1
|
Locatelli NS, Baums IB. Genomes of the Caribbean reef-building corals Colpophyllia natans, Dendrogyra cylindrus, and Siderastrea siderea. G3 (BETHESDA, MD.) 2025; 15:jkaf020. [PMID: 39891726 PMCID: PMC12005156 DOI: 10.1093/g3journal/jkaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
Coral populations worldwide are declining rapidly due to elevated ocean temperatures and other human impacts. The Caribbean harbors a high number of threatened, endangered, and critically endangered coral species compared with reefs of the larger Indo-Pacific. The reef corals of the Caribbean are also long diverged from their Pacific counterparts and may have evolved different survival strategies. Most genomic resources have been developed for Pacific coral species which may impede our ability to study the changes in genetic composition of Caribbean reef communities in response to global change. To help fill the gap in genomic resources, we used PacBio HiFi sequencing to generate the first genome assemblies for 3 Caribbean reef-building corals, Colpophyllia natans, Dendrogyra cylindrus, and Siderastrea siderea. We also explore the genomic novelties that shape scleractinian genomes. Notably, we find abundant gene duplications of all classes (e.g. tandem and segmental), especially in S. siderea. This species has one of the largest genomes of any scleractinian coral (822 Mb) which seems to be driven by repetitive content and gene family expansion and diversification. As the genome size of S. siderea was double the size expected of stony corals, we also evaluated the possibility of an ancient whole-genome duplication using Ks tests and found no evidence of such an event in the species. By presenting these genome assemblies, we hope to develop a better understanding of coral evolution as a whole and to enable researchers to further investigate the population genetics and diversity of these 3 species.
Collapse
Affiliation(s)
- Nicolas S Locatelli
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Iliana B Baums
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Carl von Ossietzky Universität Oldenburg, Im Technologie Park 5, Oldenburg 26129, Germany
- Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research (AWI), Am Handelshafen 12, Bremerhaven 27570, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, Oldenburg 26129, Germany
| |
Collapse
|
2
|
Wulf PO, Häfker NS, Hofmann K, Tessmar-Raible K. Guiding Light: Mechanisms and Adjustments of Environmental Light Interpretation with Insights from Platynereis dumerilii and Other Selected Examples. Zoolog Sci 2025; 42. [PMID: 39932759 DOI: 10.2108/zs240099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/01/2024] [Indexed: 05/08/2025]
Abstract
Animals possess many light-sensitive molecules. They exist as dedicated photoreceptors, or as byproducts of biochemical reactions. Their numbers are often high even in species that live in environments that humans would consider dark, as well as in species that are considered comparably simple (e.g., worms, cnidarians). But why are there so many photoreceptors? We provide some considerations on this question. Light conveys a significant amount of information to animals, through complex spectral and intensity changes, often specific to the spatial and temporal ecological niches a species inhabits. We discuss that the large number of opsins and cryptochromes, often also present outside the eyes and partially co-expressed, represent adaptation mechanisms to the highly complex light environment within a given niche. While theoretical, it is a plausible hypothesis given that most experimentally tested opsins and cryptochromes have been shown to be functional photoreceptors. The example of lunar and solar timing of the marine annelid Platynereis dumerilii provides insight on how animals use the biochemical and cellular properties of different photoreceptors to decode solar versus lunar light, and their different adaptations in Drosophila melanogaster. We suggest that the future understanding of biological processes will strongly benefit from comparative lab and field work on the same species, and provide a first example for such work in P. dumerilii. Finally, we point out that work on animal light detection systems and their adaptability is crucial to understand the impact of anthropogenic changes on species and ecosystems.
Collapse
Affiliation(s)
- Paul O Wulf
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, Medical University of Vienna, 1030 Vienna, Austria
- Department of Neuroscience and Developmental Biology, Faculty of Life Science, 1030 Vienna, Austria
| | - N Sören Häfker
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Kaelin Hofmann
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
- Department of Neuroscience and Developmental Biology, Faculty of Life Science, 1030 Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, 1030 Vienna, Austria,
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
- Department of Neuroscience and Developmental Biology, Faculty of Life Science, 1030 Vienna, Austria
| |
Collapse
|
3
|
Poding LH, Jägers P, Herlitze S, Huhn M. Diversity and function of fluorescent molecules in marine animals. Biol Rev Camb Philos Soc 2024; 99:1391-1410. [PMID: 38468189 DOI: 10.1111/brv.13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
Fluorescence in marine animals has mainly been studied in Cnidaria but is found in many different phyla such as Annelida, Crustacea, Mollusca, and Chordata. While many fluorescent proteins and molecules have been identified, very little information is available about the biological functions of fluorescence. In this review, we focus on describing the occurrence of fluorescence in marine animals and the behavioural and physiological functions of fluorescent molecules based on experimental approaches. These biological functions of fluorescence range from prey and symbiont attraction, photoprotection, photoenhancement, stress mitigation, mimicry, and aposematism to inter- and intraspecific communication. We provide a comprehensive list of marine taxa that utilise fluorescence, including demonstrated effects on behavioural or physiological responses. We describe the numerous known functions of fluorescence in anthozoans and their underlying molecular mechanisms. We also highlight that other marine taxa should be studied regarding the functions of fluorescence. We suggest that an increase in research effort in this field could contribute to understanding the capacity of marine animals to respond to negative effects of climate change, such as rising sea temperatures and increasing intensities of solar irradiation.
Collapse
Affiliation(s)
- Lars H Poding
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, Bochum, 44801, Germany
| | - Peter Jägers
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, Bochum, 44801, Germany
| | - Stefan Herlitze
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, Bochum, 44801, Germany
| | - Mareike Huhn
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, Bochum, 44801, Germany
| |
Collapse
|
4
|
Suzuki T, Casareto BE, Yucharoen M, Dohra H, Suzuki Y. Coexistence of nonfluorescent chromoproteins and fluorescent proteins in massive Porites spp. corals manifesting a pink pigmentation response. Front Physiol 2024; 15:1339907. [PMID: 38952870 PMCID: PMC11215327 DOI: 10.3389/fphys.2024.1339907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/16/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction Several fluorescent proteins (FPs) and chromoproteins (CPs) are present in anthozoans and play possible roles in photoprotection. Coral tissues in massive corals often display discoloration accompanied by inflammation. Incidences of the pink pigmentation response (PPR) in massive Porites, described as inflammatory pink lesions of different shapes and sizes, has recently increased worldwide. FPs are reported to be present in PPR lesions, wherein a red fluorescent protein (RFP) appears to play a role in reducing reactive oxygen species. However, to date, the biochemical characterization and possible roles of the pigments involved are poorly understood. The present study aimed to identify and characterize the proteins responsible for pink discoloration in massive Porites colonies displaying PPRs, as well as to assess the differential distribution of pigments and the antioxidant properties of pigmented areas. Method CPs were extracted from PPR lesions using gel-filtration chromatography and identified via genetic analysis using liquid chromatography-tandem mass spectrometry. The coexistence of CPs and RFP in coral tissues was assessed using microscopic observation. Photosynthetic antivity and hydrogen peroxide-scavenging activitiy were measured to assess coral stress conditions. Results The present study revealed that the same CP (plut2.m8.16902.m1) isolated from massive Porites was present in both the pink spot and patch morphologies of the PPR. CPs were also found to coexist with RFP in coral tissues that manifested a PPR, with a differential distribution (coenosarc or tip of polyps' tentacles). High hydrogen peroxide-scavenging rates were found in tissues affected by PPR. Discussion and Conclusion The coexistence of CPs and RFP suggests their possible differential role in coral immunity. CPs, which are specifically expressed in PPR lesions, may serve as an antioxidant in the affected coral tissue. Overall, this study provides new knowledge to our understanding of the role of CPs in coral immunity.
Collapse
Affiliation(s)
- Toshiyuki Suzuki
- Graduate School of Science and Technology, Shizuoka University, Shizuoka City, Japan
| | - Beatriz E. Casareto
- Graduate School of Science and Technology, Shizuoka University, Shizuoka City, Japan
| | - Mathinee Yucharoen
- Faculty of Environmental Management, and Coastal Oceanography and Climate Change Research Center, Prince of Songkla University, Songkhla, Thailand
| | - Hideo Dohra
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka City, Japan
| | - Yoshimi Suzuki
- Graduate School of Science and Technology, Shizuoka University, Shizuoka City, Japan
| |
Collapse
|
5
|
Clarke DN, Rose NH, De Meulenaere E, Rosental B, Pearse JS, Pearse VB, Deheyn DD. Fluorescent proteins generate a genetic color polymorphism and counteract oxidative stress in intertidal sea anemones. Proc Natl Acad Sci U S A 2024; 121:e2317017121. [PMID: 38457522 PMCID: PMC10945830 DOI: 10.1073/pnas.2317017121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/13/2024] [Indexed: 03/10/2024] Open
Abstract
Fluorescent proteins (FPs) are ubiquitous tools in research, yet their endogenous functions in nature are poorly understood. In this work, we describe a combination of functions for FPs in a clade of intertidal sea anemones whose FPs control a genetic color polymorphism together with the ability to combat oxidative stress. Focusing on the underlying genetics of a fluorescent green "Neon" color morph, we show that allelic differences in a single FP gene generate its strong and vibrant color, by increasing both molecular brightness and FP gene expression level. Natural variation in FP sequences also produces differences in antioxidant capacity. We demonstrate that these FPs are strong antioxidants that can protect live cells against oxidative stress. Finally, based on structural modeling of the responsible amino acids, we propose a model for FP antioxidant function that is driven by molecular surface charge. Together, our findings shed light on the multifaceted functions that can co-occur within a single FP and provide a framework for studying the evolution of fluorescence as it balances spectral and physiological functions in nature.
Collapse
Affiliation(s)
- D. Nathaniel Clarke
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA93950
| | - Noah H. Rose
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA93950
| | - Evelien De Meulenaere
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA92037
| | - Benyamin Rosental
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Regenerative Medicine and Stem Cells, Ben-Gurion University of the Negev, Beer-Sheva84105, Israel
| | - John S. Pearse
- Department of Ecology and Evolutionary Biology, Joseph M. Long Marine Laboratory, University of California, Santa Cruz, CA95060
| | - Vicki Buchsbaum Pearse
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA93950
- Department of Ecology and Evolutionary Biology, Joseph M. Long Marine Laboratory, University of California, Santa Cruz, CA95060
| | - Dimitri D. Deheyn
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA92037
| |
Collapse
|
6
|
McQuagge A, Pahl KB, Wong S, Melman T, Linn L, Lowry S, Hoadley KD. Cellular traits regulate fluorescence-based light-response phenotypes of coral photosymbionts living in-hospite. Front Physiol 2023; 14:1244060. [PMID: 37885802 PMCID: PMC10598705 DOI: 10.3389/fphys.2023.1244060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Diversity across algal family Symbiodiniaceae contributes to the environmental resilience of certain coral species. Chlorophyll-a fluorescence measurements are frequently used to determine symbiont health and resilience, but more work is needed to refine these tools and establish how they relate to underlying cellular traits. We examined trait diversity in symbionts from the generas Cladocopium and Durusdinium, collected from 12 aquacultured coral species. Photophysiological metrics (ΦPSII, σPSII, ρ, τ1, τ2, antenna bed quenching, non-photochemical quenching, and qP) were assessed using a prototype multi-spectral fluorometer over a variable light protocol which yielded a total of 1,360 individual metrics. Photophysiological metrics were then used to establish four unique light-response phenotypic variants. Corals harboring C15 were predominantly found within a single light-response phenotype which clustered separately from all other coral fragments. The majority of Durusdinium dominated colonies also formed a separate light-response phenotype which it shared with a few C1 dominated corals. C15 and D1 symbionts appear to differ in which mechanisms they use to dissipate excess light energy. Spectrally dependent variability is also observed across light-response phenotypes that may relate to differences in photopigment utilization. Symbiont cell biochemical and structural traits (atomic C:N:P, cell size, chlorophyll-a, neutral lipid content) was also assessed within each sample and differ across light-response phenotypes, linking photophysiological metrics with underlying primary cellular traits. Strong correlations between first- and second-order traits, such as Quantum Yield and cellular N:P content, or light dissipation pathways (qP and NPQ) and C:P underline differences across symbiont types and may also provide a means for using fluorescence-based metrics as biomarkers for certain primary-cellular traits.
Collapse
Affiliation(s)
- Audrey McQuagge
- Department of Biology, University of Alabama, Tuscaloosa, AL, United States
- Dauphin Island Sea Lab, Dauphin Island, AL, United States
| | - K. Blue Pahl
- Department of Biology, University of Alabama, Tuscaloosa, AL, United States
- Dauphin Island Sea Lab, Dauphin Island, AL, United States
| | - Sophie Wong
- Dauphin Island Sea Lab, Dauphin Island, AL, United States
- Department of Environmental Science, University of Virginia, Charlottesville, VA, United States
| | - Todd Melman
- Reef Systems Coral Farm, New Albany, OH, United States
| | - Laura Linn
- Dauphin Island Sea Lab, Dauphin Island, AL, United States
| | - Sean Lowry
- Department of Biology, University of Alabama, Tuscaloosa, AL, United States
- Dauphin Island Sea Lab, Dauphin Island, AL, United States
| | - Kenneth D. Hoadley
- Department of Biology, University of Alabama, Tuscaloosa, AL, United States
- Dauphin Island Sea Lab, Dauphin Island, AL, United States
| |
Collapse
|
7
|
Lyndby NH, Murray MC, Trampe E, Meibom A, Kühl M. The mesoglea buffers the physico-chemical microenvironment of photosymbionts in the upside-down jellyfish Cassiopea sp. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1112742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
IntroductionThe jellyfish Cassiopea has a conspicuous lifestyle, positioning itself upside-down on sediments in shallow waters thereby exposing its photosynthetic endosymbionts (Symbiodiniaceae) to light. Several studies have shown how the photosymbionts benefit the jellyfish host in terms of nutrition and O2 availability, but little is known about the internal physico-chemical microenvironment of Cassiopea during light–dark periods.MethodsHere, we used fiber-optic sensors to investigate how light is modulated at the water-tissue interface of Cassiopea sp. and how light is scattered inside host tissue. We additionally used electrochemical and fiber-optic microsensors to investigate the dynamics of O2 and pH in response to changes in the light availability in intact living specimens of Cassiopea sp.Results and discussionMapping of photon scalar irradiance revealed a distinct spatial heterogeneity over different anatomical structures of the host, where oral arms and the manubrium had overall higher light availability, while shaded parts underneath the oral arms and the bell had less light available. White host pigmentation, especially in the bell tissue, showed higher light availability relative to similar bell tissue without white pigmentation. Microprofiles of scalar irradiance into white pigmented bell tissue showed intense light scattering and enhanced light penetration, while light was rapidly attenuated over the upper 0.5 mm in tissue with symbionts only. Depth profiles of O2 concentration into bell tissue of live jellyfish showed increasing concentration with depth into the mesoglea, with no apparent saturation point during light periods. O2 was slowly depleted in the mesoglea in darkness, and O2 concentration remained higher than ambient water in large (> 6 cm diameter) individuals, even after 50 min in darkness. Light–dark shifts in large medusae showed that the mesoglea slowly turns from a net sink during photoperiods into a net source of O2 during darkness. In contrast, small medusae showed a more dramatic change in O2 concentration, with rapid O2 buildup/consumption in response to light–dark shifts; in a manner similar to corals. These effects on O2 production/consumption were also reflected in moderate pH fluctuations within the mesoglea. The mesoglea thus buffers O2 and pH dynamics during dark-periods.
Collapse
|
8
|
Petersen LE, Kellermann MY, Fiegel LJ, Nietzer S, Bickmeyer U, Abele D, Schupp PJ. Photodegradation of a bacterial pigment and resulting hydrogen peroxide release enable coral settlement. Sci Rep 2023; 13:3562. [PMID: 36864107 PMCID: PMC9981606 DOI: 10.1038/s41598-023-30470-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
The global degradation of coral reefs is steadily increasing with ongoing climate change. Yet coral larvae settlement, a key mechanism of coral population rejuvenation and recovery, is largely understudied. Here, we show how the lipophilic, settlement-inducing bacterial pigment cycloprodigiosin (CYPRO) is actively harvested and subsequently enriched along the ectoderm of larvae of the scleractinian coral Leptastrea purpura. A light-dependent reaction transforms the CYPRO molecules through photolytic decomposition and provides a constant supply of hydrogen peroxide (H2O2), leading to attachment on the substrate and metamorphosis into a coral recruit. Micromolar concentrations of H2O2 in seawater also resulted in rapid metamorphosis, but without prior larval attachment. We propose that the morphogen CYPRO is responsible for initiating attachment while simultaneously acting as a molecular generator for the comprehensive metamorphosis of pelagic larvae. Ultimately, our approach opens a novel mechanistic dimension to the study of chemical signaling in coral settlement and provides unprecedented insights into the role of infochemicals in cross-kingdom interactions.
Collapse
Affiliation(s)
- Lars-Erik Petersen
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382, Wilhelmshaven, Germany
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Matthias Y Kellermann
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382, Wilhelmshaven, Germany.
| | - Laura J Fiegel
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382, Wilhelmshaven, Germany
| | - Samuel Nietzer
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382, Wilhelmshaven, Germany
| | - Ulf Bickmeyer
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research (AWI), Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Doris Abele
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research (AWI), Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Peter J Schupp
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382, Wilhelmshaven, Germany.
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB) at the University of Oldenburg, Ammerländer Heerstrasse 231, 26129, Oldenburg, Germany.
| |
Collapse
|