonLondonUK
- UCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Eleonora Lomi
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUK
| | - Kate Jeffery
- School of Psychology & Neuroscience, University of GlasgowGlasgowUK
| | - Anna S. Mitchell
- School of Psychology, Speech, and Hearing, University of CanterburyChristchurchNew Zealand
| | - Neil Burgess
- UCL Institute of Cognitive Neuroscience, University College LondonLondonUK
- UCL Queen Square Institute of Neurology, University College LondonLondonUK
| |
Collapse
|
2
|
Dillingham CM, Wilson JJ, Vann SD. Electrophysiological Properties of the Medial Mammillary Bodies across the Sleep-Wake Cycle. eNeuro 2024; 11:ENEURO.0447-23.2024. [PMID: 38621991 PMCID: PMC11055652 DOI: 10.1523/eneuro.0447-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
The medial mammillary bodies (MBs) play an important role in the formation of spatial memories; their dense inputs from hippocampal and brainstem regions makes them well placed to integrate movement-related and spatial information, which is then extended to the anterior thalamic nuclei and beyond to the cortex. While the anatomical connectivity of the medial MBs has been well studied, much less is known about their physiological properties, particularly in freely moving animals. We therefore carried out a comprehensive characterization of medial MB electrophysiology across arousal states by concurrently recording from the medial MB and the CA1 field of the hippocampus in male rats. In agreement with previous studies, we found medial MB neurons to have firing rates modulated by running speed and angular head velocity, as well as theta-entrained firing. We extended the characterization of MB neuron electrophysiology in three key ways: (1) we identified a subset of neurons (25%) that exhibit dominant bursting activity; (2) we showed that ∼30% of theta-entrained neurons exhibit robust theta cycle skipping, a firing characteristic that implicates them in a network for prospective coding of position; and (3) a considerable proportion of medial MB units showed sharp-wave ripple (SWR) responsive firing (∼37%). The functional heterogeneity of MB electrophysiology reinforces their role as an integrative node for mnemonic processing and identifies potential roles for the MBs in memory consolidation through propagation of SWR-responsive activity to the anterior thalamus and prospective coding in the form of theta cycle skipping.
Collapse
Affiliation(s)
- Christopher M Dillingham
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Neuroscience and Mental Health Innovation Institute, Cardiff CF24 4HQ, United Kingdom
| | - Jonathan J Wilson
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Neuroscience and Mental Health Innovation Institute, Cardiff CF24 4HQ, United Kingdom
| | - Seralynne D Vann
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Neuroscience and Mental Health Innovation Institute, Cardiff CF24 4HQ, United Kingdom
| |
Collapse
|
3
|
Zhong P, Cao Q, Yan Z. Distinct and Convergent Alterations of Entorhinal Cortical Circuits in Two Mouse Models for Alzheimer's Disease and Related Disorders. J Alzheimers Dis 2024; 98:1121-1131. [PMID: 38489190 PMCID: PMC11432142 DOI: 10.3233/jad-231413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Background The impairment of neural circuits controlling cognitive processes has been implicated in the pathophysiology of Alzheimer's disease and related disorders (ADRD). However, it is largely unclear what circuits are specifically changed in ADRD, particularly at the early stage. Objective Our goal of this study is to reveal the functional changes in the circuit of entorhinal cortex (EC), an interface between neocortex and hippocampus, in AD. Methods Electrophysiological, optogenetic and chemogenetic approaches were used to examine and manipulate entorhinal cortical circuits in amyloid-β familial AD model (5×FAD) and tauopathy model (P301S Tau). Results We found that, compared to wild-type mice, electrical stimulation of EC induced markedly smaller responses in subiculum (hippocampal output) of 5×FAD mice (6-month-old), suggesting that synaptic communication in the EC to subiculum circuit is specifically blocked in this AD model. In addition, optogenetic stimulation of glutamatergic terminals from prefrontal cortex (PFC) induced smaller responses in EC of 5×FAD and P301S Tau mice (6-month-old), suggesting that synaptic communication in the PFC to EC pathway is compromised in both ADRD models. Chemogenetic activation of PFC to EC pathway did not affect the bursting activity of EC neurons in 5×FAD mice, but partially restored the diminished EC neuronal activity in P301S Tau mice. Conclusions These data suggest that 5×FAD mice has a specific impairment of short-range hippocampal gateway (EC to subiculum), which may be caused by amyloid-β deposits; while two ADRD models have a common impairment of long-range cortical to hippocampal circuit (PFC to EC), which may be caused by microtubule/tau-based transport deficits. These circuit deficits provide a pathophysiological basis for unique and common impairments of various cognitive processes in ADRD conditions.
Collapse
Affiliation(s)
- Ping Zhong
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Qing Cao
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
4
|
Etter G, Carmichael JE, Williams S. Linking temporal coordination of hippocampal activity to memory function. Front Cell Neurosci 2023; 17:1233849. [PMID: 37720546 PMCID: PMC10501408 DOI: 10.3389/fncel.2023.1233849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/01/2023] [Indexed: 09/19/2023] Open
Abstract
Oscillations in neural activity are widespread throughout the brain and can be observed at the population level through the local field potential. These rhythmic patterns are associated with cycles of excitability and are thought to coordinate networks of neurons, in turn facilitating effective communication both within local circuits and across brain regions. In the hippocampus, theta rhythms (4-12 Hz) could contribute to several key physiological mechanisms including long-range synchrony, plasticity, and at the behavioral scale, support memory encoding and retrieval. While neurons in the hippocampus appear to be temporally coordinated by theta oscillations, they also tend to fire in sequences that are developmentally preconfigured. Although loss of theta rhythmicity impairs memory, these sequences of spatiotemporal representations persist in conditions of altered hippocampal oscillations. The focus of this review is to disentangle the relative contribution of hippocampal oscillations from single-neuron activity in learning and memory. We first review cellular, anatomical, and physiological mechanisms underlying the generation and maintenance of hippocampal rhythms and how they contribute to memory function. We propose candidate hypotheses for how septohippocampal oscillations could support memory function while not contributing directly to hippocampal sequences. In particular, we explore how theta rhythms could coordinate the integration of upstream signals in the hippocampus to form future decisions, the relevance of such integration to downstream regions, as well as setting the stage for behavioral timescale synaptic plasticity. Finally, we leverage stimulation-based treatment in Alzheimer's disease conditions as an opportunity to assess the sufficiency of hippocampal oscillations for memory function.
Collapse
Affiliation(s)
| | | | - Sylvain Williams
- Department of Psychiatry, Douglas Mental Health Research Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
5
|
Joshi A, Denovellis EL, Mankili A, Meneksedag Y, Davidson TJ, Gillespie AK, Guidera JA, Roumis D, Frank LM. Dynamic synchronization between hippocampal representations and stepping. Nature 2023; 617:125-131. [PMID: 37046088 PMCID: PMC10156593 DOI: 10.1038/s41586-023-05928-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/07/2023] [Indexed: 04/14/2023]
Abstract
The hippocampus is a mammalian brain structure that expresses spatial representations1 and is crucial for navigation2,3. Navigation, in turn, intricately depends on locomotion; however, current accounts suggest a dissociation between hippocampal spatial representations and the details of locomotor processes. Specifically, the hippocampus is thought to represent mainly higher-order cognitive and locomotor variables such as position, speed and direction of movement4-7, whereas the limb movements that propel the animal can be computed and represented primarily in subcortical circuits, including the spinal cord, brainstem and cerebellum8-11. Whether hippocampal representations are actually decoupled from the detailed structure of locomotor processes remains unknown. To address this question, here we simultaneously monitored hippocampal spatial representations and ongoing limb movements underlying locomotion at fast timescales. We found that the forelimb stepping cycle in freely behaving rats is rhythmic and peaks at around 8 Hz during movement, matching the approximately 8 Hz modulation of hippocampal activity and spatial representations during locomotion12. We also discovered precisely timed coordination between the time at which the forelimbs touch the ground ('plant' times of the stepping cycle) and the hippocampal representation of space. Notably, plant times coincide with hippocampal representations that are closest to the actual position of the nose of the rat, whereas between these plant times, the hippocampal representation progresses towards possible future locations. This synchronization was specifically detectable when rats approached spatial decisions. Together, our results reveal a profound and dynamic coordination on a timescale of tens of milliseconds between central cognitive representations and peripheral motor processes. This coordination engages and disengages rapidly in association with cognitive demands and is well suited to support rapid information exchange between cognitive and sensory-motor circuits.
Collapse
Affiliation(s)
- Abhilasha Joshi
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA.
- Departments of Physiology and Psychiatry, University of California, San Francisco, CA, USA.
| | - Eric L Denovellis
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
- Departments of Physiology and Psychiatry, University of California, San Francisco, CA, USA
| | - Abhijith Mankili
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
- Departments of Physiology and Psychiatry, University of California, San Francisco, CA, USA
| | - Yagiz Meneksedag
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
- Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Thomas J Davidson
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Anna K Gillespie
- Departments of Physiology and Psychiatry, University of California, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA, USA
| | - Jennifer A Guidera
- Departments of Physiology and Psychiatry, University of California, San Francisco, CA, USA
| | - Demetris Roumis
- Departments of Physiology and Psychiatry, University of California, San Francisco, CA, USA
| | - Loren M Frank
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA.
- Departments of Physiology and Psychiatry, University of California, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA, USA.
| |
Collapse
|
6
|
Tang W, Shin JD, Jadhav SP. Geometric transformation of cognitive maps for generalization across hippocampal-prefrontal circuits. Cell Rep 2023; 42:112246. [PMID: 36924498 PMCID: PMC10124109 DOI: 10.1016/j.celrep.2023.112246] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/09/2023] [Accepted: 02/26/2023] [Indexed: 03/17/2023] Open
Abstract
The ability to abstract information to guide decisions during navigation across changing environments is essential for adaptation and requires the integrity of the hippocampal-prefrontal circuitry. The hippocampus encodes navigational information in a cognitive map, but it remains unclear how cognitive maps are transformed across hippocampal-prefrontal circuits to support abstraction and generalization. Here, we simultaneously record hippocampal-prefrontal ensembles as rats generalize navigational rules across distinct environments. We find that, whereas hippocampal representational maps maintain specificity of separate environments, prefrontal maps generalize across environments. Furthermore, while both maps are structured within a neural manifold of population activity, they have distinct representational geometries. Prefrontal geometry enables abstraction of rule-informative variables, a representational format that generalizes to novel conditions of existing variable classes. Hippocampal geometry lacks such abstraction. Together, these findings elucidate how cognitive maps are structured into distinct geometric representations to support abstraction and generalization while maintaining memory specificity.
Collapse
Affiliation(s)
- Wenbo Tang
- Neuroscience Program, Department of Psychology, and Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA.
| | - Justin D Shin
- Neuroscience Program, Department of Psychology, and Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA
| | - Shantanu P Jadhav
- Neuroscience Program, Department of Psychology, and Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02453, USA.
| |
Collapse
|
7
|
Lenoir M, Navailles S, Vandaele Y, Vouillac-Mendoza C, Guillem K, Ahmed SH. Large-scale brain correlates of sweet versus cocaine reward in rats. Eur J Neurosci 2023; 57:423-439. [PMID: 36453530 DOI: 10.1111/ejn.15879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/09/2022] [Accepted: 11/20/2022] [Indexed: 12/03/2022]
Abstract
Cocaine induces many supranormal changes in neuronal activity in the brain, notably in learning- and reward-related regions, in comparison with nondrug rewards-a difference that is thought to contribute to its relatively high addictive potential. However, when facing a choice between cocaine and a nondrug reward (e.g., water sweetened with saccharin), most rats do not choose cocaine, as one would expect from the extent and magnitude of its global activation of the brain, but instead choose the nondrug option. We recently showed that cocaine, though larger in magnitude, is also an inherently more delayed reward than sweet water, thereby explaining why it has less value during choice and why rats opt for the more immediate nondrug option. Here, we used a large-scale Fos brain mapping approach to measure brain responses to each option in saccharin-preferring rats, with the hope to identify brain regions whose activity may explain the preference for the nondrug option. In total, Fos expression was measured in 142 brain levels corresponding to 52 brain subregions and composing 5 brain macrosystems. Overall, our findings confirm in rats with a preference for saccharin that cocaine induces more global brain activation than the preferred nondrug option does. Only very few brain regions were uniquely activated by saccharin. They included regions involved in taste processing (i.e., anterior gustatory cortex) and also regions involved in processing reward delay and intertemporal choice (i.e., some components of the septohippocampal system and its connections with the lateral habenula).
Collapse
Affiliation(s)
- Magalie Lenoir
- Université de Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| | | | - Youna Vandaele
- INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers, France
| | | | - Karine Guillem
- Université de Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Serge H Ahmed
- Université de Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| |
Collapse
|
8
|
Comrie AE, Frank LM, Kay K. Imagination as a fundamental function of the hippocampus. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210336. [PMID: 36314152 PMCID: PMC9620759 DOI: 10.1098/rstb.2021.0336] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/20/2022] [Indexed: 08/25/2023] Open
Abstract
Imagination is a biological function that is vital to human experience and advanced cognition. Despite this importance, it remains unknown how imagination is realized in the brain. Substantial research focusing on the hippocampus, a brain structure traditionally linked to memory, indicates that firing patterns in spatially tuned neurons can represent previous and upcoming paths in space. This work has generally been interpreted under standard views that the hippocampus implements cognitive abilities primarily related to actual experience, whether in the past (e.g. recollection, consolidation), present (e.g. spatial mapping) or future (e.g. planning). However, relatively recent findings in rodents identify robust patterns of hippocampal firing corresponding to a variety of alternatives to actual experience, in many cases without overt reference to the past, present or future. Given these findings, and others on hippocampal contributions to human imagination, we suggest that a fundamental function of the hippocampus is to generate a wealth of hypothetical experiences and thoughts. Under this view, traditional accounts of hippocampal function in episodic memory and spatial navigation can be understood as particular applications of a more general system for imagination. This view also suggests that the hippocampus contributes to a wider range of cognitive abilities than previously thought. This article is part of the theme issue 'Thinking about possibilities: mechanisms, ontogeny, functions and phylogeny'.
Collapse
Affiliation(s)
- Alison E. Comrie
- Neuroscience Graduate Program, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Center for Integrative Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Departments of Physiology and Psychiatry, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Loren M. Frank
- Kavli Institute for Fundamental Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Center for Integrative Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Departments of Physiology and Psychiatry, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Kenneth Kay
- Zuckerman Institute, Center for Theoretical Neuroscience, Columbia University, 3227 Broadway, New York, NY 10027, USA
| |
Collapse
|
9
|
Totty MS, Maren S. Neural Oscillations in Aversively Motivated Behavior. Front Behav Neurosci 2022; 16:936036. [PMID: 35846784 PMCID: PMC9284508 DOI: 10.3389/fnbeh.2022.936036] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Fear and anxiety-based disorders are highly debilitating and among the most prevalent psychiatric disorders. These disorders are associated with abnormal network oscillations in the brain, yet a comprehensive understanding of the role of network oscillations in the regulation of aversively motivated behavior is lacking. In this review, we examine the oscillatory correlates of fear and anxiety with a particular focus on rhythms in the theta and gamma-range. First, we describe neural oscillations and their link to neural function by detailing the role of well-studied theta and gamma rhythms to spatial and memory functions of the hippocampus. We then describe how theta and gamma oscillations act to synchronize brain structures to guide adaptive fear and anxiety-like behavior. In short, that hippocampal network oscillations act to integrate spatial information with motivationally salient information from the amygdala during states of anxiety before routing this information via theta oscillations to appropriate target regions, such as the prefrontal cortex. Moreover, theta and gamma oscillations develop in the amygdala and neocortical areas during the encoding of fear memories, and interregional synchronization reflects the retrieval of both recent and remotely encoded fear memories. Finally, we argue that the thalamic nucleus reuniens represents a key node synchronizing prefrontal-hippocampal theta dynamics for the retrieval of episodic extinction memories in the hippocampus.
Collapse
|