1
|
Li P, Liu S, Wallerstein J, Villones RLE, Huang P, Lindkvist-Petersson K, Meloni G, Lu K, Steen Jensen K, Liin SI, Gourdon P. Closed and open structures of the eukaryotic magnesium channel Mrs2 reveal the auto-ligand-gating regulation mechanism. Nat Struct Mol Biol 2025; 32:491-501. [PMID: 39609652 PMCID: PMC11919701 DOI: 10.1038/s41594-024-01432-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/28/2024] [Indexed: 11/30/2024]
Abstract
The CorA/Mrs2 family of pentameric proteins are cardinal for the influx of Mg2+ across cellular membranes, importing the cation to mitochondria in eukaryotes. Yet, the conducting and regulation mechanisms of permeation remain elusive, particularly for the eukaryotic Mrs2 members. Here, we report closed and open Mrs2 cryo-electron microscopy structures, accompanied by functional characterization. Mg2+ flux is permitted by a narrow pore, gated by methionine and arginine residues in the closed state. Transition between the conformations is orchestrated by two pairs of conserved sensor-serving Mg2+-binding sites in the mitochondrial matrix lumen, located in between monomers. At lower levels of Mg2+, these ions are stripped, permitting an alternative, symmetrical shape, maintained by the RDLR motif that replaces one of the sensor site pairs in the open conformation. Thus, our findings collectively establish the molecular basis for selective Mg2+ influx of Mrs2 and an auto-ligand-gating regulation mechanism.
Collapse
Affiliation(s)
- Ping Li
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Shiyan Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Johan Wallerstein
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, Lund, Sweden
| | - Rhiza Lyne E Villones
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Peng Huang
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kristine Steen Jensen
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, Lund, Sweden
| | - Sara I Liin
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Pontus Gourdon
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
- Department of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark.
| |
Collapse
|
2
|
Chatterjee D, Daya Manasi AR, Rastogi SK, Panda AP, Biju B, Bhattacharyya D, Ghosh AS. Involvement of CorA of Mycobacterium smegmatis in exerting intrinsic resistance towards structurally unrelated antibiotics. J Appl Microbiol 2024; 135:lxae298. [PMID: 39657998 DOI: 10.1093/jambio/lxae298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
AIM Ubiquitous magnesium transporter, CorA of Mycobacterium smegmatis is well known for its role in maintaining magnesium homeostasis. However, little is known about its involvement in exerting antimicrobial resistance. Here, by using molecular genetics, in vivo and in silico studies, we tried to envisage the role of CorA of M. smegmatis in antimicrobial resistance of M. smegmatis and Escherichia coli. METHODS AND RESULTS Expression of corA in M. smegmatis and E. coli decreased the susceptibility of the host cells towards various antibiotics and anti-tubercular drugs, which was elucidated by determining minimum inhibitory concentrations using the micro-broth dilution method. The intracellular antibiotic accumulation assay indicated that the host cells expressing corA accumulated less EtBr, norfloxacin, and ofloxacin than the control cells. Moreover, the presence of a sub-inhibitory concentration of Mg2+ further decreased the susceptibility towards the drugs tested. Furthermore, CorA enhanced the biofilm-forming ability of cells expressing it. CONCLUSION CorA (MSMEG_5056), a magnesium transporter of M. smegmatis influences the extrusion of multiple structurally unrelated classes of drugs and enhances the biofilm formation of E. coli and M. smegmatis.
Collapse
Affiliation(s)
- Debasmita Chatterjee
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - A R Daya Manasi
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Sumit Kumar Rastogi
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Aditya Prasad Panda
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Bayomi Biju
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Debleena Bhattacharyya
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Anindya Sundar Ghosh
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
3
|
Ahn SY, Lee SJ, Yoon SI. Structural and biochemical analysis of the unique interactions of the Campylobacter jejuni CorA channel protein with divalent cations. Biochem Biophys Res Commun 2024; 723:150166. [PMID: 38810321 DOI: 10.1016/j.bbrc.2024.150166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
CorA is a Mg2+ channel that plays a key role in the homeostasis of intracellular Mg2+ in bacteria and archaea. CorA consists of a cytoplasmic domain and a transmembrane domain and generates a Mg2+ pathway by forming a pentamer in the cell membrane. CorA gating is regulated via negative feedback by Mg2+, which is accommodated by the pentamerization interface of the CorA cytoplasmic domain (CorACD). The Mg2+-binding sites of CorACD differ depending on the species, suggesting that the Mg2+-binding modes and Mg2+-mediated gating mechanisms of CorA vary across prokaryotes. To define the Mg2+-binding mechanism of CorA in the Campylobacter jejuni pathogen, we structurally and biochemically characterized C. jejuni CorACD (cjCorACD). cjCorACD adopts a three-layered α/β/α structure as observed in other CorA orthologs. Interestingly, cjCorACD exhibited enhanced thermostability in the presence of Ca2+, Ni2+, Zn2+, or Mn2+ in addition to Mg2+, indicating that cjCorACD interacts with diverse divalent cations. This cjCorACD stabilization is mediated by divalent cation accommodation by negatively charged residues located at the bottom of the cjCorACD structure away from the pentamerization interface. Consistently, cjCorACD exists as a monomer irrespective of the presence of divalent cations. We concluded that cjCorACD binds divalent cations in a unique pentamerization-independent manner.
Collapse
Affiliation(s)
- Si Yeon Ahn
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Su-Jin Lee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sung-Il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
4
|
Uthayabalan S, Lake T, Stathopulos PB. MRS2 missense variation at Asp216 abrogates inhibitory Mg 2+ binding, potentiating cell migration and apoptosis resistance. Protein Sci 2024; 33:e5108. [PMID: 38989547 PMCID: PMC11237551 DOI: 10.1002/pro.5108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
Mitochondrial magnesium (Mg2+) is a crucial modulator of protein stability, enzymatic activity, ATP synthesis, and cell death. Mitochondrial RNA splicing protein 2 (MRS2) is the main Mg2+ channel in the inner mitochondrial membrane that mediates influx into the matrix. Recent cryo-electron microscopy (cryo-EM) human MRS2 structures exhibit minimal conformational changes at high and low Mg2+, yet the regulation of human MRS2 and orthologues by Mg2+ binding to analogous matrix domains has been well established. Further, a missense variation at D216 has been identified associated with malignant melanoma and MRS2 expression and activity is implicated in gastric cancer. Thus, to gain more mechanistic and functional insight into Mg2+ sensing by the human MRS2 matrix domain and the association with proliferative disease, we assessed the structural, biophysical, and functional effects of a D216Q mutant. We show that the D216Q mutation is sufficient to abrogate Mg2+-binding and associated conformational changes including increased α-helicity, stability, and monomerization. Further, we reveal that the MRS2 matrix domains interact with ~μM affinity, which is weakened by up to two orders of magnitude in the presence of Mg2+ for wild-type but unaffected for D216Q. Finally, we demonstrate the importance of Mg2+ sensing by MRS2 to prevent matrix Mg2+ overload as HeLa cells overexpressing MRS2 show enhanced Mg2+ uptake, cell migration, and resistance to apoptosis while MRS2 D216Q robustly potentiates these cancer phenotypes. Collectively, our findings further define the MRS2 matrix domain as a critical Mg2+ sensor that undergoes conformational and assembly changes upon Mg2+ interactions dependent on D216 to temper matrix Mg2+ overload.
Collapse
Affiliation(s)
- Sukanthathulse Uthayabalan
- Department of Physiology and Pharmacology, Schulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
| | - Taylor Lake
- Department of Physiology and Pharmacology, Schulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
| | - Peter B. Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
| |
Collapse
|
5
|
Thomas GM, Wu Y, Leite W, Pingali SV, Weiss KL, Grant AJ, Diggs MW, Schmidt-Krey I, Gutishvili G, Gumbart JC, Urban VS, Lieberman RL. SANS reveals lipid-dependent oligomerization of an intramembrane aspartyl protease from H. volcanii. Biophys J 2024; 123:1846-1856. [PMID: 38824390 PMCID: PMC11267423 DOI: 10.1016/j.bpj.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/05/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024] Open
Abstract
Reactions that occur within the lipid membrane involve, at minimum, ternary complexes among the enzyme, substrate, and lipid. For many systems, the impact of the lipid in regulating activity or oligomerization state is poorly understood. Here, we used small-angle neutron scattering (SANS) to structurally characterize an intramembrane aspartyl protease (IAP), a class of membrane-bound enzymes that use membrane-embedded aspartate residues to hydrolyze transmembrane segments of biologically relevant substrates. We focused on an IAP ortholog from the halophilic archaeon Haloferax volcanii (HvoIAP). HvoIAP purified in n-dodecyl-β-D-maltoside (DDM) fractionates on size-exclusion chromatography (SEC) as two fractions. We show that, in DDM, the smaller SEC fraction is consistent with a compact HvoIAP monomer. Molecular dynamics flexible fitting conducted on an AlphaFold2-generated monomer produces a model in which loops are compact alongside the membrane-embedded helices. In contrast, SANS data collected on the second SEC fraction indicate an oligomer consistent with an elongated assembly of discrete HvoIAP monomers. Analysis of in-line SEC-SANS data of the HvoIAP oligomer, the first such experiment to be conducted on a membrane protein at Oak Ridge National Lab (ORNL), shows a diversity of elongated and spherical species, including one consistent with the tetrameric assembly reported for the Methanoculleus marisnigri JR1 IAP crystal structure not observed previously in solution. Reconstitution of monomeric HvoIAP into bicelles increases enzyme activity and results in the assembly of HvoIAP into a species with similar dimensions as the ensemble of oligomers isolated from DDM. Our study reveals lipid-mediated HvoIAP self-assembly and demonstrates the utility of in-line SEC-SANS in elucidating oligomerization states of small membrane proteins.
Collapse
Affiliation(s)
- Gwendell M Thomas
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Yuqi Wu
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Wellington Leite
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | | | - Kevin L Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Arshay J Grant
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Monneh W Diggs
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Ingeborg Schmidt-Krey
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia; School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | | | - James C Gumbart
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia; School of Physics, Georgia Institute of Technology, Atlanta, Georgia
| | - Volker S Urban
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
6
|
Le Brun AP, Gilbert EP. Advances in sample environments for neutron scattering for colloid and interface science. Adv Colloid Interface Sci 2024; 327:103141. [PMID: 38631095 DOI: 10.1016/j.cis.2024.103141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
This review describes recent advances in sample environments across the full complement of applicable neutron scattering techniques to colloid and interface science. Temperature, pressure, flow, tensile testing, ultrasound, chemical reactions, IR/visible/UV light, confinement, humidity and electric and magnetic field application, as well as tandem X-ray methods, are all addressed. Consideration for material choices in sample environments and data acquisition methods are also covered as well as discussion of current and potential future use of machine learning and artificial intelligence.
Collapse
Affiliation(s)
- Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Elliot Paul Gilbert
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia.
| |
Collapse
|
7
|
Larsen AH, Perozzo AM, Biggin PC, Bowie D, Kastrup JS. Recovery from desensitization in GluA2 AMPA receptors is affected by a single mutation in the N-terminal domain interface. J Biol Chem 2024; 300:105717. [PMID: 38311178 PMCID: PMC10909779 DOI: 10.1016/j.jbc.2024.105717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
AMPA-type ionotropic glutamate receptors (AMPARs) are central to various neurological processes, including memory and learning. They assemble as homo- or heterotetramers of GluA1, GluA2, GluA3, and GluA4 subunits, each consisting of an N-terminal domain (NTD), a ligand-binding domain, a transmembrane domain, and a C-terminal domain. While AMPAR gating is primarily controlled by reconfiguration in the ligand-binding domain layer, our study focuses on the NTDs, which also influence gating, yet the underlying mechanism remains enigmatic. In this investigation, we employ molecular dynamics simulations to evaluate the NTD interface strength in GluA1, GluA2, and NTD mutants GluA2-H229N and GluA1-N222H. Our findings reveal that GluA1 has a significantly weaker NTD interface than GluA2. The NTD interface of GluA2 can be weakened by a single point mutation in the NTD dimer-of-dimer interface, namely H229N, which renders GluA2 more GluA1-like. Electrophysiology recordings demonstrate that this mutation also leads to slower recovery from desensitization. Moreover, we observe that lowering the pH induces more splayed NTD states and enhances desensitization in GluA2. We hypothesized that H229 was responsible for this pH sensitivity; however, GluA2-H229N was also affected by pH, meaning that H229 is not solely responsible and that protons exert their effect across multiple domains of the AMPAR. In summary, our work unveils an allosteric connection between the NTD interface strength and AMPAR desensitization.
Collapse
Affiliation(s)
| | - Amanda M Perozzo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Philip C Biggin
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Derek Bowie
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Jette Sandholm Kastrup
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Li M, Li Y, Lu Y, Li J, Lu X, Ren Y, Wen T, Wang Y, Chang S, Zhang X, Yang X, Shen Y. Molecular basis of Mg 2+ permeation through the human mitochondrial Mrs2 channel. Nat Commun 2023; 14:4713. [PMID: 37543649 PMCID: PMC10404273 DOI: 10.1038/s41467-023-40516-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023] Open
Abstract
Mitochondrial RNA splicing 2 (Mrs2), a eukaryotic CorA ortholog, enables Mg2+ to permeate the inner mitochondrial membrane and plays an important role in mitochondrial metabolic function. However, the mechanism by which Mrs2 permeates Mg2+ remains unclear. Here, we report four cryo-electron microscopy (cryo-EM) reconstructions of Homo sapiens Mrs2 (hMrs2) under various conditions. All of these hMrs2 structures form symmetrical pentamers with very similar pentamer and protomer conformations. A special structural feature of Cl--bound R-ring, which consists of five Arg332 residues, was found in the hMrs2 structure. Molecular dynamics simulations and mitochondrial Mg2+ uptake assays show that the R-ring may function as a charge repulsion barrier, and Cl- may function as a ferry to jointly gate Mg2+ permeation in hMrs2. In addition, the membrane potential is likely to be the driving force for Mg2+ permeation. Our results provide insights into the channel assembly and Mg2+ permeation of hMrs2.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China
| | - Yang Li
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China
| | - Yue Lu
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China
| | - Jianhui Li
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China
| | - Xuhang Lu
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China
| | - Yue Ren
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China
| | - Tianlei Wen
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China
| | - Yaojie Wang
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China
| | - Shenghai Chang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Center of Cryo Electron Microscopy, Zhejiang University, Hangzhou, 310058, China
| | - Xing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Center of Cryo Electron Microscopy, Zhejiang University, Hangzhou, 310058, China
| | - Xue Yang
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China.
| | - Yuequan Shen
- State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
9
|
Martel A, Cocho C, Caporaletti F, Jacques M, El Aazzouzi A, Lapeyre F, Porcar L. Upgraded D22 SEC-SANS setup dedicated to the biology community. J Appl Crystallogr 2023; 56:994-1001. [PMID: 37555207 PMCID: PMC10405598 DOI: 10.1107/s1600576723004119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/09/2023] [Indexed: 08/10/2023] Open
Abstract
Described here is the current status of the upgraded in situ size-exclusion chromatography (SEC) system implemented with the D22 small-angle neutron scattering (SANS) instrument at the Institut Laue-Langevin. Since its initial proof of principle in 2016, this SEC-SANS arrangement has been continuously requested by the user community, leading to the design of an upgraded version. A detailed description of the setup and its control is provided, and a few examples of protein structural investigations are presented, which will highlight the various possibilities and limitations of the setup to optimize experimental success.
Collapse
Affiliation(s)
- Anne Martel
- Institut Laue-Langevin, 71 avenue de Martyrs, Grenoble 38042, France
| | - Cristina Cocho
- Institut Laue-Langevin, 71 avenue de Martyrs, Grenoble 38042, France
| | - Francesca Caporaletti
- Institut Laue-Langevin, 71 avenue de Martyrs, Grenoble 38042, France
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Mark Jacques
- Institut Laue-Langevin, 71 avenue de Martyrs, Grenoble 38042, France
| | | | - Franck Lapeyre
- Institut Laue-Langevin, 71 avenue de Martyrs, Grenoble 38042, France
| | - Lionel Porcar
- Institut Laue-Langevin, 71 avenue de Martyrs, Grenoble 38042, France
| |
Collapse
|
10
|
Barclay A, Kragelund BB, Arleth L, Pedersen MC. Modeling of flexible membrane-bound biomolecular complexes for solution small-angle scattering. J Colloid Interface Sci 2023; 635:611-621. [PMID: 36634513 DOI: 10.1016/j.jcis.2022.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Recent advances in protein expression protocols, sample handling, and experimental set up of small-angle scattering experiments have allowed users of the technique to structurally investigate biomolecules of growing complexity and structural disorder. Notable examples include intrinsically disordered proteins, multi-domain proteins and membrane proteins in suitable carrier systems. Here, we outline a modeling scheme for calculating the scattering profiles from such complex samples. This kind of modeling is necessary for structural information to be refined from the corresponding data. The scheme bases itself on a hybrid of classical form factor based modeling and the well-known spherical harmonics-based formulation of small-angle scattering amplitudes. Our framework can account for flexible domains alongside other structurally elaborate components of the molecular system in question. We demonstrate the utility of this modeling scheme through a recent example of a structural model of the growth hormone receptor membrane protein in a phospholipid bilayer nanodisc which is refined against experimental SAXS data. Additionally we investigate how the scattering profiles from the complex would appear under different scattering contrasts. For each contrast situation we discuss what structural information is contained and the related consequences for modeling of the data.
Collapse
Affiliation(s)
- Abigail Barclay
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark.
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen 2200, Denmark.
| | - Lise Arleth
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark.
| | - Martin Cramer Pedersen
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark.
| |
Collapse
|
11
|
Uthayabalan S, Vishnu N, Madesh M, Stathopulos PB. The human MRS2 magnesium-binding domain is a regulatory feedback switch for channel activity. Life Sci Alliance 2023; 6:e202201742. [PMID: 36754568 PMCID: PMC9909464 DOI: 10.26508/lsa.202201742] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Mitochondrial RNA splicing 2 (MRS2) forms a magnesium (Mg2+) entry protein channel in mitochondria. Whereas MRS2 contains two transmembrane domains constituting a pore on the inner mitochondrial membrane, most of the protein resides within the matrix. Yet, the precise structural and functional role of this obtrusive amino terminal domain (NTD) in human MRS2 is unknown. Here, we show that the MRS2 NTD self-associates into a homodimer, contrasting the pentameric assembly of CorA, an orthologous bacterial channel. Mg2+ and calcium suppress lower and higher order oligomerization of MRS2 NTD, whereas cobalt has no effect on the NTD but disassembles full-length MRS2. Mutating-pinpointed residues-mediating Mg2+ binding to the NTD not only selectively decreases Mg2+-binding affinity ∼sevenfold but also abrogates Mg2+ binding-induced secondary, tertiary, and quaternary structure changes. Disruption of NTD Mg2+ binding strikingly potentiates mitochondrial Mg2+ uptake in WT and Mrs2 knockout cells. Our work exposes a mechanism for human MRS2 autoregulation by negative feedback from the NTD and identifies a novel gain of function mutant with broad applicability to future Mg2+ signaling research.
Collapse
Affiliation(s)
- Sukanthathulse Uthayabalan
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Neelanjan Vishnu
- Center for Mitochondrial Medicine, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Muniswamy Madesh
- Center for Mitochondrial Medicine, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| |
Collapse
|
12
|
Duma L, Senicourt L, Rigaud B, Papadopoulos V, Lacapère JJ. Solid-state NMR study of structural heterogeneity of the apo WT mouse TSPO reconstituted in liposomes. Biochimie 2023; 205:73-85. [PMID: 36029902 DOI: 10.1016/j.biochi.2022.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
Abstract
In the last decades, ligand binding to human TSPO has been largely used in clinical neuroimaging, but little is known about the interaction mechanism. Protein conformational mobility plays a key role in the ligand recognition and both, ligand-free and ligand-bound structures, are mandatory for characterizing the molecular binding mechanism. In the absence of crystals for mammalian TSPO, we have exploited solid-state nuclear magnetic resonance (ssNMR) spectroscopy under magic-angle spinning (MAS) to study the apo form of recombinant mouse TSPO (mTSPO) reconstituted in lipids. This environment has been previously described to permit binding of its high-affinity drug ligand PK11195 and appears therefore favourable for the study of molecular dynamics. We have optimized the physical conditions to get the best resolution for MAS ssNMR spectra of the ligand-free mTSPO. We have compared and combined various ssNMR spectra to get dynamical information either for the lipids or for the mTSPO. Partial assignment of residue types suggests few agreements with the published solution NMR assignment of the PK11195-bound mTSPO in DPC detergent. Moreover, we were able to observe some lateral chains of aromatic residues that were not assigned in solution. 13C double-quantum NMR spectroscopy shows remarkable dynamics for ligand-free mTSPO in lipids which may have significant implications on the recognition of the ligand and/or other protein partners.
Collapse
Affiliation(s)
- Luminita Duma
- Champagne-Ardenne University, CNRS, ICMR UMR, 7312, Reims, France.
| | - Lucile Senicourt
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 4 Place Jussieu, F-75005, Paris, France
| | - Baptiste Rigaud
- CNRS Institut des Matériaux de Paris Centre (FR2482), 4 Place Jussieu, 75005, Paris, France
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jean-Jacques Lacapère
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 4 Place Jussieu, F-75005, Paris, France
| |
Collapse
|
13
|
Johansen NT, Tidemand FG, Pedersen MC, Arleth L. Travel light: Essential packing for membrane proteins with an active lifestyle. Biochimie 2023; 205:3-26. [PMID: 35963461 DOI: 10.1016/j.biochi.2022.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/29/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022]
Abstract
We review the considerable progress during the recent decade in the endeavours of designing, optimising, and utilising carrier particle systems for structural and functional studies of membrane proteins in near-native environments. New and improved systems are constantly emerging, novel studies push the perceived limits of a given carrier system, and specific carrier systems consolidate and entrench themselves as the system of choice for particular classes of target membrane protein systems. This review covers the most frequently used carrier systems for such studies and emphasises similarities and differences between these systems as well as current trends and future directions for the field. Particular interest is devoted to the biophysical properties and membrane mimicking ability of each system and the manner in which this may impact an embedded membrane protein and an eventual structural or functional study.
Collapse
Affiliation(s)
- Nicolai Tidemand Johansen
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark.
| | - Frederik Grønbæk Tidemand
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Martin Cramer Pedersen
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen E, 2100, Denmark
| | - Lise Arleth
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen E, 2100, Denmark
| |
Collapse
|
14
|
Jin F, Huang Y, Hattori M. Recent Advances in the Structural Biology of Mg 2+ Channels and Transporters. J Mol Biol 2022; 434:167729. [PMID: 35841930 DOI: 10.1016/j.jmb.2022.167729] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
Magnesium ions (Mg2+) are the most abundant divalent cations in living organisms and are essential for various physiological processes, including ATP utilization and the catalytic activity of numerous enzymes. Therefore, the homeostatic mechanisms associated with cellular Mg2+ are crucial for both eukaryotic and prokaryotic organisms and are thus strictly controlled by Mg2+ channels and transporters. Technological advances in structural biology, such as the expression screening of membrane proteins, in meso phase crystallization, and recent cryo-EM techniques, have enabled the structure determination of numerous Mg2+ channels and transporters. In this review article, we provide an overview of the families of Mg2+ channels and transporters (MgtE/SLC41, TRPM6/7, CorA/Mrs2, CorC/CNNM), and discuss the structural biology prospects based on the known structures of MgtE, TRPM7, CorA and CorC.
Collapse
Affiliation(s)
- Fei Jin
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yichen Huang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Motoyuki Hattori
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
15
|
Le Marchand T, Schubeis T, Bonaccorsi M, Paluch P, Lalli D, Pell AJ, Andreas LB, Jaudzems K, Stanek J, Pintacuda G. 1H-Detected Biomolecular NMR under Fast Magic-Angle Spinning. Chem Rev 2022; 122:9943-10018. [PMID: 35536915 PMCID: PMC9136936 DOI: 10.1021/acs.chemrev.1c00918] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 02/08/2023]
Abstract
Since the first pioneering studies on small deuterated peptides dating more than 20 years ago, 1H detection has evolved into the most efficient approach for investigation of biomolecular structure, dynamics, and interactions by solid-state NMR. The development of faster and faster magic-angle spinning (MAS) rates (up to 150 kHz today) at ultrahigh magnetic fields has triggered a real revolution in the field. This new spinning regime reduces the 1H-1H dipolar couplings, so that a direct detection of 1H signals, for long impossible without proton dilution, has become possible at high resolution. The switch from the traditional MAS NMR approaches with 13C and 15N detection to 1H boosts the signal by more than an order of magnitude, accelerating the site-specific analysis and opening the way to more complex immobilized biological systems of higher molecular weight and available in limited amounts. This paper reviews the concepts underlying this recent leap forward in sensitivity and resolution, presents a detailed description of the experimental aspects of acquisition of multidimensional correlation spectra with fast MAS, and summarizes the most successful strategies for the assignment of the resonances and for the elucidation of protein structure and conformational dynamics. It finally outlines the many examples where 1H-detected MAS NMR has contributed to the detailed characterization of a variety of crystalline and noncrystalline biomolecular targets involved in biological processes ranging from catalysis through drug binding, viral infectivity, amyloid fibril formation, to transport across lipid membranes.
Collapse
Affiliation(s)
- Tanguy Le Marchand
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Tobias Schubeis
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Marta Bonaccorsi
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
- Department
of Biochemistry and Biophysics, Stockholm
University, Svante Arrhenius
väg 16C SE-106 91, Stockholm, Sweden
| | - Piotr Paluch
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Daniela Lalli
- Dipartimento
di Scienze e Innovazione Tecnologica, Università
del Piemonte Orientale “A. Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Andrew J. Pell
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16 C, SE-106
91 Stockholm, Sweden
| | - Loren B. Andreas
- Department
for NMR-Based Structural Biology, Max-Planck-Institute
for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Kristaps Jaudzems
- Latvian
Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006 Latvia
- Faculty
of Chemistry, University of Latvia, Jelgavas 1, Riga LV-1004, Latvia
| | - Jan Stanek
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Guido Pintacuda
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|