1
|
Gennaris A, Nguyen VS, Thouvenel L, Csoma N, Vertommen D, Iorga BI, Remaut H, Collet JF. Optimal functioning of the Lpt bridge depends on a ternary complex between the lipocalin YedD and the LptDE translocon. Cell Rep 2025; 44:115446. [PMID: 40127101 DOI: 10.1016/j.celrep.2025.115446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/17/2025] [Accepted: 02/27/2025] [Indexed: 03/26/2025] Open
Abstract
The outer membrane is an efficient permeability barrier that protects gram-negative bacteria against external assaults, including many antibiotics. The unique permeability features of the outer membrane are due to the presence of lipopolysaccharide (LPS) molecules in its outer leaflet. LPS transport relies on the essential lipopolysaccharide transport (Lpt) pathway, which forms a bridge from the inner to the outer membrane. The LptDE translocon inserts LPS into the outer leaflet. Here, we identify the lipocalin YedD as a component of the translocon. Cryoelectron microscopy of the YedD-LptDE complex reveals that YedD binds LptD at a critical interface between its β-barrel and periplasmic β-taco domain. The YedD-LptDE complex is functionally relevant: under conditions where the connectivity of the β-taco and Lpt bridge is compromised, the absence of YedD decreases cell viability and causes LPS accumulation in the inner membrane. Our findings establish YedD as an Lpt component required for optimal LPS transport.
Collapse
Affiliation(s)
- Alexandra Gennaris
- WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium; de Duve Institute, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 75, 1200 Brussels, Belgium.
| | - Van Son Nguyen
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium
| | - Laurie Thouvenel
- WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium; de Duve Institute, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Naemi Csoma
- WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium; de Duve Institute, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Didier Vertommen
- de Duve Institute, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Bogdan Iuliu Iorga
- WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium; de Duve Institute, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 75, 1200 Brussels, Belgium; Université Paris-Saclay, CNRS UPR 2301, Institut de Chimie des Substances Naturelles, 91198 Gif-sur-Yvette, France
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium.
| | - Jean-François Collet
- WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium; de Duve Institute, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 75, 1200 Brussels, Belgium.
| |
Collapse
|
2
|
Kanaoka Y, Mori T, Nagaike W, Itaya S, Nonaka Y, Kohga H, Haruyama T, Sugano Y, Miyazaki R, Ichikawa M, Uchihashi T, Tsukazaki T. AFM observation of protein translocation mediated by one unit of SecYEG-SecA complex. Nat Commun 2025; 16:225. [PMID: 39779699 PMCID: PMC11711467 DOI: 10.1038/s41467-024-54875-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Protein translocation across cellular membranes is an essential and nano-scale dynamic process. In the bacterial cytoplasmic membrane, the core proteins in this process are a membrane protein complex, SecYEG, corresponding to the eukaryotic Sec61 complex, and a cytoplasmic protein, SecA ATPase. Despite more than three decades of extensive research on Sec proteins, from genetic experiments to cutting-edge single-molecule analyses, no study has visually demonstrated protein translocation. Here, we visualize the translocation, via one unit of a SecYEG-SecA-embedded nanodisc, of an unfolded substrate protein by high-speed atomic force microscopy (HS-AFM). Additionally, the uniform unidirectional distribution of nanodiscs on a mica substrate enables the HS-AFM image data analysis, revealing dynamic structural changes in the polypeptide-crosslinking domain of SecA between wide-open and closed states depending on nucleotides. The nanodisc-AFM approach will allow us to execute detailed analyses of Sec proteins as well as visualize nano-scale events of other membrane proteins.
Collapse
Grants
- JPMJKP23H2 MEXT | Japan Science and Technology Agency (JST)
- JPMJPR20E1 MEXT | Japan Science and Technology Agency (JST)
- hp230209, hp240215, hp240277 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JPMXP1323015482 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 24ZR1403800 Natural Science Foundation of Shanghai (Natural Science Foundation of Shanghai Municipality)
- Naito Foundation
- Takeda Science Foundation
- JSPS/MEXT KAKENHI (Grant Nos. JP22H02567, JP22H02586, JP21H05155, JP21H05153, JP21K19226, JP21KK0125 to T.T.) The Chemo-Sero-Therapeutic Research Institute, the Institute for Fermentation (Osaka), and Yamada Science Foundation
- JSPS/MEXT KAKENHI (Grant Nos. JP21H05157, JP24K03035) MEXT as “Program for Promoting Researches on the Supercomputer Fugaku”(JPMXP1020230119)
- JSPS/MEXT KAKENHI (Grant No. JP23K14146 to H.K)
- JSPS/MEXT KAKENHI (Grant Nos. JP22K15061, JP22H05567 to R.M)
- JSPS/MEXT KAKENHI (Grant Nos. JP22K15075, JP20K15733)
- JSPS/MEXT KAKENHI (Grant Nos. JP21H000393, JP24K01309 to T.U.)
Collapse
Affiliation(s)
- Yui Kanaoka
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Takaharu Mori
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, Japan.
| | - Wataru Nagaike
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Seira Itaya
- Nara Institute of Science and Technology, Nara, Japan
| | - Yuto Nonaka
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | | | | | | | | | - Muneyoshi Ichikawa
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Takayuki Uchihashi
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan.
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Science, Okazaki, Aichi, Japan.
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, Japan.
| | | |
Collapse
|
3
|
Peltek S, Bannikova S, Khlebodarova TM, Uvarova Y, Mukhin AM, Vasiliev G, Scheglov M, Shipova A, Vasilieva A, Oshchepkov D, Bryanskaya A, Popik V. The Transcriptomic Response of Cells of the Thermophilic Bacterium Geobacillus icigianus to Terahertz Irradiation. Int J Mol Sci 2024; 25:12059. [PMID: 39596128 PMCID: PMC11594194 DOI: 10.3390/ijms252212059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
As areas of application of terahertz (THz) radiation expand in science and practice, evidence is accumulating that this type of radiation can affect not only biological molecules directly, but also cellular processes as a whole. In this study, the transcriptome in cells of the thermophilic bacterium Geobacillus icigianus was analyzed immediately after THz irradiation (0.23 W/cm2, 130 μm, 15 min) and at 10 min after its completion. THz irradiation does not affect the activity of heat shock protein genes and diminishes the activity of genes whose products are involved in peptidoglycan recycling, participate in redox reactions, and protect DNA and proteins from damage, including genes of chaperone protein ClpB and of DNA repair protein RadA, as well as genes of catalase and kinase McsB. Gene systems responsible for the homeostasis of transition metals (copper, iron, and zinc) proved to be the most sensitive to THz irradiation; downregulation of these systems increased significantly 10 min after the end of the irradiation. It was also hypothesized that some negative effects of THz radiation on metabolism in G. icigianus cells are related to disturbances in activities of gene systems controlled by metal-sensitive transcription factors.
Collapse
Affiliation(s)
- Sergey Peltek
- Laboratory of Molecular Biotechnologies, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (S.B.); (Y.U.); (A.V.); (A.B.)
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Svetlana Bannikova
- Laboratory of Molecular Biotechnologies, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (S.B.); (Y.U.); (A.V.); (A.B.)
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Tamara M. Khlebodarova
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Yulia Uvarova
- Laboratory of Molecular Biotechnologies, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (S.B.); (Y.U.); (A.V.); (A.B.)
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Aleksey M. Mukhin
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Gennady Vasiliev
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Mikhail Scheglov
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (M.S.); (V.P.)
| | - Aleksandra Shipova
- Laboratory of Molecular Biotechnologies, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (S.B.); (Y.U.); (A.V.); (A.B.)
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Asya Vasilieva
- Laboratory of Molecular Biotechnologies, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (S.B.); (Y.U.); (A.V.); (A.B.)
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Dmitry Oshchepkov
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Alla Bryanskaya
- Laboratory of Molecular Biotechnologies, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (S.B.); (Y.U.); (A.V.); (A.B.)
- Kurchatov Genomics Center of Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (T.M.K.); (A.M.M.)
| | - Vasily Popik
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, 11 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia; (M.S.); (V.P.)
| |
Collapse
|
4
|
Combs AN, Silhavy TJ. Periplasmic Chaperones: Outer Membrane Biogenesis and Envelope Stress. Annu Rev Microbiol 2024; 78:191-211. [PMID: 39008906 DOI: 10.1146/annurev-micro-041522-102901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Envelope biogenesis and homeostasis in gram-negative bacteria are exceptionally intricate processes that require a multitude of periplasmic chaperones to ensure cellular survival. Remarkably, these chaperones perform diverse yet specialized functions entirely in the absence of external energy such as ATP, and as such have evolved sophisticated mechanisms by which their activities are regulated. In this article, we provide an overview of the predominant periplasmic chaperones that enable efficient outer membrane biogenesis and envelope homeostasis in Escherichia coli. We also discuss stress responses that act to combat unfolded protein stress within the cell envelope, highlighting the periplasmic chaperones involved and the mechanisms by which envelope homeostasis is restored.
Collapse
Affiliation(s)
- Ashton N Combs
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA;
| | - Thomas J Silhavy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA;
| |
Collapse
|
5
|
Devlin T, Fleming KG. A team of chaperones play to win in the bacterial periplasm. Trends Biochem Sci 2024; 49:667-680. [PMID: 38677921 DOI: 10.1016/j.tibs.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/29/2024]
Abstract
The survival and virulence of Gram-negative bacteria require proper biogenesis and maintenance of the outer membrane (OM), which is densely packed with β-barrel OM proteins (OMPs). Before reaching the OM, precursor unfolded OMPs (uOMPs) must cross the whole cell envelope. A network of periplasmic chaperones and proteases maintains unfolded but folding-competent conformations of these membrane proteins in the aqueous periplasm while simultaneously preventing off-pathway aggregation. These periplasmic proteins utilize different strategies, including conformational heterogeneity, oligomerization, multivalency, and kinetic partitioning, to perform and regulate their functions. Redundant and unique characteristics of the individual periplasmic players synergize to create a protein quality control team capable responding to changing environmental stresses.
Collapse
Affiliation(s)
- Taylor Devlin
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Karen G Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
6
|
Terasawa K, Seike T, Sakamoto K, Ohtake K, Terada T, Iwata T, Watabe T, Yokoyama S, Hara‐Yokoyama M. Site-specific photo-crosslinking/cleavage for protein-protein interface identification reveals oligomeric assembly of lysosomal-associated membrane protein type 2A in mammalian cells. Protein Sci 2023; 32:e4823. [PMID: 37906694 PMCID: PMC10659947 DOI: 10.1002/pro.4823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/16/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023]
Abstract
Genetic code expansion enables site-specific photo-crosslinking by introducing photo-reactive non-canonical amino acids into proteins at defined positions during translation. This technology is widely used for analyzing protein-protein interactions and is applicable in mammalian cells. However, the identification of the crosslinked region still remains challenging. Here, we developed a new method to identify the crosslinked region by pre-installing a site-specific cleavage site, an α-hydroxy acid (Nε -allyloxycarbonyl-α-hydroxyl-l-lysine acid, AllocLys-OH), into the target protein. Alkaline treatment cleaves the crosslinked complex at the position of the α-hydroxy acid residue and thus helps to identify which side of the cleavage site, either closer to the N-terminus or C-terminus, the crosslinked site is located within the target protein. A series of AllocLys-OH introductions narrows down the crosslinked region. By applying this method, we identified the crosslinked regions in lysosomal-associated membrane protein type 2A (LAMP2A), a receptor of chaperone-mediated autophagy, in mammalian cells. The results suggested that at least two interfaces are involved in the homophilic interaction, which requires a trimeric or higher oligomeric assembly of adjacent LAMP2A molecules. Thus, the combination of site-specific crosslinking and site-specific cleavage promises to be useful for revealing binding interfaces and protein complex geometries.
Collapse
Affiliation(s)
- Kazue Terasawa
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- LiberoThera Co., Ltd.Chuo‐kuJapan
| | - Tatsuro Seike
- Department of Periodontology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Kensaku Sakamoto
- Laboratory for Nonnatural Amino Acid TechnologyRIKEN Center for Biosystems Dynamics ResearchYokohamaJapan
- Department of Drug Target Protein ResearchShinshu University School of MedicineNaganoJapan
| | - Kazumasa Ohtake
- Laboratory for Nonnatural Amino Acid TechnologyRIKEN Center for Biosystems Dynamics ResearchYokohamaJapan
- Department of Electrical Engineering and BioscienceWaseda UniversityTokyoJapan
| | - Tohru Terada
- Department of Biotechnology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Shigeyuki Yokoyama
- Department of Drug Target Protein ResearchShinshu University School of MedicineNaganoJapan
- Laboratory for Protein Function and Structural BiologyRIKEN Cluster for Science, Technology and Innovation HubYokohamaJapan
- Department of Structural Biology and Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Miki Hara‐Yokoyama
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| |
Collapse
|
7
|
Miyazaki R, Akiyama Y. Analyzing protein intermediate interactions in living E. coli cells using site-specific photo-crosslinking combined with chemical crosslinking. STAR Protoc 2023; 4:102178. [PMID: 36933223 PMCID: PMC10034496 DOI: 10.1016/j.xpro.2023.102178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/31/2023] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
Information on protein-protein interactions is crucial in understanding protein-mediated cellular processes; however, analyzing transient and unstable interactions in living cells is challenging. Here, we present a protocol capturing the interaction between an assembly intermediate form of a bacterial outer membrane protein and β-barrel assembly machinery complex components. We describe steps for expression of a protein target, chemical crosslinking combined with in vivo photo-crosslinking and crosslinking detection procedures including immunoblotting. This protocol can be adapted to analyze interprotein interactions in other processes. For complete details on the use and execution of this protocol, please refer to Miyazaki et al. (2021).1.
Collapse
Affiliation(s)
- Ryoji Miyazaki
- Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
| | - Yoshinori Akiyama
- Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
8
|
Dade CM, Douzi B, Cambillau C, Ball G, Voulhoux R, Forest KT. The crystal structure of CbpD clarifies substrate-specificity motifs in chitin-active lytic polysaccharide monooxygenases. Acta Crystallogr D Struct Biol 2022; 78:1064-1078. [PMID: 35916229 PMCID: PMC9344471 DOI: 10.1107/s2059798322007033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
Pseudomonas aeruginosa secretes diverse proteins via its type 2 secretion system, including a 39 kDa chitin-binding protein, CbpD. CbpD has recently been shown to be a lytic polysaccharide monooxygenase active on chitin and to contribute substantially to virulence. To date, no structure of this virulence factor has been reported. Its first two domains are homologous to those found in the crystal structure of Vibrio cholerae GbpA, while the third domain is homologous to the NMR structure of the CBM73 domain of Cellvibrio japonicus CjLPMO10A. Here, the 3.0 Å resolution crystal structure of CbpD solved by molecular replacement is reported, which required ab initio models of each CbpD domain generated by the artificial intelligence deep-learning structure-prediction algorithm RoseTTAFold. The structure of CbpD confirms some previously reported substrate-specificity motifs among LPMOAA10s, while challenging the predictive power of others. Additionally, the structure of CbpD shows that post-translational modifications occur on the chitin-binding surface. Moreover, the structure raises interesting possibilities about how type 2 secretion-system substrates may interact with the secretion machinery and demonstrates the utility of new artificial intelligence protein structure-prediction algorithms in making challenging structural targets tractable.
Collapse
Affiliation(s)
- Christopher M. Dade
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Badreddine Douzi
- Aix-Marseille University, CNRS, IMM, LCB, Marseille, France
- Aix-Marseille University, CNRS, AFMB, Marseille, France
| | | | - Genevieve Ball
- Aix-Marseille University, CNRS, IMM, LCB, Marseille, France
| | - Romé Voulhoux
- Aix-Marseille University, CNRS, IMM, LCB, Marseille, France
| | - Katrina T. Forest
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|