1
|
Olazagoitia-Garmendia A, Rojas-Márquez H, Trobisch T, Moreno-Castro C, Rodriguez Etxebarria A, Mentxaka J, Tripathi A, Yang B, Martin Ruiz I, Anguita J, Meana JJ, Ding Y, Dutta R, Schirmer L, Igoillo-Esteve M, Santin I, Castellanos-Rubio A. An inflammation-associated lncRNA induces neuronal damage via mitochondrial dysfunction. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102533. [PMID: 40291376 PMCID: PMC12023888 DOI: 10.1016/j.omtn.2025.102533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/31/2025] [Indexed: 04/30/2025]
Abstract
Immune disease-associated non-coding SNPs, which often locate in tissue-specific regulatory elements, are emerging as key factors in gene regulation. Among these elements, long non-coding RNAs (lncRNAs) participate in many cellular processes, and their characteristics make these molecules appealing therapeutic targets. In this study, we have studied lncRNA LOC339803 in the context of neuronal cells, which is located in autoimmunity-associated region 2p15 and recently described to have a proinflammatory role in intestinal disorders. Using human brain samples and a wide variety of in vitro techniques, we have showed a differential function of this lncRNA in neuronal cells. We have further demonstrated the role of LOC339803 in maintaining hexokinase 2 (HK2) levels and thus mitochondrial integrity, partially explaining the implication of the lncRNA in multiple sclerosis (MS) pathogenesis. Our results show the importance of cell-type-specific studies in the case of regulatory lncRNAs. We present LOC339803 as a candidate for further studies as a mitochondrial dysfunction marker or possible therapeutic target in neurodegeneration.
Collapse
Affiliation(s)
- Ane Olazagoitia-Garmendia
- Department of Biochemistry and Molecular Biology, University of Basque Country UPV/EHU, 48940 Leioa, Spain
- Biobizkaia Health Research Institute, Cruces-Barakaldo 48903, Spain
| | - Henar Rojas-Márquez
- Biobizkaia Health Research Institute, Cruces-Barakaldo 48903, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Tim Trobisch
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Cristina Moreno-Castro
- ULB Center for Diabetes Research, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgium
| | | | - Jon Mentxaka
- Department of Biochemistry and Molecular Biology, University of Basque Country UPV/EHU, 48940 Leioa, Spain
- Biobizkaia Health Research Institute, Cruces-Barakaldo 48903, Spain
| | - Ajai Tripathi
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland OH 44106, US
| | - Bibo Yang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Juan Anguita
- CIC bioGUNE-BRTA, 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - J Javier Meana
- Biobizkaia Health Research Institute, Cruces-Barakaldo 48903, Spain
- Department of Pharmacology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, 28029 Madrid, Spain
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Ranjan Dutta
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland OH 44106, US
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, 69117 Heidelberg, Germany
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgium
| | - Izortze Santin
- Department of Biochemistry and Molecular Biology, University of Basque Country UPV/EHU, 48940 Leioa, Spain
- Biobizkaia Health Research Institute, Cruces-Barakaldo 48903, Spain
- CIBERDEM, 28029 Madrid, Spain
| | - Ainara Castellanos-Rubio
- Biobizkaia Health Research Institute, Cruces-Barakaldo 48903, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- CIBERDEM, 28029 Madrid, Spain
| |
Collapse
|
2
|
Schärfen L, Vock IW, Simon MD, Neugebauer KM. Rapid folding of nascent RNA regulates eukaryotic RNA biogenesis. Mol Cell 2025; 85:1561-1574.e5. [PMID: 40139190 PMCID: PMC12009195 DOI: 10.1016/j.molcel.2025.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/23/2024] [Accepted: 02/27/2025] [Indexed: 03/29/2025]
Abstract
RNA's catalytic, regulatory, or coding potential depends on structure formation. Because base pairing occurs during transcription, early structural states can govern RNA processing events and dictate the formation of functional conformations. These co-transcriptional states remain mostly unknown. Here, we develop co-transcriptional structure tracking (CoSTseq), which detects nascent RNA base pairing within and upon exit from RNA polymerases (Pols) transcriptome wide in living yeast cells. Monitoring each nucleotide's base pairing activity during transcription, CoSTseq reveals predominantly rapid pairing-within 25 bp of transcription after addition to the nascent chain. Moreover, ∼23% of rRNA nucleotides attain their final base pairing state near Pol I, while most other nucleotides must undergo changes in pairing status during later steps of ribosome biogenesis. We show that helicases act immediately to remodel structures across the rDNA locus to facilitate ribosome biogenesis. By contrast, nascent pre-mRNAs attain local structures indistinguishable from mature mRNAs, suggesting that refolding behind elongating ribosomes resembles co-transcriptional folding behind Pol II.
Collapse
MESH Headings
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/chemistry
- RNA, Fungal/metabolism
- RNA, Fungal/biosynthesis
- Ribosomes/metabolism
- Ribosomes/genetics
- RNA Folding
- Transcription, Genetic
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal/chemistry
- Nucleic Acid Conformation
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Base Pairing
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Precursors/chemistry
- RNA Polymerase II/metabolism
- RNA Polymerase II/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Messenger/chemistry
- RNA Polymerase I/metabolism
- RNA Polymerase I/genetics
- Gene Expression Regulation, Fungal
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
Collapse
Affiliation(s)
- Leonard Schärfen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Isaac W Vock
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
3
|
Herbert A, Hatfield A, Randazza A, Miyamoto V, Palmer K, Lackey L. Precursor RNA structural patterns at SF3B1 mutation sensitive cryptic 3' splice sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.638873. [PMID: 40027643 PMCID: PMC11870503 DOI: 10.1101/2025.02.19.638873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
SF3B1 is a core component of the spliceosome involved in branch point recognition and 3' splice site selection. SF3B1 mutation is common in myelodysplastic syndrome and other blood disorders. The most common mutation in SF3B1 is K700E, a lysine to glutamic acid change within the pre-mRNA interacting heat repeat domain. A hallmark of SF3B1 mutation is an increased use of cryptic 3' splice sites; however, the properties distinguishing SF3B1-sensitive splice junctions from other alternatively spliced junctions are unknown. We identify a subset of 192 core splice junctions that are mis-spliced with SF3B1 K700E mutation. We use our core set to test whether SF3B1-sensitive splice sites are different from control cryptic 3' splice sites via RNA structural accessibility. As a comparison, we define a set of SF3B1-resistant splice junctions with cryptic splice site use that does not change with SF3B1 K700E mutation. We find sequence differences between SF3B1-sensitive and SF3B1-resistant junctions, particularly at the cryptic sites. SF3B1-sensitive cryptic 3' splice sites are within an extended polypyrimidine tract and have lower splice site strength scores. We develop experimental RNA structure data for 83 SF3B1-sensitive junctions and 39 SF3B1-resistant junctions. We find that the pattern of structural accessibility at the NAG splicing motif in cryptic and canonical 3' splice sites is similar. In addition, this pattern can be found in both SF3B1-resistant and SF3B1-sensitive junctions. However, SF3B1-sensitive junctions have cryptic splice sites that are less structurally distinct from the canonical splice sites. In addition, SF3B1-sensitive splice junctions are overall more flexible than SF3B1-resistant junctions. Our results suggest that the SF3B1-sensitive splice junctions have unique structure and sequence properties, containing poorly differentiated, weak splice sites that lead to altered 3' splice site recognition in the presence of SF3B1 mutation.
Collapse
Affiliation(s)
- Austin Herbert
- Department of Genetics and Biochemistry, Center for Human Genetics, Clemson University
| | - Abigail Hatfield
- Department of Genetics and Biochemistry, Center for Human Genetics, Clemson University
| | - Alexandra Randazza
- Department of Genetics and Biochemistry, Center for Human Genetics, Clemson University
| | - Valeria Miyamoto
- Department of Genetics and Biochemistry, Center for Human Genetics, Clemson University
| | - Katie Palmer
- Department of Genetics and Biochemistry, Center for Human Genetics, Clemson University
| | - Lela Lackey
- Department of Genetics and Biochemistry, Center for Human Genetics, Clemson University
| |
Collapse
|
4
|
Geng A, Roy R, Al-Hashimi HM. Conformational penalties: New insights into nucleic acid recognition. Curr Opin Struct Biol 2024; 89:102949. [PMID: 39522437 DOI: 10.1016/j.sbi.2024.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The energy cost accompanying changes in the structures of nucleic acids when they bind partner molecules is a significant but underappreciated thermodynamic contribution to binding affinity and specificity. This review highlights recent advances in measuring conformational penalties and determining their contribution to the recognition, folding, and regulatory activities of nucleic acids. Notable progress includes methods for measuring and structurally characterizing lowly populated conformational states, obtaining ensemble information in high throughput, for large macromolecular assemblies, and in complex cellular environments. Additionally, quantitative and predictive thermodynamic models have been developed that relate conformational penalties to nucleic acid-protein association and cellular activity. These studies underscore the crucial role of conformational penalties in nucleic acid recognition.
Collapse
Affiliation(s)
- Ainan Geng
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rohit Roy
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, NY 10032, USA.
| |
Collapse
|
5
|
Schärfen L, Vock IW, Simon MD, Neugebauer KM. Rapid folding of nascent RNA regulates eukaryotic RNA biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625435. [PMID: 39651172 PMCID: PMC11623619 DOI: 10.1101/2024.11.26.625435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
An RNA's catalytic, regulatory, or coding potential depends on RNA structure formation. Because base pairing occurs during transcription, early structural states can govern RNA processing events and dictate the formation of functional conformations. These co-transcriptional states remain unknown. Here, we develop CoSTseq, which detects nascent RNA base pairing within and upon exit from RNA polymerases (Pols) transcriptome-wide in living yeast cells. By monitoring each nucleotide's base pairing activity during transcription, we identify distinct classes of behaviors. While 47% of rRNA nucleotides remain unpaired, rapid and delayed base pairing - with rates of 48.5 and 13.2 kb -1 of transcribed rDNA, respectively - typically completes when Pol I is only 25 bp downstream. We show that helicases act immediately to remodel structures across the rDNA locus and facilitate ribosome biogenesis. In contrast, nascent pre-mRNAs attain local structures indistinguishable from mature mRNAs, suggesting that refolding behind elongating ribosomes resembles co-transcriptional folding behind Pol II.
Collapse
|
6
|
Carrocci TJ, Neugebauer KM. Emerging and re-emerging themes in co-transcriptional pre-mRNA splicing. Mol Cell 2024; 84:3656-3666. [PMID: 39366353 PMCID: PMC11463726 DOI: 10.1016/j.molcel.2024.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 10/06/2024]
Abstract
Proper gene expression requires the collaborative effort of multiple macromolecular machines to produce functional messenger RNA. As RNA polymerase II (RNA Pol II) transcribes DNA, the nascent pre-messenger RNA is heavily modified by other complexes such as 5' capping enzymes, the spliceosome, the cleavage, and polyadenylation machinery as well as RNA-modifying/editing enzymes. Recent evidence has demonstrated that pre-mRNA splicing and 3' end cleavage can occur on similar timescales as transcription and significantly cross-regulate. In this review, we discuss recent advances in co-transcriptional processing and how it contributes to gene regulation. We highlight how emerging areas-including coordinated splicing events, physical interactions between the RNA synthesis and modifying machinery, rapid and delayed splicing, and nuclear organization-impact mRNA isoforms. Coordination among RNA-processing choices yields radically different mRNA and protein products, foreshadowing the likely regulatory importance of co-transcriptional RNA folding and co-transcriptional modifications that have yet to be characterized in detail.
Collapse
Affiliation(s)
- Tucker J Carrocci
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
7
|
Shine M, Gordon J, Schärfen L, Zigackova D, Herzel L, Neugebauer KM. Co-transcriptional gene regulation in eukaryotes and prokaryotes. Nat Rev Mol Cell Biol 2024; 25:534-554. [PMID: 38509203 PMCID: PMC11199108 DOI: 10.1038/s41580-024-00706-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/22/2024]
Abstract
Many steps of RNA processing occur during transcription by RNA polymerases. Co-transcriptional activities are deemed commonplace in prokaryotes, in which the lack of membrane barriers allows mixing of all gene expression steps, from transcription to translation. In the past decade, an extraordinary level of coordination between transcription and RNA processing has emerged in eukaryotes. In this Review, we discuss recent developments in our understanding of co-transcriptional gene regulation in both eukaryotes and prokaryotes, comparing methodologies and mechanisms, and highlight striking parallels in how RNA polymerases interact with the machineries that act on nascent RNA. The development of RNA sequencing and imaging techniques that detect transient transcription and RNA processing intermediates has facilitated discoveries of transcription coordination with splicing, 3'-end cleavage and dynamic RNA folding and revealed physical contacts between processing machineries and RNA polymerases. Such studies indicate that intron retention in a given nascent transcript can prevent 3'-end cleavage and cause transcriptional readthrough, which is a hallmark of eukaryotic cellular stress responses. We also discuss how coordination between nascent RNA biogenesis and transcription drives fundamental aspects of gene expression in both prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Morgan Shine
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jackson Gordon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Leonard Schärfen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Dagmar Zigackova
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Lydia Herzel
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany.
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
8
|
Recinos Y, Bao S, Wang X, Phillips BL, Yeh YT, Weyn-Vanhentenryck SM, Swanson MS, Zhang C. Lineage-specific splicing regulation of MAPT gene in the primate brain. CELL GENOMICS 2024; 4:100563. [PMID: 38772368 PMCID: PMC11228892 DOI: 10.1016/j.xgen.2024.100563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 01/22/2024] [Accepted: 04/23/2024] [Indexed: 05/23/2024]
Abstract
Divergence of precursor messenger RNA (pre-mRNA) alternative splicing (AS) is widespread in mammals, including primates, but the underlying mechanisms and functional impact are poorly understood. Here, we modeled cassette exon inclusion in primate brains as a quantitative trait and identified 1,170 (∼3%) exons with lineage-specific splicing shifts under stabilizing selection. Among them, microtubule-associated protein tau (MAPT) exons 2 and 10 underwent anticorrelated, two-step evolutionary shifts in the catarrhine and hominoid lineages, leading to their present inclusion levels in humans. The developmental-stage-specific divergence of exon 10 splicing, whose dysregulation can cause frontotemporal lobar degeneration (FTLD), is mediated by divergent distal intronic MBNL-binding sites. Competitive binding of these sites by CRISPR-dCas13d/gRNAs effectively reduces exon 10 inclusion, potentially providing a therapeutically compatible approach to modulate tau isoform expression. Our data suggest adaptation of MAPT function and, more generally, a role for AS in the evolutionary expansion of the primate brain.
Collapse
Affiliation(s)
- Yocelyn Recinos
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Suying Bao
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Xiaojian Wang
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Brittany L Phillips
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Yow-Tyng Yeh
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Sebastien M Weyn-Vanhentenryck
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, FL 32610, USA; Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Chaolin Zhang
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
9
|
Lu S, Tang Y, Yin S, Sun L. RNA structure: implications in viral infections and neurodegenerative diseases. ADVANCED BIOTECHNOLOGY 2024; 2:3. [PMID: 39883271 PMCID: PMC11740852 DOI: 10.1007/s44307-024-00010-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/31/2025]
Abstract
RNA is an intermediary between DNA and protein, a catalyzer of biochemical reactions, and a regulator of genes and transcripts. RNA structures are essential for complicated functions. Recent years have witnessed rapid advancements in RNA secondary structure probing techniques. These technological strides provided comprehensive insights into RNA structures, which significantly contributed to our understanding of diverse cellular regulatory processes, including gene regulation, epigenetic regulation, and post-transactional regulation. Meanwhile, they have facilitated the creation of therapeutic tools for tackling human diseases. Despite their therapeutic applications, RNA structure probing methods also offer a promising avenue for exploring the mechanisms of human diseases, potentially providing the key to overcoming existing research constraints and obtaining the in-depth information necessary for a deeper understanding of disease mechanisms.
Collapse
Affiliation(s)
- Suiru Lu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
- Taishan College, Shandong University, Qingdao, 266237, China
| | - Yongkang Tang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Shaozhen Yin
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Lei Sun
- Pingyuan Laboratory, Xinxiang, Henan, 453007, China.
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China.
- Taishan College, Shandong University, Qingdao, 266237, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
10
|
Bose R, Saleem I, Mustoe AM. Causes, functions, and therapeutic possibilities of RNA secondary structure ensembles and alternative states. Cell Chem Biol 2024; 31:17-35. [PMID: 38199037 PMCID: PMC10842484 DOI: 10.1016/j.chembiol.2023.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/21/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
RNA secondary structure plays essential roles in encoding RNA regulatory fate and function. Most RNAs populate ensembles of alternatively paired states and are continually unfolded and refolded by cellular processes. Measuring these structural ensembles and their contributions to cellular function has traditionally posed major challenges, but new methods and conceptual frameworks are beginning to fill this void. In this review, we provide a mechanism- and function-centric compendium of the roles of RNA secondary structural ensembles and minority states in regulating the RNA life cycle, from transcription to degradation. We further explore how dysregulation of RNA structural ensembles contributes to human disease and discuss the potential of drugging alternative RNA states to therapeutically modulate RNA activity. The emerging paradigm of RNA structural ensembles as central to RNA function provides a foundation for a deeper understanding of RNA biology and new therapeutic possibilities.
Collapse
Affiliation(s)
- Ritwika Bose
- Therapeutic Innovation Center (THINC), Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Irfana Saleem
- Therapeutic Innovation Center (THINC), Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Anthony M Mustoe
- Therapeutic Innovation Center (THINC), Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
11
|
Pino MG, Rich KA, Hall NJ, Jones ML, Fox A, Musier-Forsyth K, Kolb SJ. Heterogeneous splicing patterns resulting from KIF5A variants associated with amyotrophic lateral sclerosis. Hum Mol Genet 2023; 32:3166-3180. [PMID: 37593923 DOI: 10.1093/hmg/ddad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
Single-nucleotide variants (SNVs) in the gene encoding Kinesin Family Member 5A (KIF5A), a neuronal motor protein involved in anterograde transport along microtubules, have been associated with amyotrophic lateral sclerosis (ALS). ALS is a rapidly progressive and fatal neurodegenerative disease that primarily affects the motor neurons. Numerous ALS-associated KIF5A SNVs are clustered near the splice-site junctions of the penultimate exon 27 and are predicted to alter the carboxy-terminal (C-term) cargo-binding domain of KIF5A. Mis-splicing of exon 27, resulting in exon exclusion, is proposed to be the mechanism by which these SNVs cause ALS. Whether all SNVs proximal to exon 27 result in exon exclusion is unclear. To address this question, we designed an in vitro minigene splicing assay in human embryonic kidney 293 cells, which revealed heterogeneous site-specific effects on splicing: only 5' splice-site (5'ss) SNVs resulted in exon skipping. We also quantified splicing in select clustered, regularly interspaced, short palindromic repeats-edited human stem cells, differentiated to motor neurons, and in neuronal tissues from a 5'ss SNV knock-in mouse, which showed the same result. Moreover, the survival of representative 3' splice site, 5'ss, and truncated C-term variant KIF5A (v-KIF5A) motor neurons was severely reduced compared with wild-type motor neurons, and overt morphological changes were apparent. While the total KIF5A mRNA levels were comparable across the cell lines, the total KIF5A protein levels were decreased for v-KIF5A lines, suggesting an impairment of protein synthesis or stability. Thus, despite the heterogeneous effect on ribonucleic acid splicing, KIF5A SNVs similarly reduce the availability of the KIF5A protein, leading to axonal transport defects and motor neuron pathology.
Collapse
Affiliation(s)
- Megan G Pino
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Kelly A Rich
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Nicholas J Hall
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
| | - Meredith L Jones
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Ashley Fox
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Karin Musier-Forsyth
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
- Department of Chemistry & Biochemistry, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Stephen J Kolb
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| |
Collapse
|
12
|
Shenasa H, Bentley DL. Pre-mRNA splicing and its cotranscriptional connections. Trends Genet 2023; 39:672-685. [PMID: 37236814 PMCID: PMC10524715 DOI: 10.1016/j.tig.2023.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Transcription of eukaryotic genes by RNA polymerase II (Pol II) yields RNA precursors containing introns that must be spliced out and the flanking exons ligated together. Splicing is catalyzed by a dynamic ribonucleoprotein complex called the spliceosome. Recent evidence has shown that a large fraction of splicing occurs cotranscriptionally as the RNA chain is extruded from Pol II at speeds of up to 5 kb/minute. Splicing is more efficient when it is tethered to the transcription elongation complex, and this linkage permits functional coupling of splicing with transcription. We discuss recent progress that has uncovered a network of connections that link splicing to transcript elongation and other cotranscriptional RNA processing events.
Collapse
Affiliation(s)
- Hossein Shenasa
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - David L Bentley
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
13
|
How does precursor RNA structure influence RNA processing and gene expression? Biosci Rep 2023; 43:232489. [PMID: 36689327 PMCID: PMC9977717 DOI: 10.1042/bsr20220149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 01/24/2023] Open
Abstract
RNA is a fundamental biomolecule that has many purposes within cells. Due to its single-stranded and flexible nature, RNA naturally folds into complex and dynamic structures. Recent technological and computational advances have produced an explosion of RNA structural data. Many RNA structures have regulatory and functional properties. Studying the structure of nascent RNAs is particularly challenging due to their low abundance and long length, but their structures are important because they can influence RNA processing. Precursor RNA processing is a nexus of pathways that determines mature isoform composition and that controls gene expression. In this review, we examine what is known about human nascent RNA structure and the influence of RNA structure on processing of precursor RNAs. These known structures provide examples of how other nascent RNAs may be structured and show how novel RNA structures may influence RNA processing including splicing and polyadenylation. RNA structures can be targeted therapeutically to treat disease.
Collapse
|