1
|
Kim WJ, Crosse EI, De Neef E, Etxeberria I, Sabio EY, Wang E, Bewersdorf JP, Lin KT, Lu SX, Belleville A, Fox N, Castro C, Zhang P, Fujino T, Lewis J, Rahman J, Zhang B, Winick JH, Lewis AM, Stanley RF, DeWolf S, Urben BM, Takizawa M, Krause T, Molina H, Chaligne R, Koppikar P, Molldrem J, Gigoux M, Merghoub T, Daniyan A, Chandran SS, Greenbaum BD, Klebanoff CA, Bradley RK, Abdel-Wahab O. Mis-splicing-derived neoantigens and cognate TCRs in splicing factor mutant leukemias. Cell 2025:S0092-8674(25)00399-X. [PMID: 40273911 DOI: 10.1016/j.cell.2025.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 02/06/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025]
Abstract
Mutations in RNA splicing factors are prevalent across cancers and generate recurrently mis-spliced mRNA isoforms. Here, we identified a series of bona fide neoantigens translated from highly stereotyped splicing alterations promoted by neomorphic, leukemia-associated somatic splicing machinery mutations. We utilized feature-barcoded peptide-major histocompatibility complex (MHC) dextramers to isolate neoantigen-reactive T cell receptors (TCRs) from healthy donors, patients with active myeloid malignancy, and following curative allogeneic stem cell transplant. Neoantigen-reactive CD8+ T cells were present in the blood of patients with active cancer and had a distinct phenotype from virus-reactive T cells with evidence of impaired cytotoxic function. T cells engineered with TCRs recognizing SRSF2 mutant-induced neoantigens arising from mis-splicing events in CLK3 and RHOT2 resulted in specific recognition and cytotoxicity of SRSF2-mutant leukemia. These data identify recurrent RNA mis-splicing events as sources of actionable public neoantigens in myeloid leukemias and provide proof of concept for genetically redirecting T cells to recognize these targets.
Collapse
Affiliation(s)
- Won Jun Kim
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Edie I Crosse
- Public Health Sciences and Basic Sciences Divisions, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Emma De Neef
- Public Health Sciences and Basic Sciences Divisions, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Erich Y Sabio
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Eric Wang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jan Philipp Bewersdorf
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | | | - Sydney X Lu
- Department of Medicine, Division of Hematology, Stanford University, Palo Alto, CA, USA
| | - Andrea Belleville
- Public Health Sciences and Basic Sciences Divisions, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Nina Fox
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Cynthia Castro
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Pu Zhang
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Takeshi Fujino
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Jennifer Lewis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Jahan Rahman
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Beatrice Zhang
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Jacob H Winick
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Alexander M Lewis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Robert F Stanley
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | - Susan DeWolf
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | | | - Meril Takizawa
- Single-cell Analytics Innovation Laboratory, MSK, New York, NY, USA
| | - Tobias Krause
- Single-cell Analytics Innovation Laboratory, MSK, New York, NY, USA
| | - Henrik Molina
- Proteomics Resource Center, Rockefeller University, New York, NY, USA
| | - Ronan Chaligne
- Single-cell Analytics Innovation Laboratory, MSK, New York, NY, USA
| | - Priya Koppikar
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey Molldrem
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mathieu Gigoux
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Sandra and Edward Meyer Cancer Center, Weill Cornell Medical Center, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Sandra and Edward Meyer Cancer Center, Weill Cornell Medical Center, New York, NY, USA
| | - Anthony Daniyan
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA
| | | | - Benjamin D Greenbaum
- Computational Oncology, Department of Epidemiology and Biostatistics, MSK, New York, NY, USA
| | - Christopher A Klebanoff
- Human Oncology and Pathogenesis Program, MSK, New York, NY, USA; Parker Institute for Cancer Immunotherapy, New York, NY, USA.
| | - Robert K Bradley
- Public Health Sciences and Basic Sciences Divisions, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center (MSK), New York, NY, USA.
| |
Collapse
|
2
|
Zhang H, Zhong J, Gucwa M, Zhang Y, Ma H, Deng L, Mao L, Minor W, Wang N, Zheng H. PinMyMetal: a hybrid learning system to accurately model transition metal binding sites in macromolecules. Nat Commun 2025; 16:3043. [PMID: 40155596 PMCID: PMC11953438 DOI: 10.1038/s41467-025-57637-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/24/2025] [Indexed: 04/01/2025] Open
Abstract
Metal ions are vital components in many proteins for the inference and engineering of protein function, with coordination complexity linked to structural, catalytic, or regulatory roles. Modeling transition metal ions, especially in transient, reversible, and concentration-dependent regulatory sites, remains challenging. We present PinMyMetal (PMM), a hybrid machine learning system designed to accurately predict transition metal localization and environment in macromolecules, tailored to tetrahedral and octahedral geometries. PMM outperforms other predictors, achieving high accuracy in ligand and coordinate predictions. It excels in predicting regulatory sites (median deviation 0.36 Å), demonstrating superior accuracy in locating catalytic sites (0.33 Å) and structural sites (0.19 Å). Each predicted site is assigned a certainty score based on local structural and physicochemical features, independent of homologs. Interactive validation through our server, CheckMyMetal, expands PMM's scope, enabling it to pinpoint and validate diverse functional metal sites from different structure sources (predicted structures, cryo-EM, and crystallography). This facilitates residue-wise assessment and robust metal binding site design. The lightweight PMM system demands minimal computing resources and is available at https://PMM.biocloud.top . The PMM workflow can interrogate with protein sequence to characterize the localization of the most probable transition metals, which is often interchangeable and hard to differentiate by nature.
Collapse
Affiliation(s)
- Huihui Zhang
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
- Hunan University College of Biology, Bioinformatics Center, Changsha, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, Hunan, People's Republic of China
| | - Juanhong Zhong
- Hunan University College of Biology, Bioinformatics Center, Changsha, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, Hunan, People's Republic of China
| | - Michal Gucwa
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Department of Computational Biophysics and Bioinformatics, Jagiellonian University, Cracow, Poland
| | - Yishuai Zhang
- Hunan University College of Biology, Bioinformatics Center, Changsha, Hunan, People's Republic of China
- Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, Hunan, People's Republic of China
| | - Haojie Ma
- Hunan University College of Biology, Bioinformatics Center, Changsha, Hunan, People's Republic of China
| | - Lei Deng
- Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, Hunan, People's Republic of China
| | - Longfei Mao
- Hunan University College of Biology, Bioinformatics Center, Changsha, Hunan, People's Republic of China
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
| | - Nasui Wang
- Division of Endocrinology and Metabolism, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China.
| | - Heping Zheng
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China.
| |
Collapse
|
3
|
Cook AL, Sur S, Dobbyn L, Watson E, Cohen JD, Ptak B, Lee BS, Paul S, Hsiue E, Popoli M, Vogelstein B, Papadopoulos N, Bettegowda C, Gabrielson K, Zhou S, Kinzler KW, Wyhs N. Identification of nonsense-mediated decay inhibitors that alter the tumor immune landscape. eLife 2025; 13:RP95952. [PMID: 39960487 PMCID: PMC11832170 DOI: 10.7554/elife.95952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Despite exciting developments in cancer immunotherapy, its broad application is limited by the paucity of targetable antigens on the tumor cell surface. As an intrinsic cellular pathway, nonsense-mediated decay (NMD) conceals neoantigens through the destruction of the RNA products from genes harboring truncating mutations. We developed and conducted a high-throughput screen, based on the ratiometric analysis of transcripts, to identify critical mediators of NMD in human cells. This screen implicated disruption of kinase SMG1's phosphorylation of UPF1 as a potential disruptor of NMD. This led us to design a novel SMG1 inhibitor, KVS0001, that elevates the expression of transcripts and proteins resulting from human and murine truncating mutations in vitro and murine cells in vivo. Most importantly, KVS0001 concomitantly increased the presentation of immune-targetable human leukocyte antigens (HLA) class I-associated peptides from NMD-downregulated proteins on the surface of human cancer cells. KVS0001 provides new opportunities for studying NMD and the diseases in which NMD plays a role, including cancer and inherited diseases.
Collapse
Affiliation(s)
- Ashley L Cook
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Surojit Sur
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Laura Dobbyn
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
| | - Evangeline Watson
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Joshua D Cohen
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Blair Ptak
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
| | - Bum Seok Lee
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
| | - Suman Paul
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Emily Hsiue
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Maria Popoli
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Bert Vogelstein
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
- Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Nickolas Papadopoulos
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Chetan Bettegowda
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neurosurgery, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Kathy Gabrielson
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Shibin Zhou
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Kenneth W Kinzler
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Nicolas Wyhs
- Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Johns Hopkins Medical InstitutionsBaltimoreUnited States
- Sidney Kimmel Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
4
|
Das R, Panigrahi GK. Messenger RNA Surveillance: Current Understanding, Regulatory Mechanisms, and Future Implications. Mol Biotechnol 2025; 67:393-409. [PMID: 38411790 DOI: 10.1007/s12033-024-01062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/02/2024] [Indexed: 02/28/2024]
Abstract
Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved surveillance mechanism in eukaryotes primarily deployed to ensure RNA quality control by eliminating aberrant transcripts and also involved in modulating the expression of several physiological transcripts. NMD, the mRNA surveillance pathway, is a major form of gene regulation in eukaryotes. NMD serves as one of the most significant quality control mechanisms as it primarily scans the newly synthesized transcripts and differentiates the aberrant and non-aberrant transcripts. The synthesis of truncated proteins is restricted, which would otherwise lead to cellular dysfunctions. The up-frameshift factors (UPFs) play a central role in executing the NMD event, largely by recognizing and recruiting multiple protein factors that result in the decay of non-physiological mRNAs. NMD exhibits astounding variability in its ability across eukaryotes in an array of pathological and physiological contexts. The detailed understanding of NMD and the underlying molecular mechanisms remains blurred. This review outlines our current understanding of NMD, in regulating multifaceted cellular events during development and disease. It also attempts to identify unanswered questions that deserve further investigation.
Collapse
Affiliation(s)
- Rutupurna Das
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India
| | - Gagan Kumar Panigrahi
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India.
| |
Collapse
|
5
|
He L, Cho S, Blenis J. mTORC1, the maestro of cell metabolism and growth. Genes Dev 2025; 39:109-131. [PMID: 39572234 PMCID: PMC11789495 DOI: 10.1101/gad.352084.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The mechanistic target of rapamycin (mTOR) pathway senses and integrates various environmental and intracellular cues to regulate cell growth and proliferation. As a key conductor of the balance between anabolic and catabolic processes, mTOR complex 1 (mTORC1) orchestrates the symphonic regulation of glycolysis, nucleic acid and lipid metabolism, protein translation and degradation, and gene expression. Dysregulation of the mTOR pathway is linked to numerous human diseases, including cancer, neurodegenerative disorders, obesity, diabetes, and aging. This review provides an in-depth understanding of how nutrients and growth signals are coordinated to influence mTOR signaling and the extensive metabolic rewiring under its command. Additionally, we discuss the use of mTORC1 inhibitors in various aging-associated metabolic diseases and the current and future potential for targeting mTOR in clinical settings. By deciphering the complex landscape of mTORC1 signaling, this review aims to inform novel therapeutic strategies and provide a road map for future research endeavors in this dynamic and rapidly evolving field.
Collapse
Affiliation(s)
- Long He
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA;
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Sungyun Cho
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, USA
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA;
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, USA
| |
Collapse
|
6
|
Cook AL, Sur S, Dobbyn L, Watson E, Cohen JD, Ptak B, Lee BS, Paul S, Hsiue E, Popoli M, Vogelstein B, Papadopoulos N, Bettegowda C, Gabrielson K, Zhou S, Kinzler KW, Wyhs N. Identification of nonsense-mediated decay inhibitors that alter the tumor immune landscape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.28.573594. [PMID: 38234817 PMCID: PMC10793421 DOI: 10.1101/2023.12.28.573594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Despite exciting developments in cancer immunotherapy, its broad application is limited by the paucity of targetable antigens on the tumor cell surface. As an intrinsic cellular pathway, nonsense-mediated decay (NMD) conceals neoantigens through the destruction of the RNA products from genes harboring truncating mutations. We developed and conducted a high throughput screen, based on the ratiometric analysis of transcripts, to identify critical mediators of NMD. This screen implicated disruption of kinase SMG1's phosphorylation of UPF1 as a potential disruptor of NMD. This led us to design a novel SMG1 inhibitor, KVS0001, that elevates the expression of transcripts and proteins resulting from truncating mutations in vivo and in vitro . Most importantly, KVS0001 concomitantly increased the presentation of immune-targetable HLA class I-associated peptides from NMD-downregulated proteins on the surface of cancer cells. KVS0001 provides new opportunities for studying NMD and the diseases in which NMD plays a role, including cancer and inherited diseases. One Sentence Summary Disruption of the nonsense-mediated decay pathway with a newly developed SMG1 inhibitor with in-vivo activity increases the expression of T-cell targetable cancer neoantigens resulting from truncating mutations.
Collapse
|
7
|
Langer LM, Kurscheidt K, Basquin J, Bonneau F, Iermak I, Basquin C, Conti E. UPF1 helicase orchestrates mutually exclusive interactions with the SMG6 endonuclease and UPF2. Nucleic Acids Res 2024; 52:6036-6048. [PMID: 38709891 PMCID: PMC11162806 DOI: 10.1093/nar/gkae323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/06/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a conserved co-translational mRNA surveillance and turnover pathway across eukaryotes. NMD has a central role in degrading defective mRNAs and also regulates the stability of a significant portion of the transcriptome. The pathway is organized around UPF1, an RNA helicase that can interact with several NMD-specific factors. In human cells, degradation of the targeted mRNAs begins with a cleavage event that requires the recruitment of the SMG6 endonuclease to UPF1. Previous studies have identified functional links between SMG6 and UPF1, but the underlying molecular mechanisms have remained elusive. Here, we used mass spectrometry, structural biology and biochemical approaches to identify and characterize a conserved short linear motif in SMG6 that interacts with the cysteine/histidine-rich (CH) domain of UPF1. Unexpectedly, we found that the UPF1-SMG6 interaction is precluded when the UPF1 CH domain is engaged with another NMD factor, UPF2. Based on cryo-EM data, we propose that the formation of distinct SMG6-containing and UPF2-containing NMD complexes may be dictated by different conformational states connected to the RNA-binding status of UPF1. Our findings rationalize a key event in metazoan NMD and advance our understanding of mechanisms regulating activity and guiding substrate recognition by the SMG6 endonuclease.
Collapse
Affiliation(s)
- Lukas M Langer
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried/Munich D-82152, Germany
| | - Katharina Kurscheidt
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried/Munich D-82152, Germany
| | - Jérôme Basquin
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried/Munich D-82152, Germany
| | - Fabien Bonneau
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried/Munich D-82152, Germany
| | - Iuliia Iermak
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried/Munich D-82152, Germany
| | - Claire Basquin
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried/Munich D-82152, Germany
| | - Elena Conti
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried/Munich D-82152, Germany
| |
Collapse
|
8
|
Chen X, Leyendecker S. Kinematic analysis of kinases and their oncogenic mutations - Kinases and their mutation kinematic analysis. Mol Inform 2024; 43:e202300250. [PMID: 38850084 DOI: 10.1002/minf.202300250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/25/2024] [Accepted: 03/14/2024] [Indexed: 06/09/2024]
Abstract
Protein kinases are crucial cellular enzymes that facilitate the transfer of phosphates from adenosine triphosphate (ATP) to their substrates, thereby regulating numerous cellular activities. Dysfunctional kinase activity often leads to oncogenic conditions. Chosen by using structural similarity to 5UG9, we selected 79 crystal structures from the PDB and based on the position of the phenylalanine side chain in the DFG motif, we classified these 79 crystal structures into 5 group clusters. Our approach applies our kinematic flexibility analysis (KFA) to explore the flexibility of kinases in various activity states and examine the impact of the activation loop on kinase structure. KFA enables the rapid decomposition of macromolecules into different flexibility regions, allowing comprehensive analysis of conformational structures. The results reveal that the activation loop of kinases acts as a "lock" that stabilizes the active conformation of kinases by rigidifying the adjacent α-helices. Furthermore, we investigate specific kinase mutations, such as the L858R mutation commonly associated with non-small cell lung cancer, which induces increased flexibility in active-state kinases. In addition, through analyzing the hydrogen bond pattern, we examine the substructure of kinases in different states. Notably, active-state kinases exhibit a higher occurrence of α-helices compared to inactive-state kinases. This study contributes to the understanding of biomolecular conformation at a level relevant to drug development.
Collapse
Affiliation(s)
- Xiyu Chen
- Institute of Applied Dynamics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Sigrid Leyendecker
- Institute of Applied Dynamics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| |
Collapse
|
9
|
Monaghan L, Longman D, Cáceres JF. Translation-coupled mRNA quality control mechanisms. EMBO J 2023; 42:e114378. [PMID: 37605642 PMCID: PMC10548175 DOI: 10.15252/embj.2023114378] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023] Open
Abstract
mRNA surveillance pathways are essential for accurate gene expression and to maintain translation homeostasis, ensuring the production of fully functional proteins. Future insights into mRNA quality control pathways will enable us to understand how cellular mRNA levels are controlled, how defective or unwanted mRNAs can be eliminated, and how dysregulation of these can contribute to human disease. Here we review translation-coupled mRNA quality control mechanisms, including the non-stop and no-go mRNA decay pathways, describing their mechanisms, shared trans-acting factors, and differences. We also describe advances in our understanding of the nonsense-mediated mRNA decay (NMD) pathway, highlighting recent mechanistic findings, the discovery of novel factors, as well as the role of NMD in cellular physiology and its impact on human disease.
Collapse
Affiliation(s)
- Laura Monaghan
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Dasa Longman
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| |
Collapse
|
10
|
Nasif S, Colombo M, Uldry AC, Schröder M, de Brot S, Mühlemann O. Inhibition of nonsense-mediated mRNA decay reduces the tumorigenicity of human fibrosarcoma cells. NAR Cancer 2023; 5:zcad048. [PMID: 37681034 PMCID: PMC10480688 DOI: 10.1093/narcan/zcad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/08/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic RNA decay pathway with roles in cellular stress responses, differentiation, and viral defense. It functions in both quality control and post-transcriptional regulation of gene expression. NMD has also emerged as a modulator of cancer progression, although available evidence supports both a tumor suppressor and a pro-tumorigenic role, depending on the model. To further investigate the role of NMD in cancer, we knocked out the NMD factor SMG7 in the HT1080 human fibrosarcoma cell line, resulting in suppression of NMD function. We then compared the oncogenic properties of the parental cell line, the SMG7-knockout, and a rescue cell line in which we re-introduced both isoforms of SMG7. We also tested the effect of a drug inhibiting the NMD factor SMG1 to distinguish NMD-dependent effects from putative NMD-independent functions of SMG7. Using cell-based assays and a mouse xenograft tumor model, we showed that suppression of NMD function severely compromises the oncogenic phenotype. Molecular pathway analysis revealed that NMD suppression strongly reduces matrix metalloprotease 9 (MMP9) expression and that MMP9 re-expression partially rescues the oncogenic phenotype. Since MMP9 promotes cancer cell migration and invasion, metastasis and angiogenesis, its downregulation may contribute to the reduced tumorigenicity of NMD-suppressed cells. Collectively, our results highlight the potential value of NMD inhibition as a therapeutic approach.
Collapse
Affiliation(s)
- Sofia Nasif
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Switzerland
| | - Martino Colombo
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research, University of Bern, Switzerland
| | - Markus S Schröder
- NCCR RNA & Disease Bioinformatics Support,Department of Biology, ETH Zürich, Switzerland
| | - Simone de Brot
- COMPATH, Institute of Animal Pathology, University of Bern, Switzerland
| | - Oliver Mühlemann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Switzerland
| |
Collapse
|
11
|
Muñoz O, Lore M, Jagannathan S. The long and short of EJC-independent nonsense-mediated RNA decay. Biochem Soc Trans 2023; 51:1121-1129. [PMID: 37145092 DOI: 10.1042/bst20221131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Nonsense-mediated RNA decay (NMD) plays a dual role as an RNA surveillance mechanism against aberrant transcripts containing premature termination codons and as a gene regulatory mechanism for normal physiological transcripts. This dual function is possible because NMD recognizes its substrates based on the functional definition of a premature translation termination event. An efficient mode of NMD target recognition involves the presence of exon-junction complexes (EJCs) downstream of the terminating ribosome. A less efficient, but highly conserved, mode of NMD is triggered by long 3' untranslated regions (UTRs) that lack EJCs (termed EJC-independent NMD). While EJC-independent NMD plays an important regulatory role across organisms, our understanding of its mechanism, especially in mammalian cells, is incomplete. This review focuses on EJC-independent NMD and discusses the current state of knowledge and factors that contribute to the variability in the efficiency of this mechanism.
Collapse
Affiliation(s)
- Oscar Muñoz
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, U.S.A
| | - Mlana Lore
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, U.S.A
| | - Sujatha Jagannathan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, U.S.A
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, U.S.A
| |
Collapse
|
12
|
McCann JJ, Fleenor DE, Chen J, Lai CH, Bass TE, Kastan MB. Participation of ATM, SMG1, and DDX5 in a DNA Damage-Induced Alternative Splicing Pathway. Radiat Res 2023; 199:406-421. [PMID: 36921295 PMCID: PMC10162594 DOI: 10.1667/rade-22-00219.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/03/2023] [Indexed: 03/17/2023]
Abstract
Altered cellular responses to DNA damage can contribute to cancer development, progression, and therapeutic resistance. Mutations in key DNA damage response factors occur across many cancer types, and the DNA damage-responsive gene, TP53, is frequently mutated in a high percentage of cancers. We recently reported that an alternative splicing pathway induced by DNA damage regulates alternative splicing of TP53 RNA and further modulates cellular stress responses. Through damage-induced inhibition of the SMG1 kinase, TP53 pre-mRNA is alternatively spliced to generate TP53b mRNA and p53b protein is required for optimal induction of cellular senescence after ionizing radiation-induced DNA damage. Herein, we confirmed and extended these observations by demonstrating that the ATM protein kinase is required for repression of SMG1 kinase activity after ionizing radiation. We found that the RNA helicase and splicing factor, DDX5, interacts with SMG1, is required for alternative splicing of TP53 pre-mRNA to TP53b and TP53c mRNAs after DNA damage, and contributes to radiation-induced cellular senescence. Interestingly, the role of SMG1 in alternative splicing of p53 appears to be distinguishable from its role in regulating nonsense-mediated RNA decay. Thus, ATM, SMG1, and DDX5 participate in a DNA damage-induced alternative splicing pathway that regulates TP53 splicing and modulates radiation-induced cellular senescence.
Collapse
Affiliation(s)
- Jennifer J. McCann
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Donald E. Fleenor
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Jing Chen
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Chun-Hsiang Lai
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Thomas E. Bass
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Michael B. Kastan
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| |
Collapse
|
13
|
Katsioudi G, Dreos R, Arpa ES, Gaspari S, Liechti A, Sato M, Gabriel CH, Kramer A, Brown SA, Gatfield D. A conditional Smg6 mutant mouse model reveals circadian clock regulation through the nonsense-mediated mRNA decay pathway. SCIENCE ADVANCES 2023; 9:eade2828. [PMID: 36638184 PMCID: PMC9839329 DOI: 10.1126/sciadv.ade2828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Nonsense-mediated messenger RNA (mRNA) decay (NMD) has been intensively studied as a surveillance pathway that degrades erroneous transcripts arising from mutations or RNA processing errors. While additional roles in physiological control of mRNA stability have emerged, possible functions in mammalian physiology in vivo remain unclear. Here, we created a conditional mouse allele that allows converting the NMD effector nuclease SMG6 from wild-type to nuclease domain-mutant protein. We find that NMD down-regulation affects the function of the circadian clock, a system known to require rapid mRNA turnover. Specifically, we uncover strong lengthening of free-running circadian periods for liver and fibroblast clocks and direct NMD regulation of Cry2 mRNA, encoding a key transcriptional repressor within the rhythm-generating feedback loop. Transcriptome-wide changes in daily mRNA accumulation patterns in the entrained liver, as well as an altered response to food entrainment, expand the known scope of NMD regulation in mammalian gene expression and physiology.
Collapse
Affiliation(s)
- Georgia Katsioudi
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - René Dreos
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Enes S. Arpa
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Sevasti Gaspari
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Angelica Liechti
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Miho Sato
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Christian H. Gabriel
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
| | - Achim Kramer
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany
| | - Steven A. Brown
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - David Gatfield
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Llorca-Cardenosa MJ, Aronson LI, Krastev DB, Nieminuszczy J, Alexander J, Song F, Dylewska M, Broderick R, Brough R, Zimmermann A, Zenke FT, Gurel B, Riisnaes R, Ferreira A, Roumeliotis T, Choudhary J, Pettitt SJ, de Bono J, Cervantes A, Haider S, Niedzwiedz W, Lord CJ, Chong IY. SMG8/SMG9 Heterodimer Loss Modulates SMG1 Kinase to Drive ATR Inhibitor Resistance. Cancer Res 2022; 82:3962-3973. [PMID: 36273494 PMCID: PMC9627126 DOI: 10.1158/0008-5472.can-21-4339] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/19/2022] [Accepted: 08/26/2022] [Indexed: 01/07/2023]
Abstract
Gastric cancer represents the third leading cause of global cancer mortality and an area of unmet clinical need. Drugs that target the DNA damage response, including ATR inhibitors (ATRi), have been proposed as novel targeted agents in gastric cancer. Here, we sought to evaluate the efficacy of ATRi in preclinical models of gastric cancer and to understand how ATRi resistance might emerge as a means to identify predictors of ATRi response. A positive selection genome-wide CRISPR-Cas9 screen identified candidate regulators of ATRi resistance in gastric cancer. Loss-of-function mutations in either SMG8 or SMG9 caused ATRi resistance by an SMG1-mediated mechanism. Although ATRi still impaired ATR/CHK1 signaling in SMG8/9-defective cells, other characteristic responses to ATRi exposure were not seen, such as changes in ATM/CHK2, γH2AX, phospho-RPA, or 53BP1 status or changes in the proportions of cells in S- or G2-M-phases of the cell cycle. Transcription/replication conflicts (TRC) elicited by ATRi exposure are a likely cause of ATRi sensitivity, and SMG8/9-defective cells exhibited a reduced level of ATRi-induced TRCs, which could contribute to ATRi resistance. These observations suggest ATRi elicits antitumor efficacy in gastric cancer but that drug resistance could emerge via alterations in the SMG8/9/1 pathway. SIGNIFICANCE These findings reveal how cancer cells acquire resistance to ATRi and identify pathways that could be targeted to enhance the overall effectiveness of these inhibitors.
Collapse
Affiliation(s)
| | | | - Dragomir B. Krastev
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | | | - John Alexander
- The Institute of Cancer Research, London, United Kingdom
| | - Feifei Song
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | | | | | - Rachel Brough
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Astrid Zimmermann
- The healthcare business of Merck KGaA, Biopharma R&D, Translational Innovation Platform Oncology, Darmstadt, Germany
| | - Frank T. Zenke
- The healthcare business of Merck KGaA, Biopharma R&D, Translational Innovation Platform Oncology, Darmstadt, Germany
| | - Bora Gurel
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | - Ruth Riisnaes
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | - Ana Ferreira
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | | | | | - Stephen J. Pettitt
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Johann de Bono
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | - Andres Cervantes
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, 46010, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Syed Haider
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | | | - Christopher J. Lord
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Irene Y. Chong
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
15
|
Karousis ED, Mühlemann O. The broader sense of nonsense. Trends Biochem Sci 2022; 47:921-935. [PMID: 35780009 DOI: 10.1016/j.tibs.2022.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 12/21/2022]
Abstract
The term 'nonsense-mediated mRNA decay' (NMD) was initially coined to describe the translation-dependent degradation of mRNAs harboring premature termination codons (PTCs), but it is meanwhile known that NMD also targets many canonical mRNAs with numerous biological implications. The molecular mechanisms determining on which RNAs NMD ensues are only partially understood. Considering the broad range of NMD-sensitive RNAs and the variable degrees of their degradation, we highlight here the hallmarks of mammalian NMD and point out open questions. We review the links between NMD and disease by summarizing the role of NMD in cancer, neurodegeneration, and viral infections. Finally, we describe strategies to modulate NMD activity and specificity as potential therapeutic approaches for various diseases.
Collapse
Affiliation(s)
- Evangelos D Karousis
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Oliver Mühlemann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
16
|
Kamp JA, Lemmens BBLG, Romeijn RJ, González-Prieto R, Olsen J, Vertegaal ACO, van Schendel R, Tijsterman M. THO complex deficiency impairs DNA double-strand break repair via the RNA surveillance kinase SMG-1. Nucleic Acids Res 2022; 50:6235-6250. [PMID: 35670662 PMCID: PMC9226523 DOI: 10.1093/nar/gkac472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/11/2022] [Accepted: 06/02/2022] [Indexed: 12/25/2022] Open
Abstract
The integrity and proper expression of genomes are safeguarded by DNA and RNA surveillance pathways. While many RNA surveillance factors have additional functions in the nucleus, little is known about the incidence and physiological impact of converging RNA and DNA signals. Here, using genetic screens and genome-wide analyses, we identified unforeseen SMG-1-dependent crosstalk between RNA surveillance and DNA repair in living animals. Defects in RNA processing, due to viable THO complex or PNN-1 mutations, induce a shift in DNA repair in dividing and non-dividing tissues. Loss of SMG-1, an ATM/ATR-like kinase central to RNA surveillance by nonsense-mediated decay (NMD), restores DNA repair and radio-resistance in THO-deficient animals. Mechanistically, we find SMG-1 and its downstream target SMG-2/UPF1, but not NMD per se, to suppress DNA repair by non-homologous end-joining in favour of single strand annealing. We postulate that moonlighting proteins create short-circuits in vivo, allowing aberrant RNA to redirect DNA repair.
Collapse
Affiliation(s)
| | | | - Ron J Romeijn
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Román González-Prieto
- Department of Cell & Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Alfred C O Vertegaal
- Department of Cell & Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | | |
Collapse
|
17
|
mTOR substrate phosphorylation in growth control. Cell 2022; 185:1814-1836. [PMID: 35580586 DOI: 10.1016/j.cell.2022.04.013] [Citation(s) in RCA: 231] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/20/2022]
Abstract
The target of rapamycin (TOR), discovered 30 years ago, is a highly conserved serine/threonine protein kinase that plays a central role in regulating cell growth and metabolism. It is activated by nutrients, growth factors, and cellular energy. TOR forms two structurally and functionally distinct complexes, TORC1 and TORC2. TOR signaling activates cell growth, defined as an increase in biomass, by stimulating anabolic metabolism while inhibiting catabolic processes. With emphasis on mammalian TOR (mTOR), we comprehensively reviewed the literature and identified all reported direct substrates. In the context of recent structural information, we discuss how mTORC1 and mTORC2, despite having a common catalytic subunit, phosphorylate distinct substrates. We conclude that the two complexes recruit different substrates to phosphorylate a common, minimal motif.
Collapse
|
18
|
Mailliot J, Vivoli-Vega M, Schaffitzel C. No-nonsense: insights into the functional interplay of nonsense-mediated mRNA decay factors. Biochem J 2022; 479:973-993. [PMID: 35551602 PMCID: PMC9162471 DOI: 10.1042/bcj20210556] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
Abstract
Nonsense-mediated messenger RNA decay (NMD) represents one of the main surveillance pathways used by eukaryotic cells to control the quality and abundance of mRNAs and to degrade viral RNA. NMD recognises mRNAs with a premature termination codon (PTC) and targets them to decay. Markers for a mRNA with a PTC, and thus NMD, are a long a 3'-untranslated region and the presence of an exon-junction complex (EJC) downstream of the stop codon. Here, we review our structural understanding of mammalian NMD factors and their functional interplay leading to a branched network of different interconnected but specialised mRNA decay pathways. We discuss recent insights into the potential impact of EJC composition on NMD pathway choice. We highlight the coexistence and function of different isoforms of up-frameshift protein 1 (UPF1) with an emphasis of their role at the endoplasmic reticulum and during stress, and the role of the paralogs UPF3B and UPF3A, underscoring that gene regulation by mammalian NMD is tightly controlled and context-dependent being conditional on developmental stage, tissue and cell types.
Collapse
Affiliation(s)
- Justine Mailliot
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Mirella Vivoli-Vega
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, U.K
| |
Collapse
|
19
|
Gerlach P, Garland W, Lingaraju M, Salerno-Kochan A, Bonneau F, Basquin J, Jensen TH, Conti E. Structure and regulation of the nuclear exosome targeting complex guides RNA substrates to the exosome. Mol Cell 2022; 82:2505-2518.e7. [PMID: 35688157 PMCID: PMC9278407 DOI: 10.1016/j.molcel.2022.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/07/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
In mammalian cells, spurious transcription results in a vast repertoire of unproductive non-coding RNAs, whose deleterious accumulation is prevented by rapid decay. The nuclear exosome targeting (NEXT) complex plays a central role in directing non-functional transcripts to exosome-mediated degradation, but the structural and molecular mechanisms remain enigmatic. Here, we elucidated the architecture of the human NEXT complex, showing that it exists as a dimer of MTR4-ZCCHC8-RBM7 heterotrimers. Dimerization preconfigures the major MTR4-binding region of ZCCHC8 and arranges the two MTR4 helicases opposite to each other, with each protomer able to function on many types of RNAs. In the inactive state of the complex, the 3′ end of an RNA substrate is enclosed in the MTR4 helicase channel by a ZCCHC8 C-terminal gatekeeping domain. The architecture of a NEXT-exosome assembly points to the molecular and regulatory mechanisms with which the NEXT complex guides RNA substrates to the exosome. NEXT homodimerizes through two intertwined ZCCHC8 subunits ZCCHC8 binds MTR4 with both constitutive and regulatory interactions Stable MTR4 arch interactions orient the two helicases in opposite directions Regulatory interactions at the MTR4 helicase domain guide RNA to the exosome
Collapse
Affiliation(s)
- Piotr Gerlach
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany.
| | - William Garland
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Mahesh Lingaraju
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany
| | - Anna Salerno-Kochan
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany
| | - Fabien Bonneau
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany
| | - Jérôme Basquin
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Elena Conti
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, Germany.
| |
Collapse
|