1
|
Irastorza-Valera L, Soria-Gómez E, Benitez JM, Montáns FJ, Saucedo-Mora L. Review of the Brain's Behaviour after Injury and Disease for Its Application in an Agent-Based Model (ABM). Biomimetics (Basel) 2024; 9:362. [PMID: 38921242 PMCID: PMC11202129 DOI: 10.3390/biomimetics9060362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The brain is the most complex organ in the human body and, as such, its study entails great challenges (methodological, theoretical, etc.). Nonetheless, there is a remarkable amount of studies about the consequences of pathological conditions on its development and functioning. This bibliographic review aims to cover mostly findings related to changes in the physical distribution of neurons and their connections-the connectome-both structural and functional, as well as their modelling approaches. It does not intend to offer an extensive description of all conditions affecting the brain; rather, it presents the most common ones. Thus, here, we highlight the need for accurate brain modelling that can subsequently be used to understand brain function and be applied to diagnose, track, and simulate treatments for the most prevalent pathologies affecting the brain.
Collapse
Affiliation(s)
- Luis Irastorza-Valera
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- PIMM Laboratory, ENSAM–Arts et Métiers ParisTech, 151 Bd de l’Hôpital, 75013 Paris, France
| | - Edgar Soria-Gómez
- Achúcarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain;
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi, 5, 48009 Bilbao, Spain
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - José María Benitez
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
| | - Francisco J. Montáns
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Luis Saucedo-Mora
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Zhou S, Buonomano DV. Unified control of temporal and spatial scales of sensorimotor behavior through neuromodulation of short-term synaptic plasticity. SCIENCE ADVANCES 2024; 10:eadk7257. [PMID: 38701208 DOI: 10.1126/sciadv.adk7257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
Neuromodulators have been shown to alter the temporal profile of short-term synaptic plasticity (STP); however, the computational function of this neuromodulation remains unexplored. Here, we propose that the neuromodulation of STP provides a general mechanism to scale neural dynamics and motor outputs in time and space. We trained recurrent neural networks that incorporated STP to produce complex motor trajectories-handwritten digits-with different temporal (speed) and spatial (size) scales. Neuromodulation of STP produced temporal and spatial scaling of the learned dynamics and enhanced temporal or spatial generalization compared to standard training of the synaptic weights in the absence of STP. The model also accounted for the results of two experimental studies involving flexible sensorimotor timing. Neuromodulation of STP provides a unified and biologically plausible mechanism to control the temporal and spatial scales of neural dynamics and sensorimotor behaviors.
Collapse
Affiliation(s)
- Shanglin Zhou
- Institute for Translational Brain Research, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dean V Buonomano
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
3
|
Waitzmann F, Wu YK, Gjorgjieva J. Top-down modulation in canonical cortical circuits with short-term plasticity. Proc Natl Acad Sci U S A 2024; 121:e2311040121. [PMID: 38593083 PMCID: PMC11032497 DOI: 10.1073/pnas.2311040121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/14/2024] [Indexed: 04/11/2024] Open
Abstract
Cortical dynamics and computations are strongly influenced by diverse GABAergic interneurons, including those expressing parvalbumin (PV), somatostatin (SST), and vasoactive intestinal peptide (VIP). Together with excitatory (E) neurons, they form a canonical microcircuit and exhibit counterintuitive nonlinear phenomena. One instance of such phenomena is response reversal, whereby SST neurons show opposite responses to top-down modulation via VIP depending on the presence of bottom-up sensory input, indicating that the network may function in different regimes under different stimulation conditions. Combining analytical and computational approaches, we demonstrate that model networks with multiple interneuron subtypes and experimentally identified short-term plasticity mechanisms can implement response reversal. Surprisingly, despite not directly affecting SST and VIP activity, PV-to-E short-term depression has a decisive impact on SST response reversal. We show how response reversal relates to inhibition stabilization and the paradoxical effect in the presence of several short-term plasticity mechanisms demonstrating that response reversal coincides with a change in the indispensability of SST for network stabilization. In summary, our work suggests a role of short-term plasticity mechanisms in generating nonlinear phenomena in networks with multiple interneuron subtypes and makes several experimentally testable predictions.
Collapse
Affiliation(s)
- Felix Waitzmann
- School of Life Sciences, Technical University of Munich, 85354Freising, Germany
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, 60438Frankfurt, Germany
| | - Yue Kris Wu
- School of Life Sciences, Technical University of Munich, 85354Freising, Germany
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, 60438Frankfurt, Germany
| | - Julijana Gjorgjieva
- School of Life Sciences, Technical University of Munich, 85354Freising, Germany
- Computation in Neural Circuits Group, Max Planck Institute for Brain Research, 60438Frankfurt, Germany
| |
Collapse
|
4
|
Beninger J, Rossbroich J, Tóth K, Naud R. Functional subtypes of synaptic dynamics in mouse and human. Cell Rep 2024; 43:113785. [PMID: 38363673 DOI: 10.1016/j.celrep.2024.113785] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/08/2023] [Accepted: 01/27/2024] [Indexed: 02/18/2024] Open
Abstract
Synapses preferentially respond to particular temporal patterns of activity with a large degree of heterogeneity that is informally or tacitly separated into classes. Yet, the precise number and properties of such classes are unclear. Do they exist on a continuum and, if so, when is it appropriate to divide that continuum into functional regions? In a large dataset of glutamatergic cortical connections, we perform model-based characterization to infer the number and characteristics of functionally distinct subtypes of synaptic dynamics. In rodent data, we find five clusters that partially converge with transgenic-associated subtypes. Strikingly, the application of the same clustering method in human data infers a highly similar number of clusters, supportive of stable clustering. This nuanced dictionary of functional subtypes shapes the heterogeneity of cortical synaptic dynamics and provides a lens into the basic motifs of information transmission in the brain.
Collapse
Affiliation(s)
- John Beninger
- Center for Neural Dynamics and Artificial Intelligence, University of Ottawa, Ottawa, ON K1H 8M5, Canada; uOttawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Julian Rossbroich
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Science, University of Basel, Basel, Switzerland
| | - Katalin Tóth
- Center for Neural Dynamics and Artificial Intelligence, University of Ottawa, Ottawa, ON K1H 8M5, Canada; uOttawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Richard Naud
- Center for Neural Dynamics and Artificial Intelligence, University of Ottawa, Ottawa, ON K1H 8M5, Canada; uOttawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Physics, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
5
|
Irastorza-Valera L, Benítez JM, Montáns FJ, Saucedo-Mora L. An Agent-Based Model to Reproduce the Boolean Logic Behaviour of Neuronal Self-Organised Communities through Pulse Delay Modulation and Generation of Logic Gates. Biomimetics (Basel) 2024; 9:101. [PMID: 38392147 PMCID: PMC10886514 DOI: 10.3390/biomimetics9020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/16/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
The human brain is arguably the most complex "machine" to ever exist. Its detailed functioning is yet to be fully understood, let alone modelled. Neurological processes have logical signal-processing and biophysical aspects, and both affect the brain's structure, functioning and adaptation. Mathematical approaches based on both information and graph theory have been extensively used in an attempt to approximate its biological functioning, along with Artificial Intelligence frameworks inspired by its logical functioning. In this article, an approach to model some aspects of the brain learning and signal processing is presented, mimicking the metastability and backpropagation found in the real brain while also accounting for neuroplasticity. Several simulations are carried out with this model to demonstrate how dynamic neuroplasticity, neural inhibition and neuron migration can reshape the brain's logical connectivity to synchronise signal processing and obtain certain target latencies. This work showcases the importance of dynamic logical and biophysical remodelling in brain plasticity. Combining mathematical (agents, graph theory, topology and backpropagation) and biomedical ingredients (metastability, neuroplasticity and migration), these preliminary results prove complex brain phenomena can be reproduced-under pertinent simplifications-via affordable computations, which can be construed as a starting point for more ambitiously accurate simulations.
Collapse
Affiliation(s)
- Luis Irastorza-Valera
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- PIMM Laboratory, Arts et Métiers Institute of Technology, 151 Bd de l’Hôpital, 75013 Paris, France
| | - José María Benítez
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
| | - Francisco J. Montáns
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Luis Saucedo-Mora
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
6
|
Asopa A, Bhalla US. A computational view of short-term plasticity and its implications for E-I balance. Curr Opin Neurobiol 2023; 81:102729. [PMID: 37245258 DOI: 10.1016/j.conb.2023.102729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 05/30/2023]
Abstract
Short-term plasticity (STP) and excitatory-inhibitory balance (EI balance) are both ubiquitous building blocks of brain circuits across the animal kingdom. The synapses involved in EI are also subject to short-term plasticity, and several experimental studies have shown that their effects overlap. Recent computational and theoretical work has begun to highlight the functional implications of the intersection of these motifs. The findings are nuanced: while there are general computational themes, such as pattern tuning, normalization, and gating, much of the richness of these interactions comes from region- and modality specific tuning of STP properties. Together these findings point towards the STP-EI balance combination as being a versatile and highly efficient neural building block for a wide range of pattern-specific responses.
Collapse
Affiliation(s)
- Aditya Asopa
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bengaluru, 560065, India. https://twitter.com/adityaasopa
| | - Upinder S Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bengaluru, 560065, India.
| |
Collapse
|
7
|
Ekelmans P, Kraynyukovas N, Tchumatchenko T. Targeting operational regimes of interest in recurrent neural networks. PLoS Comput Biol 2023; 19:e1011097. [PMID: 37186668 DOI: 10.1371/journal.pcbi.1011097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/25/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Neural computations emerge from local recurrent neural circuits or computational units such as cortical columns that comprise hundreds to a few thousand neurons. Continuous progress in connectomics, electrophysiology, and calcium imaging require tractable spiking network models that can consistently incorporate new information about the network structure and reproduce the recorded neural activity features. However, for spiking networks, it is challenging to predict which connectivity configurations and neural properties can generate fundamental operational states and specific experimentally reported nonlinear cortical computations. Theoretical descriptions for the computational state of cortical spiking circuits are diverse, including the balanced state where excitatory and inhibitory inputs balance almost perfectly or the inhibition stabilized state (ISN) where the excitatory part of the circuit is unstable. It remains an open question whether these states can co-exist with experimentally reported nonlinear computations and whether they can be recovered in biologically realistic implementations of spiking networks. Here, we show how to identify spiking network connectivity patterns underlying diverse nonlinear computations such as XOR, bistability, inhibitory stabilization, supersaturation, and persistent activity. We establish a mapping between the stabilized supralinear network (SSN) and spiking activity which allows us to pinpoint the location in parameter space where these activity regimes occur. Notably, we find that biologically-sized spiking networks can have irregular asynchronous activity that does not require strong excitation-inhibition balance or large feedforward input and we show that the dynamic firing rate trajectories in spiking networks can be precisely targeted without error-driven training algorithms.
Collapse
Affiliation(s)
- Pierre Ekelmans
- Theory of Neural Dynamics group, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Nataliya Kraynyukovas
- Theory of Neural Dynamics group, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- Institute of Experimental Epileptology and Cognition Research, Life and Brain Center, Universitätsklinikum Bonn, Bonn, Germany
| | - Tatjana Tchumatchenko
- Theory of Neural Dynamics group, Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- Institute of Experimental Epileptology and Cognition Research, Life and Brain Center, Universitätsklinikum Bonn, Bonn, Germany
- Institute of physiological chemistry, Medical center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
8
|
Wu YK, Miehl C, Gjorgjieva J. Regulation of circuit organization and function through inhibitory synaptic plasticity. Trends Neurosci 2022; 45:884-898. [PMID: 36404455 DOI: 10.1016/j.tins.2022.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/15/2022]
Abstract
Diverse inhibitory neurons in the mammalian brain shape circuit connectivity and dynamics through mechanisms of synaptic plasticity. Inhibitory plasticity can establish excitation/inhibition (E/I) balance, control neuronal firing, and affect local calcium concentration, hence regulating neuronal activity at the network, single neuron, and dendritic level. Computational models can synthesize multiple experimental results and provide insight into how inhibitory plasticity controls circuit dynamics and sculpts connectivity by identifying phenomenological learning rules amenable to mathematical analysis. We highlight recent studies on the role of inhibitory plasticity in modulating excitatory plasticity, forming structured networks underlying memory formation and recall, and implementing adaptive phenomena and novelty detection. We conclude with experimental and modeling progress on the role of interneuron-specific plasticity in circuit computation and context-dependent learning.
Collapse
Affiliation(s)
- Yue Kris Wu
- School of Life Sciences, Technical University of Munich, Freising, Germany; Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Christoph Miehl
- School of Life Sciences, Technical University of Munich, Freising, Germany; Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Julijana Gjorgjieva
- School of Life Sciences, Technical University of Munich, Freising, Germany; Max Planck Institute for Brain Research, Frankfurt, Germany.
| |
Collapse
|
9
|
Lundqvist M, Rose J, Brincat SL, Warden MR, Buschman TJ, Herman P, Miller EK. Reduced variability of bursting activity during working memory. Sci Rep 2022; 12:15050. [PMID: 36064880 PMCID: PMC9445015 DOI: 10.1038/s41598-022-18577-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/16/2022] [Indexed: 12/03/2022] Open
Abstract
Working memories have long been thought to be maintained by persistent spiking. However, mounting evidence from multiple-electrode recording (and single-trial analyses) shows that the underlying spiking is better characterized by intermittent bursts of activity. A counterargument suggested this intermittent activity is at odds with observations that spike-time variability reduces during task performance. However, this counterargument rests on assumptions, such as randomness in the timing of the bursts, which may not be correct. Thus, we analyzed spiking and LFPs from monkeys' prefrontal cortex (PFC) to determine if task-related reductions in variability can co-exist with intermittent spiking. We found that it does because both spiking and associated gamma bursts were task-modulated, not random. In fact, the task-related reduction in spike variability could largely be explained by a related reduction in gamma burst variability. Our results provide further support for the intermittent activity models of working memory as well as novel mechanistic insights into how spike variability is reduced during cognitive tasks.
Collapse
Affiliation(s)
- Mikael Lundqvist
- Department of Psychology, Department of Clinical Neuroscience, Karolinska Institute, Solna, Sweden.
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Jonas Rose
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Faculty of Psychology, Neural Basis of Learning, Ruhr University Bochum, 44801, Bochum, Germany
| | - Scott L Brincat
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Melissa R Warden
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Timothy J Buschman
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Princeton Neuroscience Institute, Princeton University, Washington Rd., Princeton, NJ, 08540, USA
| | - Pawel Herman
- Department of Computational Science and Technology, School of Electrical Engineering and Computer Science and Digital Futures, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Earl K Miller
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|