1
|
Shiroyama T, Maeda M, Tanii H, Motomura E, Okada M. Distinguished Frontal White Matter Abnormalities Between Psychotic and Nonpsychotic Bipolar Disorders in a Pilot Study. Brain Sci 2025; 15:108. [PMID: 40002441 PMCID: PMC11853555 DOI: 10.3390/brainsci15020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Recent studies indicate extensive shared white matter (WM) abnormalities between bipolar disorder (BD) and schizophrenia (SZ). However, the heterogeneity of WM in BD in terms of the presence of psychosis remains a critical issue for exploring the boundaries between BD and SZ. Previous studies comparing WM microstructures in psychotic and nonpsychotic BDs (PBD and NPBD) have resulted in limited findings, probably due to subtle changes, emphasizing the need for further investigation. METHODS Diffusion tensor imaging measures were obtained from 8 individuals with PBD, 8 with NPBD, and 22 healthy controls (HC), matched for age, gender, handedness, and educational years. Group comparisons were conducted using tract-based spatial statistics (TBSS). The most significant voxels showing differences between PBD and HC in the TBSS analyses were defined as a TBSS-ROI and subsequently analyzed. RESULTS Increased radial diffusivity (RD) in PBD compared to NPBD (p < 0.006; d = 1.706) was observed in TBSS-ROI, distributed in the confined regions of some WM tracts, including the body of the corpus callosum (bCC), the left genu of the CC (gCC), and the anterior and superior corona radiata (ACR and SCR). Additionally, NPBD exhibited significant age-associated RD increases (R2 = 0.822, p < 0.001), whereas the greater RD observed in PBD compared to NPBD remained consistent across middle age. CONCLUSIONS Preliminary findings from this small sample suggest severe frontal WM disconnection in the anterior interhemispheric communication, left fronto-limbic circuits, and cortico-striatal-thalamic loop in PBD compared to NPBD. While these results require replication and validation in larger and controlled samples, they provide insights into the pathophysiology of PBD, which is diagnostically located at the boundary between BD and SZ.
Collapse
Affiliation(s)
- Takashi Shiroyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Mie, Japan; (E.M.); (M.O.)
| | - Masayuki Maeda
- Department of Neuroradiology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Mie, Japan;
| | - Hisashi Tanii
- Center for Physical and Mental Health, Mie University, 1577 Kurimamachiya-cho, Tsu 514-8507, Mie, Japan;
- Department of Health Promotion and Disease Prevention, Graduate School of Medicine, Mie University, 1577 Kurimamachiya-cho, Tsu 514-8507, Mie, Japan
| | - Eishi Motomura
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Mie, Japan; (E.M.); (M.O.)
| | - Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Mie, Japan; (E.M.); (M.O.)
| |
Collapse
|
2
|
Craig GA, Ryan L, Thapar J, McNamara NB, Hoffmann A, Page D, Rose J, Cox SR, Miron VE. Reflective imaging of myelin integrity in the human and mouse central nervous systems. Front Cell Neurosci 2024; 18:1408182. [PMID: 39049821 PMCID: PMC11266064 DOI: 10.3389/fncel.2024.1408182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
The structural integrity of myelin sheaths in the central nervous system (CNS) is crucial for the maintenance of its function. Electron microscopy (EM) is the gold standard for visualizing individual myelin sheaths. However, the tissue processing involved can induce artifacts such as shearing of myelin, which can be difficult to distinguish from true myelin abnormalities. Spectral confocal reflectance (SCoRe) microscopy is an imaging technique that leverages the differential refractive indices of compacted CNS myelin in comparison to surrounding parenchyma to detect individual compact myelin internodes with reflected light, positioning SCoRe as a possible complementary method to EM to assess myelin integrity. Whether SCoRe is sensitive enough to detect losses in myelin compaction when myelin quantity is otherwise unaffected has not yet been directly tested. Here, we assess the capacity of SCoRe to detect differences in myelin compaction in two mouse models that exhibit a loss of myelin compaction without demyelination: microglia-deficient mice (Csf1r-FIRE Δ/Δ) and wild-type mice fed with the CSF1R inhibitor PLX5622. In addition, we compare the ability to detect compact myelin sheaths using SCoRe in fixed-frozen versus paraffin-embedded mouse tissue. Finally, we show that SCoRe can successfully detect individual sheaths in aged human paraffin-embedded samples of deep white matter regions. As such, we find SCoRe to be an attractive technique to investigate myelin integrity, with sufficient sensitivity to detect myelin ultrastructural abnormalities and the ability to perform equally well in tissue preserved using different methods.
Collapse
Affiliation(s)
- Georgina A. Craig
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- United Kingdom Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Lucy Ryan
- United Kingdom Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jessica Thapar
- Department of Immunology, The University of Toronto, Toronto, ON, Canada
| | - Niamh B. McNamara
- United Kingdom Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Alana Hoffmann
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- United Kingdom Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Danielle Page
- Lothian Birth Cohorts, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jamie Rose
- United Kingdom Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Simon R. Cox
- Lothian Birth Cohorts, The University of Edinburgh, Edinburgh, United Kingdom
| | - Veronique E. Miron
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- United Kingdom Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Department of Immunology, The University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Lipp HP, Krackow S, Turkes E, Benner S, Endo T, Russig H. IntelliCage: the development and perspectives of a mouse- and user-friendly automated behavioral test system. Front Behav Neurosci 2024; 17:1270538. [PMID: 38235003 PMCID: PMC10793385 DOI: 10.3389/fnbeh.2023.1270538] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/18/2023] [Indexed: 01/19/2024] Open
Abstract
IntelliCage for mice is a rodent home-cage equipped with four corner structures harboring symmetrical double panels for operant conditioning at each of the two sides, either by reward (access to water) or by aversion (non-painful stimuli: air-puffs, LED lights). Corner visits, nose-pokes and actual licks at bottle-nipples are recorded individually using subcutaneously implanted transponders for RFID identification of up to 16 adult mice housed in the same home-cage. This allows for recording individual in-cage activity of mice and applying reward/punishment operant conditioning schemes in corners using workflows designed on a versatile graphic user interface. IntelliCage development had four roots: (i) dissatisfaction with standard approaches for analyzing mouse behavior, including standardization and reproducibility issues, (ii) response to handling and housing animal welfare issues, (iii) the increasing number of mouse models had produced a high work burden on classic manual behavioral phenotyping of single mice. and (iv), studies of transponder-chipped mice in outdoor settings revealed clear genetic behavioral differences in mouse models corresponding to those observed by classic testing in the laboratory. The latter observations were important for the development of home-cage testing in social groups, because they contradicted the traditional belief that animals must be tested under social isolation to prevent disturbance by other group members. The use of IntelliCages reduced indeed the amount of classic testing remarkably, while its flexibility was proved in a wide range of applications worldwide including transcontinental parallel testing. Essentially, two lines of testing emerged: sophisticated analysis of spontaneous behavior in the IntelliCage for screening of new genetic models, and hypothesis testing in many fields of behavioral neuroscience. Upcoming developments of the IntelliCage aim at improved stimulus presentation in the learning corners and videotracking of social interactions within the IntelliCage. Its main advantages are (i) that mice live in social context and are not stressfully handled for experiments, (ii) that studies are not restricted in time and can run in absence of humans, (iii) that it increases reproducibility of behavioral phenotyping worldwide, and (iv) that the industrial standardization of the cage permits retrospective data analysis with new statistical tools even after many years.
Collapse
Affiliation(s)
- Hans-Peter Lipp
- Faculty of Medicine, Institute of Evolutionary Medicine, University of Zürich, Zürich, Switzerland
| | - Sven Krackow
- Institute of Pathology and Molecular Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Emir Turkes
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Seico Benner
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Ibaraki, Japan
| | | | | |
Collapse
|
4
|
Mallien AS, Brandwein C, Vasilescu AN, Leenaars C, Bleich A, Inta D, Hirjak D, Gass P. A systematic scoping review of rodent models of catatonia: Clinical correlations, translation and future approaches. Schizophr Res 2024; 263:109-121. [PMID: 37524635 DOI: 10.1016/j.schres.2023.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023]
Abstract
Catatonia is a psychiatric disorder, which subsumes a plethora of affective, motor and behavioral symptoms. In the last two decades, the number of behavioral and neuroimaging studies on catatonia has steadily increased. The majority of behavioral and neuroimaging studies in psychiatric patients suggested aberrant higher-order frontoparietal networks which, on the biochemical level, are insufficiently modulated by gamma-aminobutyric acid (GABA)-ergic and glutamatergic transmission. However, the pathomechanisms of catatonic symptoms have rarely been studied using rodent models. Here, we performed a scoping review of literature available on PubMed for studies on rodent models of catatonia. We sought to identify what we could learn from pre-clinical animal models of catatonia-like symptoms, their underlying neuronal correlates, and the complex molecular (i.e. genes and neurotransmitter) mechanisms by which its modulation exerts its effects. What becomes evident is that although many transgenic models present catatonia-like symptoms, they have not been used to better understand the pathophysiological mechanisms underlying catatonia so far. However, the identified neuronal correlates of catatonia-like symptoms correlate to a great extent with findings from neuroscience research in psychiatric patients. This points us towards fundamental cortical-striatal-thalamocortical and associated networks modulated by white matter inflammation as well as aberrant dopaminergic, GABAergic, and glutamatergic neurotransmission that is involved in catatonia. Therefore, this scoping review opens up the possibility of finally using transgenic models to help with identifying novel target mechanisms for the development of new drugs for the treatment of catatonia.
Collapse
Affiliation(s)
- Anne S Mallien
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
| | - Christiane Brandwein
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Andrei-Nicolae Vasilescu
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Cathalijn Leenaars
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany; Department for Health Evidence, Radboud University Medical Centre, 6600 Nijmegen, The Netherlands
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Dragos Inta
- Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany; Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|