1
|
Alber DS, Zhao S, Jacinto AO, Wieschaus EF, Shvartsman SY, Haas PA. A model for boundary-driven tissue morphogenesis. ARXIV 2025:arXiv:2503.03688v1. [PMID: 40093362 PMCID: PMC11908361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Tissue deformations during morphogenesis can be active, driven by internal processes, or passive, resulting from stresses applied at their boundaries. Here, we introduce the Drosophila hindgut primordium as a model for studying boundary-driven tissue morphogenesis. We characterize its deformations and show that its complex shape changes can be a passive consequence of the deformations of the active regions of the embryo that surround it. First, we find an intermediate characteristic triangular shape in the 3D deformations of the hindgut. We construct a minimal model of the hindgut primordium as an elastic ring deformed by active midgut invagination and germ band extension on an ellipsoidal surface, which robustly captures the symmetry-breaking into this triangular shape. We then quantify the 3D kinematics of the tissue by a set of contours and discover that the hindgut deforms in two stages: an initial translation on the curved embryo surface followed by a rapid breaking of shape symmetry. We extend our model to show that the contour kinematics in both stages are consistent with our passive picture. Our results suggest that the role of in-plane deformations during hindgut morphogenesis is to translate the tissue to a region with anisotropic embryonic curvature and show that uniform boundary conditions are sufficient to generate the observed nonuniform shape change. Our work thus provides a possible explanation for the various characteristic shapes of blastopore-equivalents in different organisms and a framework for the mechanical emergence of global morphologies in complex developmental systems.
Collapse
Affiliation(s)
- Daniel S Alber
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540
| | - Shiheng Zhao
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strae 38, 01187 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrae 108, 01307 Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstrae 108, 01307 Dresden, Germany
| | - Alexandre O Jacinto
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010
| | - Eric F Wieschaus
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Stanislav Y Shvartsman
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540
| | - Pierre A Haas
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strae 38, 01187 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrae 108, 01307 Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstrae 108, 01307 Dresden, Germany
| |
Collapse
|
2
|
Xue SL, Yang Q, Liberali P, Hannezo E. Mechanochemical bistability of intestinal organoids enables robust morphogenesis. NATURE PHYSICS 2025; 21:608-617. [PMID: 40248571 PMCID: PMC11999871 DOI: 10.1038/s41567-025-02792-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/16/2025] [Indexed: 04/19/2025]
Abstract
Reproducible pattern and form generation during embryogenesis is poorly understood. Intestinal organoid morphogenesis involves a number of mechanochemical regulators such as cell-type-specific cytoskeletal forces and osmotically driven lumen volume changes. It is unclear how these forces are coordinated in time and space to ensure robust morphogenesis. Here we show how mechanosensitive feedback on cytoskeletal tension gives rise to morphological bistability in a minimal model of organoid morphogenesis. In the model, lumen volume changes can impact the epithelial shape via both direct mechanical and indirect mechanosensitive mechanisms. We find that both bulged and budded crypt states are possible and dependent on the history of volume changes. We test key modelling assumptions via biophysical and pharmacological experiments to demonstrate how bistability can explain experimental observations, such as the importance of the timing of lumen shrinkage and robustness of the final morphogenetic state to mechanical perturbations. This suggests that bistability arising from feedback between cellular tensions and fluid pressure could be a general mechanism that coordinates multicellular shape changes in developing systems.
Collapse
Affiliation(s)
- Shi-Lei Xue
- Department of Materials Science and Engineering, School of Engineering, Westlake University, Hangzhou, China
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Qiutan Yang
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Edouard Hannezo
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
3
|
Zhou S, Liu B, Liu J, Yi B, Wang X. Spatiotemporal dissection of collective cell migration and tissue morphogenesis during development by optogenetics. Semin Cell Dev Biol 2025; 166:36-51. [PMID: 39729778 DOI: 10.1016/j.semcdb.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/29/2024]
Abstract
Collective cell migration and tissue morphogenesis play a variety of important roles in the development of many species. Tissue morphogenesis often generates mechanical forces that alter cell shapes and arrangements, resembling collective cell migration-like behaviors. Genetic methods have been widely used to study collective cell migration and its like behavior, advancing our understanding of these processes during development. However, a growing body of research shows that collective cell migration during development is not a simple behavior but is often combined with other cellular and tissue processes. In addition, different surrounding environments can also influence migrating cells, further complicating collective cell migration during development. Due to the complexity of developmental processes and tissues, traditional genetic approaches often encounter challenges and limitations. Thus, some methods with spatiotemporal control become urgent in dissecting collective cell migration and tissue morphogenesis during development. Optogenetics is a method that combines optics and genetics, providing a perfect strategy for spatiotemporally controlling corresponding protein activity in subcellular, cellular or tissue levels. In this review, we introduce the basic mechanisms underlying different optogenetic tools. Then, we demonstrate how optogenetic methods have been applied in vivo to dissect collective cell migration and tissue morphogenesis during development. Additionally, we describe some promising optogenetic approaches for advancing this field. Together, this review will guide and facilitate future studies of collective cell migration in vivo and tissue morphogenesis by optogenetics.
Collapse
Affiliation(s)
- Sijia Zhou
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China; Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France.
| | - Bing Liu
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France.
| | - Jiaying Liu
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Bin Yi
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Xiaobo Wang
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
4
|
Sinigaglia C, Braghin F, Serra M. Optimal Control of Short-Time Attractors in Active Nematics. PHYSICAL REVIEW LETTERS 2024; 132:218302. [PMID: 38856253 DOI: 10.1103/physrevlett.132.218302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 06/11/2024]
Abstract
Objective Eulerian coherent structures (OECSs) and instantaneous Lyapunov exponents (iLEs) govern short-term material transport in fluid flows as Lagrangian coherent structures and the finite-time Lyapunov exponent do over longer times. Attracting OECSs and iLEs reveal short-time attractors and are computable from the Eulerian rate-of-strain tensor. Here, we devise for the first time an optimal control strategy to create short-time attractors in compressible, viscosity-dominated active nematic flows. By modulating the active stress intensity, our framework achieves a target profile of the minimum eigenvalue of the rate-of-strain tensor, controlling the location and shape of short-time attractors. We show that our optimal control strategy effectively achieves desired short-time attractors while rejecting disturbances. Combining optimal control and coherent structures, our work offers a new perspective to steer material transport in compressible active nematics, with applications to morphogenesis and synthetic active matter.
Collapse
Affiliation(s)
- Carlo Sinigaglia
- Politecnico di Milano, Department of Mechanical Engineering, Milan 20156, Italy
| | - Francesco Braghin
- Politecnico di Milano, Department of Mechanical Engineering, Milan 20156, Italy
| | - Mattia Serra
- University of California San Diego, Department of Physics, San Diego, California 92093, USA
| |
Collapse
|
5
|
Kumar N, Mim MS, Dowling A, Zartman JJ. Reverse engineering morphogenesis through Bayesian optimization of physics-based models. NPJ Syst Biol Appl 2024; 10:49. [PMID: 38714708 PMCID: PMC11076624 DOI: 10.1038/s41540-024-00375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/17/2024] [Indexed: 05/10/2024] Open
Abstract
Morphogenetic programs coordinate cell signaling and mechanical interactions to shape organs. In systems and synthetic biology, a key challenge is determining optimal cellular interactions for predicting organ shape, size, and function. Physics-based models defining the subcellular force distribution facilitate this, but it is challenging to calibrate parameters in these models from data. To solve this inverse problem, we created a Bayesian optimization framework to determine the optimal cellular force distribution such that the predicted organ shapes match the experimentally observed organ shapes. This integrative framework employs Gaussian Process Regression, a non-parametric kernel-based probabilistic machine learning modeling paradigm, to learn the mapping functions relating to the morphogenetic programs that maintain the final organ shape. We calibrated and tested the method on Drosophila wing imaginal discs to study mechanisms that regulate epithelial processes ranging from development to cancer. The parameter estimation framework successfully infers the underlying changes in core parameters needed to match simulation data with imaging data of wing discs perturbed with collagenase. The computational pipeline identifies distinct parameter sets mimicking wild-type shapes. It enables a global sensitivity analysis to support the regulation of actomyosin contractility and basal ECM stiffness to generate and maintain the curved shape of the wing imaginal disc. The optimization framework, combined with experimental imaging, identified that Piezo, a mechanosensitive ion channel, impacts fold formation by regulating the apical-basal balance of actomyosin contractility and elasticity of ECM. This workflow is extensible toward reverse-engineering morphogenesis across organ systems and for real-time control of complex multicellular systems.
Collapse
Affiliation(s)
- Nilay Kumar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Mayesha Sahir Mim
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Alexander Dowling
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Jeremiah J Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
6
|
Li S, Liu ZY, Li H, Zhou S, Liu J, Sun N, Yang KF, Dougados V, Mangeat T, Belguise K, Feng XQ, Liu Y, Wang X. Basal actomyosin pulses expand epithelium coordinating cell flattening and tissue elongation. Nat Commun 2024; 15:3000. [PMID: 38589403 PMCID: PMC11001887 DOI: 10.1038/s41467-024-47236-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
Actomyosin networks constrict cell area and junctions to alter cell and tissue shape. However, during cell expansion under mechanical stress, actomyosin networks are strengthened and polarized to relax stress. Thus, cells face a conflicting situation between the enhanced actomyosin contractile properties and the expansion behaviour of the cell or tissue. To address this paradoxical situation, we study late Drosophila oogenesis and reveal an unusual epithelial expansion wave behaviour. Mechanistically, Rac1 and Rho1 integrate basal pulsatile actomyosin networks with ruffles and focal adhesions to increase and then stabilize basal area of epithelial cells allowing their flattening and elongation. This epithelial expansion behaviour bridges cell changes to oocyte growth and extension, while oocyte growth in turn deforms the epithelium to drive cell spreading. Basal pulsatile actomyosin networks exhibit non-contractile mechanics, non-linear structures and F-actin/Myosin-II spatiotemporal signal separation, implicating unreported expanding properties. Biophysical modelling incorporating these expanding properties well simulates epithelial cell expansion waves. Our work thus highlights actomyosin expanding properties as a key mechanism driving tissue morphogenesis.
Collapse
Affiliation(s)
- Shun Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, P. R. China
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Zong-Yuan Liu
- Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Hao Li
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Sijia Zhou
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Jiaying Liu
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Ningwei Sun
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Kai-Fu Yang
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, P. R. China
| | - Vanessa Dougados
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Thomas Mangeat
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Karine Belguise
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Xi-Qiao Feng
- Department of Engineering Mechanics, Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, 100084, P.R. China.
| | - Yiyao Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, P. R. China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, 610072, Chengdu, Sichuan, P.R. China.
| | - Xiaobo Wang
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
7
|
Guan G, Luo C, Tang LH, Tang C. Modulating cell proliferation by asymmetric division: A conserved pattern in the early embryogenesis of nematode species. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001006. [PMID: 38505394 PMCID: PMC10949086 DOI: 10.17912/micropub.biology.001006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/24/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024]
Abstract
In the early stage of the nematode Caenorhabditis elegans embryogenesis, the zygote divides asymmetrically into a symmetric fast lineage and an asymmetric slow lineage, producing 16 and 8 cells respectively almost at the same time, followed by the onset of gastrulation. It was recently reported that this cell division pattern is optimal for rapid cell proliferation. In this work, we compare the cell lineages of 9 nematode species, revealing that this pattern is conserved for >60 million years. It further suggests that such lineage design has an important functional role and it might speed up embryonic development in the nematode kingdom, not limited to C. elegans , and independent of the maternal-zygotic transition dynamics.
Collapse
Affiliation(s)
- Guoye Guan
- Center for Quantitative Biology, Peking University
- South Bay Interdisciplinary Science Center, Songshan Lake Materials Laboratory
- Department of Physics, Hong Kong Baptist University
- Current Address: Department of Systems Biology, Harvard Medical School
- Current Address: Department of Data Science, Dana-Farber Cancer Institute
| | - Ce Luo
- Center for Quantitative Biology, Peking University
| | - Lei-Han Tang
- South Bay Interdisciplinary Science Center, Songshan Lake Materials Laboratory
- Department of Physics, Hong Kong Baptist University
- Institute of Computational and Theoretical Studies, Hong Kong Baptist University
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University
| | - Chao Tang
- Center for Quantitative Biology, Peking University
- Peking-Tsinghua Center for Life Sciences, Peking University
- School of Physics, Peking University
| |
Collapse
|
8
|
Nalbant P, Wagner J, Dehmelt L. Direct investigation of cell contraction signal networks by light-based perturbation methods. Pflugers Arch 2023; 475:1439-1452. [PMID: 37851146 DOI: 10.1007/s00424-023-02864-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023]
Abstract
Cell contraction plays an important role in many physiological and pathophysiological processes. This includes functions in skeletal, heart, and smooth muscle cells, which lead to highly coordinated contractions of multicellular assemblies, and functions in non-muscle cells, which are often highly localized in subcellular regions and transient in time. While the regulatory processes that control cell contraction in muscle cells are well understood, much less is known about cell contraction in non-muscle cells. In this review, we focus on the mechanisms that control cell contraction in space and time in non-muscle cells, and how they can be investigated by light-based methods. The review particularly focusses on signal networks and cytoskeletal components that together control subcellular contraction patterns to perform functions on the level of cells and tissues, such as directional migration and multicellular rearrangements during development. Key features of light-based methods that enable highly local and fast perturbations are highlighted, and how experimental strategies can capitalize on these features to uncover causal relationships in the complex signal networks that control cell contraction.
Collapse
Affiliation(s)
- Perihan Nalbant
- Department of Molecular Cell Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Room T03 R01 D33, Universitätsstrasse 2, 45141, Essen, Germany.
| | - Jessica Wagner
- Department of Molecular Cell Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Room T03 R01 D33, Universitätsstrasse 2, 45141, Essen, Germany
| | - Leif Dehmelt
- Department of Systemic Cell Biology, Fakultät für Chemie und Chemische Biologie, Max Planck Institute of Molecular Physiology, and Dortmund University of Technology, Room CP-02-157, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany.
| |
Collapse
|
9
|
Niloy RA, Holcomb MC, Thomas JH, Blawzdziewicz J. The mechanics of cephalic furrow formation in the Drosophila embryo. Biophys J 2023; 122:3843-3859. [PMID: 37571824 PMCID: PMC10560681 DOI: 10.1016/j.bpj.2023.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/06/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
Cephalic furrow formation (CFF) is a major morphogenetic movement during gastrulation in Drosophila melanogaster embryos that gives rise to a deep, transitory epithelial invagination. Recent studies have identified the individual cell shape changes that drive the initiation and progression phases of CFF; however, the underlying mechanics are not yet well understood. During the progression phase, the furrow deepens as columnar cells from both the anterior and posterior directions fold inwards rotating by 90°. To analyze the mechanics of this process, we have developed an advanced two-dimensional lateral vertex model that includes multinode representation of cellular membranes and allows us to capture the membrane curvature associated with pressure variation. Our investigations reveal some key potential mechanical features of CFF, as follows. When cells begin to roll over the cephalic furrow cleft, they become wedge shaped as their apical cortices and overlying membranes expand, lateral cortices and overlying membranes release tension, internal pressures drop, and basal cortices and membranes contract. Then, cells reverse this process by shortening apical cortices and membranes, increasing lateral tension, and causing internal pressures to rise. Since the basal membranes expand, the cells recover their rotated columnar shape once in the furrow. Interestingly, our findings indicate that the basal membranes may be passively reactive throughout the progression phase. We also find that the smooth rolling of cells over the cephalic furrow cleft necessitates that internalized cells provide a solid base through high levels of membrane tension and internal pressure, which allows the transmission of tensile force that pulls new cells into the furrow. These results lead us to suggest that CFF helps to establish a baseline tension across the apical surface of the embryo to facilitate cellular coordination of other morphogenetic movements via mechanical stress feedback mechanisms.
Collapse
Affiliation(s)
- Redowan A Niloy
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas
| | - Michael C Holcomb
- Department of Physics and Geosciences, Angelo State University, San Angelo, Texas
| | - Jeffrey H Thomas
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Jerzy Blawzdziewicz
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas; Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas.
| |
Collapse
|
10
|
Kumar N, Dowling A, Zartman J. Reverse engineering morphogenesis through Bayesian optimization of physics-based models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.553928. [PMID: 37662294 PMCID: PMC10473585 DOI: 10.1101/2023.08.21.553928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Morphogenetic programs direct the cell signaling and nonlinear mechanical interactions between multiple cell types and tissue layers to define organ shape and size. A key challenge for systems and synthetic biology is determining optimal combinations of intra- and inter-cellular interactions to predict an organ's shape, size, and function. Physics-based mechanistic models that define the subcellular force distribution facilitate this, but it is extremely challenging to calibrate parameters in these models from data. To solve this inverse problem, we created a Bayesian optimization framework to determine the optimal cellular force distribution such that the predicted organ shapes match the desired organ shapes observed within the experimental imaging data. This integrative framework employs Gaussian Process Regression (GPR), a non-parametric kernel-based probabilistic machine learning modeling paradigm, to learn the mapping functions relating to the morphogenetic programs that generate and maintain the final organ shape. We calibrated and tested the method on cross-sections of Drosophila wing imaginal discs, a highly informative model organ system, to study mechanisms that regulate epithelial processes that range from development to cancer. As a specific test case, the parameter estimation framework successfully infers the underlying changes in core parameters needed to match simulation data with time series imaging data of wing discs perturbed with collagenase. Unexpectedly, the framework also identifies multiple distinct parameter sets that generate shapes similar to wild-type organ shapes. This platform enables an efficient, global sensitivity analysis to support the necessity of both actomyosin contractility and basal ECM stiffness to generate and maintain the curved shape of the wing imaginal disc. The optimization framework, combined with fixed tissue imaging, identified that Piezo, a mechanosensitive ion channel, impacts fold formation by regulating the apical-basal balance of actomyosin contractility and elasticity of ECM. This framework is extensible toward reverse-engineering the morphogenesis of any organ system and can be utilized in real-time control of complex multicellular systems.
Collapse
|
11
|
Abstract
During gastrulation, early embryos specify and reorganise the topology of their germ layers. Surprisingly, this fundamental and early process does not appear to be rigidly constrained by evolutionary pressures; instead, the morphology of gastrulation is highly variable throughout the animal kingdom. Recent experimental results demonstrate that it is possible to generate different alternative gastrulation modes in single organisms, such as in early cnidarian, arthropod and vertebrate embryos. Here, we review the mechanisms that underlie the plasticity of vertebrate gastrulation both when experimentally manipulated and during evolution. Using the insights obtained from these experiments we discuss the effects of the increase in yolk volume on the morphology of gastrulation and provide new insights into two crucial innovations during amniote gastrulation: the transition from a ring-shaped mesoderm domain in anamniotes to a crescent-shaped domain in amniotes, and the evolution of the reptilian blastoporal plate/canal into the avian primitive streak.
Collapse
Affiliation(s)
| | - Cornelis J. Weijer
- School of Life Sciences Research Complex, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| |
Collapse
|
12
|
Guo H, Swan M, He B. An optogenetic tool to inhibit RhoA in Drosophila embryos. STAR Protoc 2023; 4:101972. [PMID: 36598852 PMCID: PMC9826882 DOI: 10.1016/j.xpro.2022.101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/10/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
We describe a protocol for optogenetic inhibition of the small GTPase Rho1 (RhoA) in Drosophila embryos, which allows rapid and spatially confined inactivation of Rho1 and Rho1-mediated actomyosin contractility. We provide step-by-step instruction for optogenetic manipulations of Drosophila embryos using confocal and multiphoton imaging systems. This tool is useful for determining the site- and stage-specific function of Rho1 in Drosophila embryos and for studying the immediate tissue response to acute elimination of cellular contractility. For complete details on the use and execution of this protocol, please refer to Guo et al. (2022).1.
Collapse
Affiliation(s)
- Hanqing Guo
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Michael Swan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Bing He
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
13
|
Matejčić M, Trepat X. Mechanobiological approaches to synthetic morphogenesis: learning by building. Trends Cell Biol 2023; 33:95-111. [PMID: 35879149 DOI: 10.1016/j.tcb.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 01/25/2023]
Abstract
Tissue morphogenesis occurs in a complex physicochemical microenvironment with limited experimental accessibility. This often prevents a clear identification of the processes that govern the formation of a given functional shape. By applying state-of-the-art methods to minimal tissue systems, synthetic morphogenesis aims to engineer the discrete events that are necessary and sufficient to build specific tissue shapes. Here, we review recent advances in synthetic morphogenesis, highlighting how a combination of microfabrication and mechanobiology is fostering our understanding of how tissues are built.
Collapse
Affiliation(s)
- Marija Matejčić
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain; Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain.
| |
Collapse
|
14
|
McCartney B, Dudin O. Cellularization across eukaryotes: Conserved mechanisms and novel strategies. Curr Opin Cell Biol 2023; 80:102157. [PMID: 36857882 DOI: 10.1016/j.ceb.2023.102157] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/02/2023]
Abstract
Many eukaryotes form multinucleated cells during their development. Some cells persist as such during their lifetime, others choose to cleave each nucleus individually using a specialized cytokinetic process known as cellularization. What is cellularization and how is it achieved across the eukaryotic tree of life? Are there common pathways among all species supporting a shared ancestry, or are there key differences, suggesting independent evolutionary paths? In this review, we discuss common strategies and key mechanistic differences in how cellularization is executed across vastly divergent eukaryotic species. We present a number of novel methods and non-model organisms that may provide important insight into the evolutionary origins of cellularization.
Collapse
Affiliation(s)
- Brooke McCartney
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Omaya Dudin
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
| |
Collapse
|
15
|
Sutlive J, Seyyedhosseinzadeh H, Ao Z, Xiu H, Choudhury S, Gou K, Guo F, Chen Z. Mechanics of morphogenesis in neural development: In vivo, in vitro, and in silico. BRAIN MULTIPHYSICS 2023. [DOI: 10.1016/j.brain.2022.100062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
16
|
Guo H, Huang S, He B. Evidence for a Role of the Lateral Ectoderm in Drosophila Mesoderm Invagination. Front Cell Dev Biol 2022; 10:867438. [PMID: 35547820 PMCID: PMC9081377 DOI: 10.3389/fcell.2022.867438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/01/2022] [Indexed: 01/09/2023] Open
Abstract
The folding of two-dimensional epithelial sheets into specific three-dimensional structures is a fundamental tissue construction mechanism in animal development. A common mechanism that mediates epithelial folding is apical constriction, the active shrinking of cell apices driven by actomyosin contractions. It remains unclear whether cells outside of the constriction domain also contribute to folding. During Drosophila mesoderm invagination, ventrally localized mesoderm epithelium undergoes apical constriction and subsequently folds into a furrow. While the critical role of apical constriction in ventral furrow formation has been well demonstrated, it remains unclear whether, and if so, how the laterally localized ectodermal tissue adjacent to the mesoderm contributes to furrow invagination. In this study, we combine experimental and computational approaches to test the potential function of the ectoderm in mesoderm invagination. Through laser-mediated, targeted disruption of cell formation prior to gastrulation, we found that the presence of intact lateral ectoderm is important for the effective transition between apical constriction and furrow invagination in the mesoderm. In addition, using a laser-ablation approach widely used for probing tissue tension, we found that the lateral ectodermal tissues exhibit signatures of tissue compression when ablation was performed shortly before the onset of mesoderm invagination. These observations led to the hypothesis that in-plane compression from the surrounding ectoderm facilitates mesoderm invagination by triggering buckling of the mesoderm epithelium. In support of this notion, we show that the dynamics of tissue flow during mesoderm invagination displays characteristic of elastic buckling, and this tissue dynamics can be recapitulated by combining local apical constriction and global compression in a simulated elastic monolayer. We propose that Drosophila mesoderm invagination is achieved through epithelial buckling jointly mediated by apical constriction in the mesoderm and compression from the neighboring ectoderm.
Collapse
Affiliation(s)
| | | | - Bing He
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
17
|
Chen W, He B. Actomyosin activity-dependent apical targeting of Rab11 vesicles reinforces apical constriction. J Cell Biol 2022; 221:213118. [DOI: 10.1083/jcb.202103069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 01/23/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022] Open
Abstract
During tissue morphogenesis, the changes in cell shape, resulting from cell-generated forces, often require active regulation of intracellular trafficking. How mechanical stimuli influence intracellular trafficking and how such regulation impacts tissue mechanics are not fully understood. In this study, we identify an actomyosin-dependent mechanism involving Rab11-mediated trafficking in regulating apical constriction in the Drosophila embryo. During Drosophila mesoderm invagination, apical actin and Myosin II (actomyosin) contractility induces apical accumulation of Rab11-marked vesicle-like structures (“Rab11 vesicles”) by promoting a directional bias in dynein-mediated vesicle transport. At the apical domain, Rab11 vesicles are enriched near the adherens junctions (AJs). The apical accumulation of Rab11 vesicles is essential to prevent fragmented apical AJs, breaks in the supracellular actomyosin network, and a reduction in the apical constriction rate. This Rab11 function is separate from its role in promoting apical Myosin II accumulation. These findings suggest a feedback mechanism between actomyosin activity and Rab11-mediated intracellular trafficking that regulates the force generation machinery during tissue folding.
Collapse
Affiliation(s)
- Wei Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH
| | - Bing He
- Department of Biological Sciences, Dartmouth College, Hanover, NH
| |
Collapse
|