1
|
Weber MA, Sivakumar K, Kirkpatrick BQ, Stutt HR, Tabakovic EE, Bova AS, Kim YC, Narayanan NS. Amphetamine increases timing variability by degrading prefrontal temporal encoding. Neuropharmacology 2025; 275:110486. [PMID: 40324651 DOI: 10.1016/j.neuropharm.2025.110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Amphetamine is a commonly abused psychostimulant that increases synaptic catecholamine levels and impairs executive functions. However, it is unknown how acute amphetamine affects brain areas involved in executive control, such as the prefrontal cortex. We studied this problem in mice using interval timing, which requires participants to estimate an interval of several seconds with a motor response. Rodent prefrontal cortex ensembles are required for interval timing. We tested the hypothesis that amphetamine disrupts interval timing by degrading prefrontal cortex temporal encoding. We first quantified the effects of amphetamine on interval timing performance by conducting a meta-analysis of 15 prior rodent studies. We also implanted multielectrode recording arrays in the dorsomedial prefrontal cortex of 7 mice and then examined the effects of 1.5 mg/kg D-amphetamine injected intraperitoneally on interval timing behavior and prefrontal neuronal ensemble activity. A meta-analysis of previous literature revealed that amphetamine produces a large effect size on interval timing variability across studies but only a medium effect size on central tendencies of interval timing. We found a similar effect on interval timing variability in our task, which was accompanied by greater trial-to-trial variability in prefrontal ramping, attenuated interactions between pairs of ramping neurons, and dampened low-frequency oscillations. These findings suggest that amphetamine alters prefrontal temporal processing by increasing the variability of prefrontal temporal encoding. Our work provides insight into how amphetamine affects prefrontal activity, which may be useful in developing new neurophysiological markers for amphetamine use and novel treatments targeting the prefrontal cortex.
Collapse
Affiliation(s)
- Matthew A Weber
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Kartik Sivakumar
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Braedon Q Kirkpatrick
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Hannah R Stutt
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Ervina E Tabakovic
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Alexandra S Bova
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Young-Cho Kim
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Nandakumar S Narayanan
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA.
| |
Collapse
|
2
|
Li Y, Yin W, Wang X, Li J, Zhou S, Ma C, Yuan P, Li B. Stable sequential dynamics in prefrontal cortex represents subjective estimation of time. eLife 2024; 13:RP96603. [PMID: 39660591 PMCID: PMC11634065 DOI: 10.7554/elife.96603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Time estimation is an essential prerequisite underlying various cognitive functions. Previous studies identified 'sequential firing' and 'activity ramps' as the primary neuron activity patterns in the medial frontal cortex (mPFC) that could convey information regarding time. However, the relationship between these patterns and the timing behavior has not been fully understood. In this study, we utilized in vivo calcium imaging of mPFC in rats performing a timing task. We observed cells that showed selective activation at trial start, end, or during the timing interval. By aligning long-term time-lapse datasets, we discovered that sequential patterns of time coding were stable over weeks, while cells coding for trial start or end showed constant dynamism. Furthermore, with a novel behavior design that allowed the animal to determine individual trial interval, we were able to demonstrate that real-time adjustment in the sequence procession speed closely tracked the trial-to-trial interval variations. And errors in the rats' timing behavior can be primarily attributed to the premature ending of the time sequence. Together, our data suggest that sequential activity maybe a stable neural substrate that represents time under physiological conditions. Furthermore, our results imply the existence of a unique cell type in the mPFC that participates in the time-related sequences. Future characterization of this cell type could provide important insights in the neural mechanism of timing and related cognitive functions.
Collapse
Affiliation(s)
- Yiting Li
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Department of Rehabilitation Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Wenqu Yin
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang UniversityNanchangChina
| | - Xin Wang
- Department of Rehabilitation Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Jiawen Li
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang UniversityNanchangChina
- The Second Clinical Medicine School of Nanchang UniversityNanchangChina
| | - Shanglin Zhou
- State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOEFrontiers Center for Brain Science, Fudan UniversityShanghaiChina
| | - Chaolin Ma
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang UniversityNanchangChina
| | - Peng Yuan
- Department of Rehabilitation Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Baoming Li
- Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang UniversityNanchangChina
- Institute of Brain Science and Department of Physiology, School of Basic Medical Science, Hangzhou Normal UniversityHangzhouChina
| |
Collapse
|
3
|
Howard MW, Esfahani ZG, Le B, Sederberg PB. Learning temporal relationships between symbols with Laplace Neural Manifolds. ARXIV 2024:arXiv:2302.10163v4. [PMID: 36866224 PMCID: PMC9980275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Firing across populations of neurons in many regions of the mammalian brain maintains a temporal memory, a neural timeline of the recent past. Behavioral results demonstrate that people can both remember the past and anticipate the future over an analogous internal timeline. This paper presents a mathematical framework for building this timeline of the future. We assume that the input to the system is a time series of symbols-sparse tokenized representations of the present-in continuous time. The goal is to record pairwise temporal relationships between symbols over a wide range of time scales. We assume that the brain has access to a temporal memory in the form of the real Laplace transform. Hebbian associations with a diversity of synaptic time scales are formed between the past timeline and the present symbol. The associative memory stores the convolution between the past and the present. Knowing the temporal relationship between the past and the present allows one to infer relationships between the present and the future. With appropriate normalization, this Hebbian associative matrix can store a Laplace successor representation and a Laplace predecessor representation from which measures of temporal contingency can be evaluated. The diversity of synaptic time constants allows for learning of non-stationary statistics as well as joint statistics between triplets of symbols. This framework synthesizes a number of recent neuroscientific findings including results from dopamine neurons in the mesolimbic forebrain.
Collapse
Affiliation(s)
- Marc W Howard
- Department of Psychological and Brain Sciences, Boston University, 610 Commonwealth Ave, Boston, 02215, MA, USA
| | - Zahra Gh Esfahani
- Department of Psychological and Brain Sciences, Boston University, 610 Commonwealth Ave, Boston, 02215, MA, USA
| | - Bao Le
- Department of Psychology, University of Virginia, 409 McCormick Road, Charlottesville, 22904, VA, USA
| | - Per B Sederberg
- Department of Psychology, University of Virginia, 409 McCormick Road, Charlottesville, 22904, VA, USA
| |
Collapse
|
4
|
Cao R, Bright IM, Howard MW. Ramping cells in the rodent medial prefrontal cortex encode time to past and future events via real Laplace transform. Proc Natl Acad Sci U S A 2024; 121:e2404169121. [PMID: 39254998 PMCID: PMC11420195 DOI: 10.1073/pnas.2404169121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
In interval reproduction tasks, animals must remember the event starting the interval and anticipate the time of the planned response to terminate the interval. The interval reproduction task thus allows for studying both memory for the past and anticipation of the future. We analyzed previously published recordings from the rodent medial prefrontal cortex [J. Henke et al., eLife10, e71612 (2021)] during an interval reproduction task and identified two cell groups by modeling their temporal receptive fields using hierarchical Bayesian models. The firing in the "past cells" group peaked at the start of the interval and relaxed exponentially back to baseline. The firing in the "future cells" group increased exponentially and peaked right before the planned action at the end of the interval. Contrary to the previous assumption that timing information in the brain has one or two time scales for a given interval, we found strong evidence for a continuous distribution of the exponential rate constants for both past and future cell populations. The real Laplace transformation of time predicts exponential firing with a continuous distribution of rate constants across the population. Therefore, the firing pattern of the past cells can be identified with the Laplace transform of time since the past event while the firing pattern of the future cells can be identified with the Laplace transform of time until the planned future event.
Collapse
Affiliation(s)
- Rui Cao
- Department of Psychological and Brain Sciences, Boston University, Boston, MA02215
| | - Ian M. Bright
- Department of Psychological and Brain Sciences, Boston University, Boston, MA02215
| | - Marc W. Howard
- Department of Psychological and Brain Sciences, Boston University, Boston, MA02215
| |
Collapse
|
5
|
Cao R, Bright IM, Howard MW. Ramping cells in rodent mPFC encode time to past and future events via real Laplace transform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580170. [PMID: 38405896 PMCID: PMC10888827 DOI: 10.1101/2024.02.13.580170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In interval reproduction tasks, animals must remember the event starting the interval and anticipate the time of the planned response to terminate the interval. The interval reproduction task thus allows for studying both memory for the past and anticipation of the future. We analyzed previously published recordings from rodent mPFC (Henke et al., 2021) during an interval reproduction task and identified two cell groups by modeling their temporal receptive fields using hierarchical Bayesian models. The firing in the "past cells" group peaked at the start of the interval and relaxed exponentially back to baseline. The firing in the "future cells" group increased exponentially and peaked right before the planned action at the end of the interval. Contrary to the previous assumption that timing information in the brain has one or two time scales for a given interval, we found strong evidence for a continuous distribution of the exponential rate constants for both past and future cell populations. The real Laplace transformation of time predicts exponential firing with a continuous distribution of rate constants across the population. Therefore, the firing pattern of the past cells can be identified with the Laplace transform of time since the past event while the firing pattern of the future cells can be identified with the Laplace transform of time until the planned future event.
Collapse
Affiliation(s)
- Rui Cao
- Department of Psychological and Brain Sciences, Boston University
| | - Ian M Bright
- Department of Psychological and Brain Sciences, Boston University
| | - Marc W Howard
- Department of Psychological and Brain Sciences, Boston University
| |
Collapse
|
6
|
Merchant H, de Lafuente V. A Second Introduction to the Neurobiology of Interval Timing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:3-23. [PMID: 38918343 DOI: 10.1007/978-3-031-60183-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Time is a critical variable that organisms must be able to measure in order to survive in a constantly changing environment. Initially, this paper describes the myriad of contexts where time is estimated or predicted and suggests that timing is not a single process and probably depends on a set of different neural mechanisms. Consistent with this hypothesis, the explosion of neurophysiological and imaging studies in the last 10 years suggests that different brain circuits and neural mechanisms are involved in the ability to tell and use time to control behavior across contexts. Then, we develop a conceptual framework that defines time as a family of different phenomena and propose a taxonomy with sensory, perceptual, motor, and sensorimotor timing as the pillars of temporal processing in the range of hundreds of milliseconds.
Collapse
Affiliation(s)
- Hugo Merchant
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, Mexico.
| | - Victor de Lafuente
- Institute of Neurobiology National Autonomous University of Mexico, Querétaro, Mexico
| |
Collapse
|
7
|
Rueda-Orozco PE, Hidalgo-Balbuena AE, González-Pereyra P, Martinez-Montalvo MG, Báez-Cordero AS. The Interactions of Temporal and Sensory Representations in the Basal Ganglia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:141-158. [PMID: 38918350 DOI: 10.1007/978-3-031-60183-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
In rodents and primates, interval estimation has been associated with a complex network of cortical and subcortical structures where the dorsal striatum plays a paramount role. Diverse evidence ranging from individual neurons to population activity has demonstrated that this area hosts temporal-related neural representations that may be instrumental for the perception and production of time intervals. However, little is known about how temporal representations interact with other well-known striatal representations, such as kinematic parameters of movements or somatosensory representations. An attractive hypothesis suggests that somatosensory representations may serve as the scaffold for complex representations such as elapsed time. Alternatively, these representations may coexist as independent streams of information that could be integrated into downstream nuclei, such as the substantia nigra or the globus pallidus. In this review, we will revise the available information suggesting an instrumental role of sensory representations in the construction of temporal representations at population and single-neuron levels throughout the basal ganglia.
Collapse
Affiliation(s)
- Pavel E Rueda-Orozco
- Institute of Neurobiology, National Autonomous University of México, Querétaro, Mexico.
| | | | | | | | - Ana S Báez-Cordero
- Institute of Neurobiology, National Autonomous University of México, Querétaro, Mexico
| |
Collapse
|
8
|
Merchant H, Mendoza G, Pérez O, Betancourt A, García-Saldivar P, Prado L. Diverse Time Encoding Strategies Within the Medial Premotor Areas of the Primate. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:117-140. [PMID: 38918349 DOI: 10.1007/978-3-031-60183-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The measurement of time in the subsecond scale is critical for many sophisticated behaviors, yet its neural underpinnings are largely unknown. Recent neurophysiological experiments from our laboratory have shown that the neural activity in the medial premotor areas (MPC) of macaques can represent different aspects of temporal processing. During single interval categorization, we found that preSMA encodes a subjective category limit by reaching a peak of activity at a time that divides the set of test intervals into short and long. We also observed neural signals associated with the category selected by the subjects and the reward outcomes of the perceptual decision. On the other hand, we have studied the behavioral and neurophysiological basis of rhythmic timing. First, we have shown in different tapping tasks that macaques are able to produce predictively and accurately intervals that are cued by auditory or visual metronomes or when intervals are produced internally without sensory guidance. In addition, we found that the rhythmic timing mechanism in MPC is governed by different layers of neural clocks. Next, the instantaneous activity of single cells shows ramping activity that encodes the elapsed or remaining time for a tapping movement. In addition, we found MPC neurons that build neural sequences, forming dynamic patterns of activation that flexibly cover all the produced interval depending on the tapping tempo. This rhythmic neural clock resets on every interval providing an internal representation of pulse. Furthermore, the MPC cells show mixed selectivity, encoding not only elapsed time, but also the tempo of the tapping and the serial order element in the rhythmic sequence. Hence, MPC can map different task parameters, including the passage of time, using different cell populations. Finally, the projection of the time varying activity of MPC hundreds of cells into a low dimensional state space showed circular neural trajectories whose geometry represented the internal pulse and the tapping tempo. Overall, these findings support the notion that MPC is part of the core timing mechanism for both single interval and rhythmic timing, using neural clocks with different encoding principles, probably to flexibly encode and mix the timing representation with other task parameters.
Collapse
Affiliation(s)
- Hugo Merchant
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, Mexico.
| | - Germán Mendoza
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, Mexico
| | - Oswaldo Pérez
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, Mexico
| | | | | | - Luis Prado
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Querétaro, Mexico
| |
Collapse
|
9
|
Betancourt A, Pérez O, Gámez J, Mendoza G, Merchant H. Amodal population clock in the primate medial premotor system for rhythmic tapping. Cell Rep 2023; 42:113234. [PMID: 37838944 DOI: 10.1016/j.celrep.2023.113234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 08/09/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023] Open
Abstract
The neural substrate for beat extraction and response entrainment to rhythms is not fully understood. Here we analyze the activity of medial premotor neurons in monkeys performing isochronous tapping guided by brief flashing stimuli or auditory tones. The population dynamics shared the following properties across modalities: the circular dynamics of the neural trajectories form a regenerating loop for every produced interval; the trajectories converge in similar state space at tapping times resetting the clock; and the tempo of the synchronized tapping is encoded in the trajectories by a combination of amplitude modulation and temporal scaling. Notably, the modality induces displacement in the neural trajectories in the auditory and visual subspaces without greatly altering the time-keeping mechanism. These results suggest that the interaction between the medial premotor cortex's amodal internal representation of pulse and a modality-specific external input generates a neural rhythmic clock whose dynamics govern rhythmic tapping execution across senses.
Collapse
Affiliation(s)
- Abraham Betancourt
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Boulevard Juriquilla No. 3001, Querétaro, Qro 76230, México
| | - Oswaldo Pérez
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, UNAM, Boulevard Juriquilla No. 3001, Querétaro, Qro 76230, México
| | - Jorge Gámez
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Boulevard Juriquilla No. 3001, Querétaro, Qro 76230, México
| | - Germán Mendoza
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Boulevard Juriquilla No. 3001, Querétaro, Qro 76230, México
| | - Hugo Merchant
- Instituto de Neurobiología, UNAM, Campus Juriquilla, Boulevard Juriquilla No. 3001, Querétaro, Qro 76230, México.
| |
Collapse
|
10
|
Holladay SD. Environmental contaminants, endocrine disruption, and transgender: Can "born that way" in some cases be toxicologically real? Hum Exp Toxicol 2023; 42:9603271231203382. [PMID: 37751728 DOI: 10.1177/09603271231203382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Gender is viewed by many as strictly binary based on a collection of body traits typical of a female or male phenotype, presence of a genotype that includes at least one copy of a Y chromosome, or ability to produce either egg or sperm cells. A growing non-binary view is that these descriptors, while compelling, may nonetheless fail to accurately capture an individual's true gender. The position of the American Psychological Association (APA) agrees with this view and is that transgender people are a defendable and real part of the human population. The considerable diversity of transgender expression then argues against any unitary or simple explanations, however, prenatal hormone levels, genetic influences, and early and later life experiences have been suggested as playing roles in development of transgender identities. The present review considers existing and emerging toxicologic data that may also support an environmental chemical contribution to some transgender identities, and suggest the possibility of a growing nonbinary brain gender continuum in the human population.
Collapse
Affiliation(s)
- Steven David Holladay
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
11
|
Thurley K. Naturalistic neuroscience and virtual reality. Front Syst Neurosci 2022; 16:896251. [PMID: 36467978 PMCID: PMC9712202 DOI: 10.3389/fnsys.2022.896251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/31/2022] [Indexed: 04/04/2024] Open
Abstract
Virtual reality (VR) is one of the techniques that became particularly popular in neuroscience over the past few decades. VR experiments feature a closed-loop between sensory stimulation and behavior. Participants interact with the stimuli and not just passively perceive them. Several senses can be stimulated at once, large-scale environments can be simulated as well as social interactions. All of this makes VR experiences more natural than those in traditional lab paradigms. Compared to the situation in field research, a VR simulation is highly controllable and reproducible, as required of a laboratory technique used in the search for neural correlates of perception and behavior. VR is therefore considered a middle ground between ecological validity and experimental control. In this review, I explore the potential of VR in eliciting naturalistic perception and behavior in humans and non-human animals. In this context, I give an overview of recent virtual reality approaches used in neuroscientific research.
Collapse
Affiliation(s)
- Kay Thurley
- Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany
- Bernstein Center for Computational Neuroscience Munich, Munich, Germany
| |
Collapse
|
12
|
Meirhaeghe N, Sohn H, Jazayeri M. A precise and adaptive neural mechanism for predictive temporal processing in the frontal cortex. Neuron 2021; 109:2995-3011.e5. [PMID: 34534456 PMCID: PMC9737059 DOI: 10.1016/j.neuron.2021.08.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/02/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022]
Abstract
The theory of predictive processing posits that the brain computes expectations to process information predictively. Empirical evidence in support of this theory, however, is scarce and largely limited to sensory areas. Here, we report a precise and adaptive mechanism in the frontal cortex of non-human primates consistent with predictive processing of temporal events. We found that the speed of neural dynamics is precisely adjusted according to the average time of an expected stimulus. This speed adjustment, in turn, enables neurons to encode stimuli in terms of deviations from expectation. This lawful relationship was evident across multiple experiments and held true during learning: when temporal statistics underwent covert changes, neural responses underwent predictable changes that reflected the new mean. Together, these results highlight a precise mathematical relationship between temporal statistics in the environment and neural activity in the frontal cortex that may serve as a mechanism for predictive temporal processing.
Collapse
Affiliation(s)
- Nicolas Meirhaeghe
- Harvard-MIT Division of Health Sciences & Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Hansem Sohn
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Mehrdad Jazayeri
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA,Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|