1
|
Hou Z, Merényi Z, Yang Y, Zhang Y, Csernetics Á, Bálint B, Hegedüs B, Földi C, Wu H, Kristóffy Z, Ábrahám E, Miklovics N, Virágh M, Liu XB, Zsibrita N, Lipinszki Z, Karcagi I, Gao W, Nagy LG. An evolutionarily ancient transcription factor drives spore morphogenesis in mushroom-forming fungi. Curr Biol 2025; 35:1470-1483.e5. [PMID: 40073868 DOI: 10.1016/j.cub.2025.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 03/14/2025]
Abstract
Sporulation is the most widespread means of reproduction and dispersal in fungi and, at the same time, an industrially important trait in crop mushrooms. In the Basidiomycota, sexual spores are produced on specialized cells known as basidia, from which they are forcibly discharged with the highest known acceleration in nature. However, the genetics of sporulation remains poorly known. Here, we identify a new, highly conserved transcription factor, sporulation-related regulator 1 (srr1), and systematically address the genetics of spore formation for the first time in the Basidiomycota. We show that Srr1 regulates postmeiotic spore morphogenesis, but not other aspects of fruiting body development or meiosis, and its role is conserved in the phylogenetically distant, but industrially important, Pleurotus spp. (oyster mushrooms). We used RNA sequencing to understand genes directly or indirectly regulated by Srr1 and identified a strongly supported binding motif for the protein. Using an inferred network of putative target genes regulated by Srr1 and comparative genomics, we identified genes lost in secondarily non-ballistosporic taxa, including a novel sporulation-specific chitinase gene. Overall, our study offers systematic insights into the genetics of spore morphogenesis in the Basidiomycota.
Collapse
Affiliation(s)
- Zhihao Hou
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged 6726, Hungary; Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged 6726, Hungary
| | - Zsolt Merényi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged 6726, Hungary
| | - Yashu Yang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Beijing 100081, China
| | - Yan Zhang
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Árpád Csernetics
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged 6726, Hungary
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged 6726, Hungary
| | - Botond Hegedüs
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged 6726, Hungary
| | - Csenge Földi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged 6726, Hungary; Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged 6726, Hungary
| | - Hongli Wu
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged 6726, Hungary
| | - Zsolt Kristóffy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged 6726, Hungary
| | - Edit Ábrahám
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged 6726, Hungary
| | - Nikolett Miklovics
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged 6726, Hungary
| | - Máté Virágh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged 6726, Hungary
| | - Xiao-Bin Liu
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged 6726, Hungary
| | - Nikolett Zsibrita
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged 6726, Hungary
| | - Zoltán Lipinszki
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged 6726, Hungary
| | - Ildikó Karcagi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged 6726, Hungary
| | - Wei Gao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Beijing 100081, China
| | - László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged 6726, Hungary.
| |
Collapse
|
2
|
Lotharukpong JS, Zheng M, Luthringer R, Liesner D, Drost HG, Coelho SM. A transcriptomic hourglass in brown algae. Nature 2024; 635:129-135. [PMID: 39443791 PMCID: PMC11540847 DOI: 10.1038/s41586-024-08059-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024]
Abstract
Complex multicellularity has emerged independently across a few eukaryotic lineages and is often associated with the rise of elaborate, tightly coordinated developmental processes1,2. How multicellularity and development are interconnected in evolution is a major question in biology. The hourglass model of embryonic evolution depicts how developmental processes are conserved during evolution, and predicts morphological and molecular divergence in early and late embryogenesis, bridged by a conserved mid-embryonic (phylotypic) period linked to the formation of the basic body plan3,4. Initially found in animal embryos5-8, molecular hourglass patterns have recently been proposed for land plants and fungi9,10. However, whether the hourglass pattern is an intrinsic feature of all complex multicellular eukaryotes remains unknown. Here we tested the presence of a molecular hourglass in the brown algae, a eukaryotic lineage that has evolved multicellularity independently from animals, fungi and plants1,11,12. By exploring transcriptome evolution patterns of brown algae with distinct morphological complexities, we uncovered an hourglass pattern during embryogenesis in morphologically complex species. Filamentous algae without canonical embryogenesis display transcriptome conservation in multicellular stages of the life cycle, whereas unicellular stages are more rapidly evolving. Our findings suggest that transcriptome conservation in brown algae is associated with cell differentiation stages, but is not necessarily linked to embryogenesis. Together with previous work in animals, plants and fungi, we provide further evidence for the generality of a developmental hourglass pattern across complex multicellular eukaryotes.
Collapse
Affiliation(s)
| | - Min Zheng
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Rémy Luthringer
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Daniel Liesner
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Hajk-Georg Drost
- Computational Biology Group, Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
- Digital Biology Group, Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK.
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
Guerrero S, Roces V, García-Campa L, Valledor L, Meijón M. Proteomic dynamics revealed sex-biased responses to combined heat-drought stress in Marchantia. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2226-2241. [PMID: 39109947 DOI: 10.1111/jipb.13753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/11/2024] [Indexed: 10/19/2024]
Abstract
Recent studies have documented plant responses to climate change extensively, particularly to single-stress exposures. However, critical factors for stress survival, such as sexual differentiation, are not often considered. The dioicous Marchantia polymorpha stands as an evolutionary milestone, potentially preserving ancestral traits from the early colonizers. In this study, we employed proteomic analyses complemented with physiological monitoring to investigate combined heat and drought responses in Tak-1 (male) and Tak-2 (female) accessions of this liverwort. Additionally, targeted transcriptomics was conducted using different natural populations from contrasting environments. Our findings revealed sex-biased dynamics among natural accessions, particularly evident under control conditions and during early stress responses. Although Tak-2 exhibited greater diversity than Tak-1 under control conditions, male accession demonstrated distinct and more rapid stress sensing and signaling. These differences in stress response appeared to be strongly related to sex-specific plasticity influenced by geoclimatic origin. Furthermore, we established distinct protein gene ages and genomic distribution trends, underscoring the importance of protein diversification over time. This study provides an evolutionary perspective on sexual divergence and stress emergence employing a systems biology approach, which allowed for the establishment of global and sex-specific interaction networks in the stress response.
Collapse
Affiliation(s)
- Sara Guerrero
- Department of Organisms and, Systems Biology, Faculty of Biology/Biotechnology, Institute of Asturias, University of Oviedo, Oviedo, 33071, Asturias, Spain
| | - Víctor Roces
- Department of Organisms and, Systems Biology, Faculty of Biology/Biotechnology, Institute of Asturias, University of Oviedo, Oviedo, 33071, Asturias, Spain
| | - Lara García-Campa
- Department of Organisms and, Systems Biology, Faculty of Biology/Biotechnology, Institute of Asturias, University of Oviedo, Oviedo, 33071, Asturias, Spain
| | - Luis Valledor
- Department of Organisms and, Systems Biology, Faculty of Biology/Biotechnology, Institute of Asturias, University of Oviedo, Oviedo, 33071, Asturias, Spain
| | - Mónica Meijón
- Department of Organisms and, Systems Biology, Faculty of Biology/Biotechnology, Institute of Asturias, University of Oviedo, Oviedo, 33071, Asturias, Spain
| |
Collapse
|
4
|
Shen N, Xie H, Liu K, Li X, Wang L, Deng Y, Chen L, Bian Y, Xiao Y. Near-gapless genome and transcriptome analyses provide insights into fruiting body development in Lentinula edodes. Int J Biol Macromol 2024; 263:130610. [PMID: 38447851 DOI: 10.1016/j.ijbiomac.2024.130610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Fruiting body development in macrofungi is an intensive research subject. In this study, high-quality genomes were assembled for two sexually compatible monokaryons from a heterokaryotic Lentinula edodes strain WX1, and variations in L. edodes genomes were analyzed. Specifically, differential gene expression and allele-specific expression (ASE) were analyzed using the two monokaryotic genomes and transcriptome data from four different stages of fruiting body development in WX1. Results revealed that after aeration, mycelia sensed cell wall stress, pheromones, and a decrease in CO2 concentration, leading to up-regulated expression in genes related to cell adhesion, cell wall remodeling, proteolysis, and lipid metabolism, which may promote primordium differentiation. Aquaporin genes and those related to proteolysis, mitosis, lipid, and carbohydrate metabolism may play important roles in primordium development, while genes related to tissue differentiation and sexual reproduction were active in fruiting body. Several essential genes for fruiting body development were allele-specifically expressed and the two nuclear types could synergistically regulate fruiting body development by dominantly expressing genes with different functions. ASE was probably induced by long terminal repeat-retrotransposons. Findings here contribute to the further understanding of the mechanism of fruiting body development in macrofungi.
Collapse
Affiliation(s)
- Nan Shen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Haoyu Xie
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Kefang Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xinru Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lu Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Youjin Deng
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lianfu Chen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yinbing Bian
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yang Xiao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
5
|
Földi C, Merényi Z, Balázs B, Csernetics Á, Miklovics N, Wu H, Hegedüs B, Virágh M, Hou Z, Liu XB, Galgóczy L, Nagy LG. Snowball: a novel gene family required for developmental patterning of fruiting bodies of mushroom-forming fungi (Agaricomycetes). mSystems 2024; 9:e0120823. [PMID: 38334416 PMCID: PMC10949477 DOI: 10.1128/msystems.01208-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
UNLABELLED The morphogenesis of sexual fruiting bodies of fungi is a complex process determined by a genetically encoded program. Fruiting bodies reached the highest complexity levels in the Agaricomycetes; yet, the underlying genetics is currently poorly known. In this work, we functionally characterized a highly conserved gene termed snb1, whose expression level increases rapidly during fruiting body initiation. According to phylogenetic analyses, orthologs of snb1 are present in almost all agaricomycetes and may represent a novel conserved gene family that plays a substantial role in fruiting body development. We disrupted snb1 using CRISPR/Cas9 in the agaricomycete model organism Coprinopsis cinerea. snb1 deletion mutants formed unique, snowball-shaped, rudimentary fruiting bodies that could not differentiate caps, stipes, and lamellae. We took advantage of this phenotype to study fruiting body differentiation using RNA-Seq analyses. This revealed differentially regulated genes and gene families that, based on wild-type RNA-Seq data, were upregulated early during development and showed tissue-specific expression, suggesting a potential role in differentiation. Taken together, the novel gene family of snb1 and the differentially expressed genes in the snb1 mutants provide valuable insights into the complex mechanisms underlying developmental patterning in the Agaricomycetes. IMPORTANCE Fruiting bodies of mushroom-forming fungi (Agaricomycetes) are complex multicellular structures, with a spatially and temporally integrated developmental program that is, however, currently poorly known. In this study, we present a novel, conserved gene family, Snowball (snb), termed after the unique, differentiation-less fruiting body morphology of snb1 knockout strains in the model mushroom Coprinopsis cinerea. snb is a gene of unknown function that is highly conserved among agaricomycetes and encodes a protein of unknown function. A comparative transcriptomic analysis of the early developmental stages of differentiated wild-type and non-differentiated mutant fruiting bodies revealed conserved differentially expressed genes which may be related to tissue differentiation and developmental patterning fruiting body development.
Collapse
Affiliation(s)
- Csenge Földi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Zsolt Merényi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Bálint Balázs
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Árpád Csernetics
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Nikolett Miklovics
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Hongli Wu
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Botond Hegedüs
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Máté Virágh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Zhihao Hou
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - Xiao-Bin Liu
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| | - László Galgóczy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László G. Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| |
Collapse
|
6
|
Maurer-Alcalá XX, Cote-L’Heureux A, Kosakovsky Pond SL, Katz LA. Somatic genome architecture and molecular evolution are decoupled in "young" linage-specific gene families in ciliates. PLoS One 2024; 19:e0291688. [PMID: 38271450 PMCID: PMC10810533 DOI: 10.1371/journal.pone.0291688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 09/02/2023] [Indexed: 01/27/2024] Open
Abstract
The evolution of lineage-specific gene families remains poorly studied across the eukaryotic tree of life, with most analyses focusing on the recent evolution of de novo genes in model species. Here we explore the origins of lineage-specific genes in ciliates, a ~1 billion year old clade of microeukaryotes that are defined by their division of somatic and germline functions into distinct nuclei. Previous analyses on conserved gene families have shown the effect of ciliates' unusual genome architecture on gene family evolution: extensive genome processing-the generation of thousands of gene-sized somatic chromosomes from canonical germline chromosomes-is associated with larger and more diverse gene families. To further study the relationship between ciliate genome architecture and gene family evolution, we analyzed lineage specific gene families from a set of 46 transcriptomes and 12 genomes representing x species from eight ciliate classes. We assess how the evolution lineage-specific gene families occurs among four groups of ciliates: extensive fragmenters with gene-size somatic chromosomes, non-extensive fragmenters with "large'' multi-gene somatic chromosomes, Heterotrichea with highly polyploid somatic genomes and Karyorelictea with 'paradiploid' somatic genomes. Our analyses demonstrate that: 1) most lineage-specific gene families are found at shallow taxonomic scales; 2) extensive genome processing (i.e., gene unscrambling) during development likely influences the size and number of young lineage-specific gene families; and 3) the influence of somatic genome architecture on molecular evolution is increasingly apparent in older gene families. Altogether, these data highlight the influences of genome architecture on the evolution of lineage-specific gene families in eukaryotes.
Collapse
Affiliation(s)
- Xyrus X. Maurer-Alcalá
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Department of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
| | - Auden Cote-L’Heureux
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | - Sergei L. Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
- Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| |
Collapse
|
7
|
Xie Y, Chan PL, Kwan HS, Chang J. The Genome-Wide Characterization of Alternative Splicing and RNA Editing in the Development of Coprinopsis cinerea. J Fungi (Basel) 2023; 9:915. [PMID: 37755023 PMCID: PMC10532568 DOI: 10.3390/jof9090915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Coprinopsis cinerea is one of the model species used in fungal developmental studies. This mushroom-forming Basidiomycetes fungus has several developmental destinies in response to changing environments, with dynamic developmental regulations of the organism. Although the gene expression in C. cinerea development has already been profiled broadly, previous studies have only focused on a specific stage or process of fungal development. A comprehensive perspective across different developmental paths is lacking, and a global view on the dynamic transcriptional regulations in the life cycle and the developmental paths is far from complete. In addition, knowledge on co- and post-transcriptional modifications in this fungus remains rare. In this study, we investigated the transcriptional changes and modifications in C. cinerea during the processes of spore germination, vegetative growth, oidiation, sclerotia formation, and fruiting body formation by inducing different developmental paths of the organism and profiling the transcriptomes using the high-throughput sequencing method. Transition in the identity and abundance of expressed genes drive the physiological and morphological alterations of the organism, including metabolism and multicellularity construction. Moreover, stage- and tissue-specific alternative splicing and RNA editing took place and functioned in C. cinerea. These modifications were negatively correlated to the conservation features of genes and could provide extra plasticity to the transcriptome during fungal development. We suggest that C. cinerea applies different molecular strategies in its developmental regulation, including shifts in expressed gene sets, diversifications of genetic information, and reversible diversifications of RNA molecules. Such features would increase the fungal adaptability in the rapidly changing environment, especially in the transition of developmental programs and the maintenance and balance of genetic and transcriptomic divergence. The multi-layer regulatory network of gene expression serves as the molecular basis of the functioning of developmental regulation.
Collapse
Affiliation(s)
- Yichun Xie
- State Key Laboratory of Agrobiotechnology, Food Research Center, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China;
| | - Po-Lam Chan
- Food Research Center, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hoi-Shan Kwan
- Food Research Center, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jinhui Chang
- Department of Food Science and Nutrition, and Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
8
|
Merényi Z, Krizsán K, Sahu N, Liu XB, Bálint B, Stajich JE, Spatafora JW, Nagy LG. Genomes of fungi and relatives reveal delayed loss of ancestral gene families and evolution of key fungal traits. Nat Ecol Evol 2023; 7:1221-1231. [PMID: 37349567 PMCID: PMC10406608 DOI: 10.1038/s41559-023-02095-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/11/2023] [Indexed: 06/24/2023]
Abstract
Fungi are ecologically important heterotrophs that have radiated into most niches on Earth and fulfil key ecological services. Despite intense interest in their origins, major genomic trends of their evolutionary route from a unicellular opisthokont ancestor to derived multicellular fungi remain poorly known. Here we provide a highly resolved genome-wide catalogue of gene family changes across fungal evolution inferred from the genomes of 123 fungi and relatives. We show that a dominant trend in early fungal evolution has been the gradual shedding of protist genes and the punctuated emergence of innovation by two main gene duplication events. We find that the gene content of non-Dikarya fungi resembles that of unicellular opisthokonts in many respects, owing to the conservation of protist genes in their genomes. The most rapidly duplicating gene groups included extracellular proteins and transcription factors, as well as ones linked to the coordination of nutrient uptake with growth, highlighting the transition to a sessile osmotrophic feeding strategy and subsequent lifestyle evolution as important elements of early fungal history. These results suggest that the genomes of pre-fungal ancestors evolved into the typical filamentous fungal genome by a combination of gradual gene loss, turnover and several large duplication events rather than by abrupt changes. Consequently, the taxonomically defined Fungi represents a genomically non-uniform assemblage of species.
Collapse
Affiliation(s)
- Zsolt Merényi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Krisztina Krizsán
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
- Institute of Forensic Genetics, Hungarian Institute for Forensic Sciences, Budapest, Hungary
| | - Neha Sahu
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Xiao-Bin Liu
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Jason E Stajich
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, USA
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary.
| |
Collapse
|
9
|
Nagy L, Vonk P, Künzler M, Földi C, Virágh M, Ohm R, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu X, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Stud Mycol 2023; 104:1-85. [PMID: 37351542 PMCID: PMC10282164 DOI: 10.3114/sim.2022.104.01] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/02/2022] [Indexed: 01/09/2024] Open
Abstract
Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.
Collapse
Affiliation(s)
- L.G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - P.J. Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - M. Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland;
| | - C. Földi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - M. Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - R.A. Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - F. Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum, 44780, Bochum, North Rhine-Westphalia, Germany;
| | - B. Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Á. Csernetics
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Z. Hou
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X.B. Liu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - S. Nan
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - M. Pareek
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - N. Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Szathmári
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - T. Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - H. Wu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X. Yang
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Z. Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| |
Collapse
|
10
|
Barrera-Redondo J, Lotharukpong JS, Drost HG, Coelho SM. Uncovering gene-family founder events during major evolutionary transitions in animals, plants and fungi using GenEra. Genome Biol 2023; 24:54. [PMID: 36964572 PMCID: PMC10037820 DOI: 10.1186/s13059-023-02895-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/10/2023] [Indexed: 03/26/2023] Open
Abstract
We present GenEra ( https://github.com/josuebarrera/GenEra ), a DIAMOND-fueled gene-family founder inference framework that addresses previously raised limitations and biases in genomic phylostratigraphy, such as homology detection failure. GenEra also reduces computational time from several months to a few days for any genome of interest. We analyze the emergence of taxonomically restricted gene families during major evolutionary transitions in plants, animals, and fungi. Our results indicate that the impact of homology detection failure on inferred patterns of gene emergence is lineage-dependent, suggesting that plants are more prone to evolve novelty through the emergence of new genes compared to animals and fungi.
Collapse
Affiliation(s)
- Josué Barrera-Redondo
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany.
| | - Jaruwatana Sodai Lotharukpong
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Hajk-Georg Drost
- Computational Biology Group, Department of Molecular Biology, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany.
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany.
| |
Collapse
|
11
|
Lyu X, Wang Q, Liu A, Liu F, Meng L, Wang P, Zhang Y, Wang L, Li Z, Wang W. The transcription factor Ste12-like increases the mycelial abiotic stress tolerance and regulates the fruiting body development of Flammulina filiformis. Front Microbiol 2023; 14:1139679. [PMID: 37213522 PMCID: PMC10192742 DOI: 10.3389/fmicb.2023.1139679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/14/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Flammulina filiformis is one of the most commercially important edible fungi worldwide, with its nutritional value and medicinal properties. It becomes a good model species to study the tolerance of abiotic stress during mycelia growth in edible mushroom cultivation. Transcription factor Ste12 has been reported to be involved in the regulation of stress tolerance and sexual reproduction in fungi. Methods In this study, identification and phylogenetic analysis of ste12-like was performed by bioinformatics methods. Four ste12-like overexpression transformants of F. filiformis were constructed by Agrobacterium tumefaciens-mediated transformation. Results and Discussion Phylogenetic analysis showed that Ste12-like contained conserved amino acid sequences. All the overexpression transformants were more tolerant to salt stress, cold stress and oxidative stress than wild-type strains. In the fruiting experiment, the number of fruiting bodies of overexpression transformants increased compared with wild-type strains, but the growth rate of stipes slowed down. It suggested that gene ste12-like was involved in the regulation of abiotic stress tolerance and fruiting body development in F. filiformis.
Collapse
Affiliation(s)
- Xiaomeng Lyu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingji Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Ao Liu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Fang Liu
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li Meng
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Panmeng Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Yan Zhang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Li Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
- *Correspondence: Li Wang,
| | - Zhuang Li
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Zhuang Li,
| | - Wei Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
- Wei Wang,
| |
Collapse
|
12
|
Foti P, Russo N, Randazzo CL, Choupina AB, Pino A, Caggia C, Romeo FV. Profiling of phenol content and microbial community dynamics during pâté olive cake fermentation. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Regulatory basis for reproductive flexibility in a meningitis-causing fungal pathogen. Nat Commun 2022; 13:7938. [PMID: 36566249 PMCID: PMC9790007 DOI: 10.1038/s41467-022-35549-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Pathogenic fungi of the genus Cryptococcus can undergo two sexual cycles, involving either bisexual diploidization (after fusion of haploid cells of different mating type) or unisexual diploidization (by autodiploidization of a single cell). Here, we construct a gene-deletion library for 111 transcription factor genes in Cryptococcus deneoformans, and explore the roles of these regulatory networks in the two reproductive modes. We show that transcription factors crucial for bisexual syngamy induce the expression of known mating determinants as well as other conserved genes of unknown function. Deletion of one of these genes, which we term FMP1, leads to defects in bisexual reproduction in C. deneoformans, its sister species Cryptococcus neoformans, and the ascomycete Neurospora crassa. Furthermore, we show that a recently evolved regulatory cascade mediates pre-meiotic unisexual autodiploidization, supporting that this reproductive process is a recent evolutionary innovation. Our findings indicate that genetic circuits with different evolutionary ages govern hallmark events distinguishing unisexual and bisexual reproduction in Cryptococcus.
Collapse
|
14
|
Nowrousian M. The Role of Chromatin and Transcriptional Control in the Formation of Sexual Fruiting Bodies in Fungi. Microbiol Mol Biol Rev 2022; 86:e0010422. [PMID: 36409109 PMCID: PMC9769939 DOI: 10.1128/mmbr.00104-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fungal fruiting bodies are complex, three-dimensional structures that arise from a less complex vegetative mycelium. Their formation requires the coordinated action of many genes and their gene products, and fruiting body formation is accompanied by major changes in the transcriptome. In recent years, numerous transcription factor genes as well as chromatin modifier genes that play a role in fruiting body morphogenesis were identified, and through research on several model organisms, the underlying regulatory networks that integrate chromatin structure, gene expression, and cell differentiation are becoming clearer. This review gives a summary of the current state of research on the role of transcriptional control and chromatin structure in fruiting body development. In the first part, insights from transcriptomics analyses are described, with a focus on comparative transcriptomics. In the second part, examples of more detailed functional characterizations of the role of chromatin modifiers and/or transcription factors in several model organisms (Neurospora crassa, Aspergillus nidulans, Sordaria macrospora, Coprinopsis cinerea, and Schizophyllum commune) that have led to a better understanding of regulatory networks at the level of chromatin structure and transcription are discussed.
Collapse
Affiliation(s)
- Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
15
|
Metivier JC, Chain FJJ. Diversity in Expression Biases of Lineage-Specific Genes During Development and Anhydrobiosis Among Tardigrade Species. Evol Bioinform Online 2022; 18:11769343221140277. [PMID: 36578471 PMCID: PMC9791283 DOI: 10.1177/11769343221140277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/27/2022] [Indexed: 12/24/2022] Open
Abstract
Lineage-specific genes can contribute to the emergence and evolution of novel traits and adaptations. Tardigrades are animals that have adapted to tolerate extreme conditions by undergoing a form of cryptobiosis called anhydrobiosis, a physical transformation to an inactive desiccated state. While studies to understand the genetics underlying the interspecies diversity in anhydrobiotic transitions have identified tardigrade-specific genes and family expansions involved in this process, the contributions of species-specific genes to the variation in tardigrade development and cryptobiosis are less clear. We used previously published transcriptomes throughout development and anhydrobiosis (5 embryonic stages, 7 juvenile stages, active adults, and tun adults) to assess the transcriptional biases of different classes of genes between 2 tardigrade species, Hypsibius exemplaris and Ramazzottius varieornatus. We also used the transcriptomes of 2 other tardigrades, Echiniscoides sigismundi and Richtersius coronifer, and data from 3 non-tardigrade species (Adenita vaga, Drosophila melanogaster, and Caenorhabditis elegans) to help identify lineage-specific genes. We found that lineage-specific genes have generally low and narrow expression but are enriched among biased genes in different stages of development depending on the species. Biased genes tend to be specific to early and late development, but there is little overlap in functional enrichment of biased genes between species. Gene expansions in the 2 tardigrades also involve families with different functions despite homologous genes being expressed during anhydrobiosis in both species. Our results demonstrate the interspecific variation in transcriptional contributions and biases of lineage-specific genes during development and anhydrobiosis in 2 tardigrades.
Collapse
Affiliation(s)
| | - Frédéric J J Chain
- Frédéric J J Chain, Department of Biological Sciences, University of Massachusetts Lowell, One University Ave, Lowell, MA 01854, USA.
| |
Collapse
|
16
|
Bell V, Silva CRPG, Guina J, Fernandes TH. Mushrooms as future generation healthy foods. Front Nutr 2022; 9:1050099. [PMID: 36562045 PMCID: PMC9763630 DOI: 10.3389/fnut.2022.1050099] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
The potential of edible mushrooms as an unexploited treasure trove, although rarely included in known food guidelines, is highlighted. Their role in shielding people against the side effects of an unhealthy stylish diet is reviewed. Mushrooms complement the human diet with various bioactive molecules not identified or deficient in foodstuffs of plant and animal sources, being considered a functional food for the prevention of several human diseases. Mushrooms have been widely used as medicinal products for more than 2,000 years, but globally the potential field of use of wild mushrooms has been untapped. There is a broad range of edible mushrooms which remain poorly identified or even unreported which is a valuable pool as sources of bioactive compounds for biopharma utilization and new dietary supplements. Some unique elements of mushrooms and their role in preventative healthcare are emphasized, through their positive impact on the immune system. The potential of mushrooms as antiviral, anti-inflammatory, anti-neoplastic, and other health concerns is discussed. Mushrooms incorporate top sources of non-digestible oligosaccharides, and ergothioneine, which humans are unable to synthesize, the later a unique antioxidant, cytoprotective, and anti-inflammatory element, with therapeutic potential, approved by world food agencies. The prebiotic activity of mushrooms beneficially affects gut homeostasis performance and the balance of gut microbiota is enhanced. Several recent studies on neurological impact and contribution to the growth of nerve and brain cells are mentioned. Indeed, mushrooms as functional foods' nutraceuticals are presently regarded as next-generation foods, supporting health and wellness, and are promising prophylactic or therapeutic agents.
Collapse
Affiliation(s)
- V. Bell
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Coimbra, Portugal
| | - C. R. P. G. Silva
- Department of Health and Social Care, School of Health and Care Management, Arden University, Coventry, United Kingdom
| | - J. Guina
- Instituto Superior de Estudos Universitários de Nampula (ISEUNA), Universidade a Politécnica, Nampula, Mozambique
| | - T. H. Fernandes
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Lisbon, Lisbon, Portugal
- Centro de Estudos Interdisciplinares Lurio (CEIL), Lúrio University, Nampula, Mozambique
| |
Collapse
|
17
|
Abstract
Gene expression divergence through evolutionary processes is thought to be important for achieving programmed development in multicellular organisms. To test this premise in filamentous fungi, we investigated transcriptional profiles of 3,942 single-copy orthologous genes (SCOGs) in five related sordariomycete species that have morphologically diverged in the formation of their flask-shaped perithecia. We compared expression of the SCOGs to inferred gene expression levels of the most recent common ancestor of the five species, ranking genes from their largest increases to smallest increases in expression during perithecial development in each of the five species. We found that a large proportion of the genes that exhibited evolved increases in gene expression were important for normal perithecial development in Fusarium graminearum. Many of these genes were previously uncharacterized, encoding hypothetical proteins without any known functional protein domains. Interestingly, the developmental stages during which aberrant knockout phenotypes appeared largely coincided with the elevated expression of the deleted genes. In addition, we identified novel genes that affected normal perithecial development in Magnaporthe oryzae and Neurospora crassa, which were functionally and transcriptionally diverged from the orthologous counterparts in F. graminearum. Furthermore, comparative analysis of developmental transcriptomes and phylostratigraphic analysis suggested that genes encoding hypothetical proteins are generally young and transcriptionally divergent between related species. This study provides tangible evidence of shifts in gene expression that led to acquisition of novel function of orthologous genes in each lineage and demonstrates that several genes with hypothetical function are crucial for shaping multicellular fruiting bodies. IMPORTANCE The fungal class Sordariomycetes includes numerous important plant and animal pathogens. It also provides model systems for studying fungal fruiting body development, as its members develop fruiting bodies with a few well-characterized tissue types on common growth media and have rich genomic resources that enable comparative and functional analyses. To understand transcriptional divergence of key developmental genes between five related sordariomycete fungi, we performed targeted knockouts of genes inferred to have evolved significant upward shifts in expression. We found that many previously uncharacterized genes play indispensable roles at different stages of fruiting body development, which have undergone transcriptional activation in specific lineages. These novel genes are predicted to be phylogenetically young and tend to be involved in lineage- or species-specific function. Transcriptional activation of genes with unknown function seems to be more frequent than ever thought, which may be crucial for rapid adaption to changing environments for successful sexual reproduction.
Collapse
|