1
|
Jiang W, Li L, Xia Y, Farooq S, Li G, Li S, Xu J, He S, Wu X, Huang S, Yuan J, Kong D. Neural dynamics of deception: insights from fMRI studies of brain states. Cogn Neurodyn 2025; 19:42. [PMID: 39991015 PMCID: PMC11842687 DOI: 10.1007/s11571-025-10222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/25/2025] Open
Abstract
Deception is a complex behavior that requires greater cognitive effort than truth-telling, with brain states dynamically adapting to external stimuli and cognitive demands. Investigating these brain states provides valuable insights into the brain's temporal and spatial dynamics. In this study, we designed an experiment paradigm to efficiently simulate lying and constructed a temporal network of brain states. We applied the Louvain community clustering algorithm to identify characteristic brain states associated with lie-telling, inverse-telling, and truth-telling. Our analysis revealed six representative brain states with unique spatial characteristics. Notably, two distinct states-termed truth-preferred and lie-preferred-exhibited significant differences in fractional occupancy and average dwelling time. The truth-preferred state showed higher occupancy and dwelling time during truth-telling, while the lie-preferred state demonstrated these characteristics during lie-telling. Using the average z-score BOLD signals of these two states, we applied generalized linear models with elastic net regularization, achieving a classification accuracy of 88.46%, with a sensitivity of 92.31% and a specificity of 84.62% in distinguishing deception from truth-telling. These findings revealed representative brain states for lie-telling, inverse-telling, and truth-telling, highlighting two states specifically associated with truthful and deceptive behaviors. The spatial characteristics and dynamic attributes of these brain states indicate their potential as biomarkers of cognitive engagement in deception. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-025-10222-4.
Collapse
Affiliation(s)
- Weixiong Jiang
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua, Zhejiang China
- Nanbei Lake Institute for Artificial Intelligence in Medicine, Haiyan, Zhejiang China
| | - Lin Li
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua, Zhejiang China
| | - Yulong Xia
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua, Zhejiang China
| | - Sajid Farooq
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua, Zhejiang China
| | - Gang Li
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua, Zhejiang China
| | - Shuaiqi Li
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua, Zhejiang China
| | - Jinhua Xu
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua, Zhejiang China
| | - Sailing He
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua, Zhejiang China
| | - Xiangyu Wu
- The Research Center for Children’s Literature, Zhejiang Normal University, Jinhua, Zhejiang China
| | - Shoujun Huang
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua, Zhejiang China
| | - Jing Yuan
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua, Zhejiang China
| | - Dexing Kong
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua, Zhejiang China
| |
Collapse
|
2
|
Wang Y, Deng C, Li H, Gao Y, Shi B, Huang X, Gong Q. Intranetwork and Internetwork Functional Connectivity Changes Related to Speech Disorders in Adults With Cleft Lip and Palate. Eur J Neurosci 2025; 61:e70077. [PMID: 40219708 DOI: 10.1111/ejn.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 02/07/2025] [Accepted: 03/07/2025] [Indexed: 04/14/2025]
Abstract
Cleft lip and palate (CLP) may induce alterations in functional connectivity (FC) throughout the whole brain, potentially leading to speech dysfunctions; however, the precise neurobiological mechanisms involved remain unknown. This study aimed to systematically examine the consequences of neurological impairments associated with CLP on whole-brain FC and speech functionality. A total of 33 CLP individuals and 41 control participants were included in this study. Eight meaningful brain networks were identified through independent component analysis (ICA). The intergroup differences and correlations with speech scores for both intranetwork and internetwork FC were calculated. We observed decreased FC within the sensorimotor network (SMN), default mode network (DMN), and cerebellar network (CN) and increased FC within the executive control network (ECN). Additionally, FC was enhanced between the SMN and the auditory network (AN), attention network (ATN), and salience network (SAN); between the DMN and the visual network (VN) and ECN; and between two independent components of the DMN. Furthermore, significant correlations were observed between altered FC and speech assessment scores. Our research demonstrated that brain plasticity in CLP individuals with speech deficits involves widespread changes in brain connectivity, significantly improving our understanding of the neural basis of speech impairment in CLP individuals.
Collapse
Affiliation(s)
- Yingying Wang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Chengdan Deng
- Mianyang Hospital of Traditional Chinese Medicine, Mianyang, Sichuan, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Chengdu, Sichuan, China
| | - Hailong Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yingxue Gao
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Bing Shi
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Chengdu, Sichuan, China
| | - Xiaoqi Huang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Xiamen Key Lab of Psychoradiology and Neuromodulation, Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Xiamen Key Lab of Psychoradiology and Neuromodulation, Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| |
Collapse
|
3
|
Paquola C, Garber M, Frässle S, Royer J, Zhou Y, Tavakol S, Rodriguez-Cruces R, Cabalo DG, Valk S, Eickhoff SB, Margulies DS, Evans A, Amunts K, Jefferies E, Smallwood J, Bernhardt BC. The architecture of the human default mode network explored through cytoarchitecture, wiring and signal flow. Nat Neurosci 2025; 28:654-664. [PMID: 39875581 PMCID: PMC11893468 DOI: 10.1038/s41593-024-01868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/06/2024] [Indexed: 01/30/2025]
Abstract
The default mode network (DMN) is implicated in many aspects of complex thought and behavior. Here, we leverage postmortem histology and in vivo neuroimaging to characterize the anatomy of the DMN to better understand its role in information processing and cortical communication. Our results show that the DMN is cytoarchitecturally heterogenous, containing cytoarchitectural types that are variably specialized for unimodal, heteromodal and memory-related processing. Studying diffusion-based structural connectivity in combination with cytoarchitecture, we found the DMN contains regions receptive to input from sensory cortex and a core that is relatively insulated from environmental input. Finally, analysis of signal flow with effective connectivity models showed that the DMN is unique amongst cortical networks in balancing its output across the levels of sensory hierarchies. Together, our study establishes an anatomical foundation from which accounts of the broad role the DMN plays in human brain function and cognition can be developed.
Collapse
Affiliation(s)
- Casey Paquola
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada.
- Institute for Neuroscience and Medicine (INM-7), Forschungszentrum Jülich, Jülich, Germany.
| | - Margaret Garber
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Stefan Frässle
- Translational Neuromodeling Unit (TNU), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Jessica Royer
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Yigu Zhou
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Shahin Tavakol
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Raul Rodriguez-Cruces
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Donna Gift Cabalo
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Sofie Valk
- Institute for Neuroscience and Medicine (INM-7), Forschungszentrum Jülich, Jülich, Germany
- Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany
- Institute for Systems Neuroscience, Heinrich Heine Universistät Dusseldorf, Dusseldorf, Germany
| | - Simon B Eickhoff
- Institute for Neuroscience and Medicine (INM-7), Forschungszentrum Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Heinrich Heine Universistät Dusseldorf, Dusseldorf, Germany
| | - Daniel S Margulies
- Integrative Neuroscience & Cognition Center (INCC - UMR 8002), University of Paris, Centre national de la recherche scientifique (CNRS), Paris, France
| | - Alan Evans
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Katrin Amunts
- Institute for Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| | | | | | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
4
|
Anderson NL, Salvo JJ, Smallwood J, Braga RM. Distinct distributed brain networks dissociate self-generated mental states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640604. [PMID: 40060698 PMCID: PMC11888405 DOI: 10.1101/2025.02.27.640604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Human cognition relies on two modes: a perceptually-coupled mode where mental states are driven by sensory input and a perceptually-decoupled mode featuring self-generated mental content. Past work suggests that imagined states are supported by the reinstatement of activity in sensory cortex, but transmodal systems within the canonical default network are also implicated in mind-wandering, recollection, and imagining the future. We identified brain systems supporting self-generated states using precision fMRI. Participants imagined different scenarios in the scanner, then rated their mental states on several properties using multi-dimensional experience sampling. We found that thinking involving scenes evoked activity within or near the default network, while imagining speech evoked activity within or near the language network. Imagining-related regions overlapped with activity evoked by viewing scenes or listening to speech, respectively; however, this overlap was predominantly within transmodal association networks, rather than adjacent unimodal sensory networks. The results suggest that different association networks support imagined states that are high in visual or auditory vividness.
Collapse
Affiliation(s)
- Nathan L Anderson
- Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine
| | - Joseph J Salvo
- Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine
| | | | - Rodrigo M Braga
- Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine
- Department of Psychology, Northwestern University
| |
Collapse
|
5
|
Gonzalez Alam TRJ, Krieger-Redwood K, Varga D, Gao Z, Horner AJ, Hartley T, Thiebaut de Schotten M, Sliwinska M, Pitcher D, Margulies DS, Smallwood J, Jefferies E. A double dissociation between semantic and spatial cognition in visual to default network pathways. eLife 2025; 13:RP94902. [PMID: 39841127 PMCID: PMC11753780 DOI: 10.7554/elife.94902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
Processing pathways between sensory and default mode network (DMN) regions support recognition, navigation, and memory but their organisation is not well understood. We show that functional subdivisions of visual cortex and DMN sit at opposing ends of parallel streams of information processing that support visually mediated semantic and spatial cognition, providing convergent evidence from univariate and multivariate task responses, intrinsic functional and structural connectivity. Participants learned virtual environments consisting of buildings populated with objects, drawn from either a single semantic category or multiple categories. Later, they made semantic and spatial context decisions about these objects and buildings during functional magnetic resonance imaging. A lateral ventral occipital to fronto-temporal DMN pathway was primarily engaged by semantic judgements, while a medial visual to medial temporal DMN pathway supported spatial context judgements. These pathways had distinctive locations in functional connectivity space: the semantic pathway was both further from unimodal systems and more balanced between visual and auditory-motor regions compared with the spatial pathway. When semantic and spatial context information could be integrated (in buildings containing objects from a single category), regions at the intersection of these pathways responded, suggesting that parallel processing streams interact at multiple levels of the cortical hierarchy to produce coherent memory-guided cognition.
Collapse
Affiliation(s)
- Tirso RJ Gonzalez Alam
- Department of Psychology, University of YorkNorth YorkshireUnited Kingdom
- York Neuroimaging Centre, Innovation Way, HeslingtonNorth YorkshireUnited Kingdom
- School of Human and Behavioural Sciences, Bangor University, Gwynedd, Wales, UKYorkUnited Kingdom
| | - Katya Krieger-Redwood
- Department of Psychology, University of YorkNorth YorkshireUnited Kingdom
- York Neuroimaging Centre, Innovation Way, HeslingtonNorth YorkshireUnited Kingdom
| | - Dominika Varga
- Sussex Neuroscience, School of Psychology, University of SussexBrighton and HoveUnited States
| | - Zhiyao Gao
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine StanfordStanfordUnited Kingdom
| | - Aidan J Horner
- Department of Psychology, University of YorkNorth YorkshireUnited Kingdom
- York Neuroimaging Centre, Innovation Way, HeslingtonNorth YorkshireUnited Kingdom
| | - Tom Hartley
- Department of Psychology, University of YorkNorth YorkshireUnited Kingdom
- York Neuroimaging Centre, Innovation Way, HeslingtonNorth YorkshireUnited Kingdom
| | - Michel Thiebaut de Schotten
- University of Bordeaux, CNRS, CEA, IMNBordeauxFrance
- Brain Connectivity and Behaviour Laboratory, Sorbonne UniversitiesParisFrance
| | - Magdalena Sliwinska
- Department of Psychology, Liverpool John Moores UniversityLiverpoolUnited Kingdom
| | - David Pitcher
- Department of Psychology, University of YorkNorth YorkshireUnited Kingdom
- York Neuroimaging Centre, Innovation Way, HeslingtonNorth YorkshireUnited Kingdom
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center (UMR 8002), Centre National de la Recherche Scientifique (CNRS) and Université de ParisParisFrance
| | | | - Elizabeth Jefferies
- Department of Psychology, University of YorkNorth YorkshireUnited Kingdom
- York Neuroimaging Centre, Innovation Way, HeslingtonNorth YorkshireUnited Kingdom
| |
Collapse
|
6
|
Mckeown B, Goodall-Halliwell I, Wallace R, Chitiz L, Mulholland B, Karapanagiotidis T, Hardikar S, Strawson W, Turnbull A, Vanderwal T, Ho N, Wang HT, Xu T, Milham M, Wang X, Zhang M, Gonzalez Alam TR, Vos de Wael R, Bernhardt B, Margulies D, Wammes J, Jefferies E, Leech R, Smallwood J. Self-reports map the landscape of task states derived from brain imaging. COMMUNICATIONS PSYCHOLOGY 2025; 3:8. [PMID: 39843761 PMCID: PMC11754446 DOI: 10.1038/s44271-025-00184-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025]
Abstract
Psychological states influence our happiness and productivity; however, estimates of their impact have historically been assumed to be limited by the accuracy with which introspection can quantify them. Over the last two decades, studies have shown that introspective descriptions of psychological states correlate with objective indicators of cognition, including task performance and metrics of brain function, using techniques like functional magnetic resonance imaging (fMRI). Such evidence suggests it may be possible to quantify the mapping between self-reports of experience and objective representations of those states (e.g., those inferred from measures of brain activity). Here, we used machine learning to show that self-reported descriptions of experiences across tasks can reliably map the objective landscape of task states derived from brain activity. In our study, 194 participants provided descriptions of their psychological states while performing tasks for which the contribution of different brain systems was available from prior fMRI studies. We used machine learning to combine these reports with descriptions of brain function to form a 'state-space' that reliably predicted patterns of brain activity based solely on unseen descriptions of experience (N = 101). Our study demonstrates that introspective reports can share information with the objective task landscape inferred from brain activity.
Collapse
Affiliation(s)
- Brontë Mckeown
- Department of Psychology, Queens University, Kingston, Ontario, Canada.
| | | | - Raven Wallace
- Department of Psychology, Queens University, Kingston, Ontario, Canada
| | - Louis Chitiz
- Department of Psychology, Queens University, Kingston, Ontario, Canada
| | | | | | - Samyogita Hardikar
- Department of Psychology, Queens University, Kingston, Ontario, Canada
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Will Strawson
- Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Brighton, UK
| | - Adam Turnbull
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, USA
| | - Tamara Vanderwal
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, British Columbia, Canada
| | - Nerissa Ho
- School of Psychology, University of Plymouth, Plymouth, UK
| | - Hao-Ting Wang
- Centre de recherche de l'institut Universitaire de gériatrie de Montréal (CRIUGM), Montreal, Canada
| | - Ting Xu
- Centre for the Developing Brain, Child Mind Institute, New York, USA
| | - Michael Milham
- Centre for the Developing Brain, Child Mind Institute, New York, USA
| | - Xiuyi Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Meichao Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | | | | | - Boris Bernhardt
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Daniel Margulies
- Integrative Neuroscience and Cognition Center (UMR 8002, Centre National de la Recherche Scientifique (CNRS) and Université de Paris, Paris, France
| | - Jeffrey Wammes
- Department of Psychology, Queens University, Kingston, Ontario, Canada
| | | | - Robert Leech
- Centre for Neuroimaging Science, King's College, London, UK
| | | |
Collapse
|
7
|
Wallace RS, Mckeown B, Goodall-Halliwell I, Chitiz L, Forest P, Karapanagiotidis T, Mulholland B, Turnbull A, Vanderwal T, Hardikar S, Gonzalez Alam TRJ, Bernhardt BC, Wang HT, Strawson W, Milham M, Xu T, Margulies DS, Poerio GL, Jefferies E, Skipper JI, Wammes JD, Leech R, Smallwood J. Mapping patterns of thought onto brain activity during movie-watching. eLife 2025; 13:RP97731. [PMID: 39792001 PMCID: PMC11723579 DOI: 10.7554/elife.97731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Movie-watching is a central aspect of our lives and an important paradigm for understanding the brain mechanisms behind cognition as it occurs in daily life. Contemporary views of ongoing thought argue that the ability to make sense of events in the 'here and now' depend on the neural processing of incoming sensory information by auditory and visual cortex, which are kept in check by systems in association cortex. However, we currently lack an understanding of how patterns of ongoing thoughts map onto the different brain systems when we watch a film, partly because methods of sampling experience disrupt the dynamics of brain activity and the experience of movie-watching. Our study established a novel method for mapping thought patterns onto the brain activity that occurs at different moments of a film, which does not disrupt the time course of brain activity or the movie-watching experience. We found moments when experience sampling highlighted engagement with multi-sensory features of the film or highlighted thoughts with episodic features, regions of sensory cortex were more active and subsequent memory for events in the movie was better-on the other hand, periods of intrusive distraction emerged when activity in regions of association cortex within the frontoparietal system was reduced. These results highlight the critical role sensory systems play in the multi-modal experience of movie-watching and provide evidence for the role of association cortex in reducing distraction when we watch films.
Collapse
Affiliation(s)
| | - Bronte Mckeown
- Department of Psychology, Queen's UniversityKingstonCanada
| | | | - Louis Chitiz
- Department of Psychology, Queen's UniversityKingstonCanada
| | - Philippe Forest
- Mathematical and Electrical Engineering Department, IMT AtlantiqueBrestFrance
| | | | | | - Adam Turnbull
- Department of Psychology, Stanford UniversityStanfordUnited States
| | - Tamara Vanderwal
- Faculty of Medicine, University of British ColumbiaVancouverCanada
| | - Samyogita Hardikar
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Max Planck School of CognitionLeipzigGermany
| | | | - Boris C Bernhardt
- Montreal Neurological Institute-Hospital, McGill UniversityMontrealCanada
| | - Hao-Ting Wang
- Centre de Recherche de l'Institut Universitaire de Geriatrie de MontrealMontrealCanada
| | - Will Strawson
- School of Psychology, University of SussexBrightonUnited Kingdom
| | | | - Ting Xu
- Child Mind InstituteNew YorkUnited States
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center, University of ParisParisFrance
| | - Giulia L Poerio
- School of Psychology, University of SussexBrightonUnited Kingdom
| | - Elizabeth Jefferies
- Division of Psychology & Language Sciences, University College LondonLondonUnited Kingdom
| | - Jeremy I Skipper
- Institute of Psychiatry, Psychology & Neuroscience, University College LondonLondonUnited Kingdom
| | | | - Robert Leech
- Department of Neuroimaging at the Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
| | | |
Collapse
|
8
|
Arunkumar A, Padilla L, Bryan C. Mind Drifts, Data Shifts: Utilizing Mind Wandering to Track the Evolution of User Experience with Data Visualizations. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:1169-1179. [PMID: 39250407 DOI: 10.1109/tvcg.2024.3456344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
User experience in data visualization is typically assessed through post-viewing self-reports, but these overlook the dynamic cognitive processes during interaction. This study explores the use of mind wandering- a phenomenon where attention spontaneously shifts from a primary task to internal, task-related thoughts or unrelated distractions- as a dynamic measure during visualization exploration. Participants reported mind wandering while viewing visualizations from a pre-labeled visualization database and then provided quantitative ratings of trust, engagement, and design quality, along with qualitative descriptions and short-term/long-term recall assessments. Results show that mind wandering negatively affects short-term visualization recall and various post-viewing measures, particularly for visualizations with little text annotation. Further, the type of mind wandering impacts engagement and emotional response. Mind wandering also functions as an intermediate process linking visualization design elements to post-viewing measures, influencing how viewers engage with and interpret visual information over time. Overall, this research underscores the importance of incorporating mind wandering as a dynamic measure in visualization design and evaluation, offering novel avenues for enhancing user engagement and comprehension.
Collapse
|
9
|
Iwata T, Yanagisawa T, Ikegaya Y, Smallwood J, Fukuma R, Oshino S, Tani N, Khoo HM, Kishima H. Hippocampal sharp-wave ripples correlate with periods of naturally occurring self-generated thoughts in humans. Nat Commun 2024; 15:4078. [PMID: 38778048 PMCID: PMC11111804 DOI: 10.1038/s41467-024-48367-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Core features of human cognition highlight the importance of the capacity to focus on information distinct from events in the here and now, such as mind wandering. However, the brain mechanisms that underpin these self-generated states remain unclear. An emerging hypothesis is that self-generated states depend on the process of memory replay, which is linked to sharp-wave ripples (SWRs), which are transient high-frequency oscillations originating in the hippocampus. Local field potentials were recorded from the hippocampus of 10 patients with epilepsy for up to 15 days, and experience sampling was used to describe their association with ongoing thought patterns. The SWR rates were higher during extended periods of time when participants' ongoing thoughts were more vivid, less desirable, had more imaginable properties, and exhibited fewer correlations with an external task. These data suggest a role for SWR in the patterns of ongoing thoughts that humans experience in daily life.
Collapse
Affiliation(s)
- Takamitsu Iwata
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Takufumi Yanagisawa
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, 565-0871, Japan.
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan
- National Institute of Information and Communications Technology, Center for Information and Neural Networks, Suita City, Osaka, 565-0871, Japan
| | - Jonathan Smallwood
- Department of Psychology, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Ryohei Fukuma
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, 565-0871, Japan
| | - Satoru Oshino
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Naoki Tani
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Hui Ming Khoo
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
10
|
Chiou R, Branzi FM, Krieger-Redwood K, Jefferies E. Dissecting the neuroanatomy of creativity and curiosity: The subdivisions within networks matter. Behav Brain Sci 2024; 47:e96. [PMID: 38770872 DOI: 10.1017/s0140525x23003473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Ivancovsky et al. argue that the neurocognitive mechanisms of creativity and curiosity both rely on the interplay among brain networks. Research to date demonstrates that such inter-network dynamics are further complicated by functional fractionation within networks. Investigating how networks subdivide and reconfigure in service of a task offers insights about the precise anatomy that underpins creative and curious behaviour.
Collapse
Affiliation(s)
- Rocco Chiou
- School of Psychology, University of Surrey, Guildford, UK https://roccochiou.weebly.com/
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
11
|
Shao X, Krieger-Redwood K, Zhang M, Hoffman P, Lanzoni L, Leech R, Smallwood J, Jefferies E. Distinctive and Complementary Roles of Default Mode Network Subsystems in Semantic Cognition. J Neurosci 2024; 44:e1907232024. [PMID: 38589231 PMCID: PMC11097276 DOI: 10.1523/jneurosci.1907-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024] Open
Abstract
The default mode network (DMN) typically deactivates to external tasks, yet supports semantic cognition. It comprises medial temporal (MT), core, and frontotemporal (FT) subsystems, but its functional organization is unclear: the requirement for perceptual coupling versus decoupling, input modality (visual/verbal), type of information (social/spatial), and control demands all potentially affect its recruitment. We examined the effect of these factors on activation and deactivation of DMN subsystems during semantic cognition, across four task-based human functional magnetic resonance imaging (fMRI) datasets, and localized these responses in whole-brain state space defined by gradients of intrinsic connectivity. FT showed activation consistent with a central role across domains, tasks, and modalities, although it was most responsive to abstract, verbal tasks; this subsystem uniquely showed more "tuned" states characterized by increases in both activation and deactivation when semantic retrieval demands were higher. MT also activated to both perceptually coupled (scenes) and decoupled (autobiographical memory) tasks and showed stronger responses to picture associations, consistent with a role in scene construction. Core DMN consistently showed deactivation, especially to externally oriented tasks. These diverse contributions of DMN subsystems to semantic cognition were related to their location on intrinsic connectivity gradients: activation was closer to the sensory-motor cortex than deactivation, particularly for FT and MT, while activation for core DMN was distant from both visual cortex and cognitive control. These results reveal distinctive yet complementary DMN responses: MT and FT support different memory-based representations that are accessed externally and internally, while deactivation in core DMN is associated with demanding, external semantic tasks.
Collapse
Affiliation(s)
- Ximing Shao
- Department of Psychology, University of York, York, YO10 5DD, United Kingdom
| | | | - Meichao Zhang
- Department of Psychology, University of York, York, YO10 5DD, United Kingdom
- CAS Key Laboratory of Behavioural Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Paul Hoffman
- School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Lucilla Lanzoni
- Department of Psychology, University of York, York, YO10 5DD, United Kingdom
| | - Robert Leech
- Centre for Neuroimaging Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RT, United Kingdom
| | - Jonathan Smallwood
- Department of Psychology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Elizabeth Jefferies
- Department of Psychology, University of York, York, YO10 5DD, United Kingdom
| |
Collapse
|
12
|
Souter NE, de Freitas A, Zhang M, Shao X, del Jesus Gonzalez Alam TR, Engen H, Smallwood J, Krieger‐Redwood K, Jefferies E. Default mode network shows distinct emotional and contextual responses yet common effects of retrieval demands across tasks. Hum Brain Mapp 2024; 45:e26703. [PMID: 38716714 PMCID: PMC11077571 DOI: 10.1002/hbm.26703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
The default mode network (DMN) lies towards the heteromodal end of the principal gradient of intrinsic connectivity, maximally separated from the sensory-motor cortex. It supports memory-based cognition, including the capacity to retrieve conceptual and evaluative information from sensory inputs, and to generate meaningful states internally; however, the functional organisation of DMN that can support these distinct modes of retrieval remains unclear. We used fMRI to examine whether activation within subsystems of DMN differed as a function of retrieval demands, or the type of association to be retrieved, or both. In a picture association task, participants retrieved semantic associations that were either contextual or emotional in nature. Participants were asked to avoid generating episodic associations. In the generate phase, these associations were retrieved from a novel picture, while in the switch phase, participants retrieved a new association for the same image. Semantic context and emotion trials were associated with dissociable DMN subnetworks, indicating that a key dimension of DMN organisation relates to the type of association being accessed. The frontotemporal and medial temporal DMN showed a preference for emotional and semantic contextual associations, respectively. Relative to the generate phase, the switch phase recruited clusters closer to the heteromodal apex of the principal gradient-a cortical hierarchy separating unimodal and heteromodal regions. There were no differences in this effect between association types. Instead, memory switching was associated with a distinct subnetwork associated with controlled internal cognition. These findings delineate distinct patterns of DMN recruitment for different kinds of associations yet common responses across tasks that reflect retrieval demands.
Collapse
Affiliation(s)
- Nicholas E. Souter
- Department of PsychologyUniversity of YorkYorkUK
- School of PsychologyUniversity of SussexBrightonUK
| | - Antonia de Freitas
- Department of PsychologyUniversity of YorkYorkUK
- Experimental Psychology, Division of Psychology and Language SciencesUniversity College LondonLondonUK
| | - Meichao Zhang
- Department of PsychologyUniversity of YorkYorkUK
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
| | - Ximing Shao
- Department of PsychologyUniversity of YorkYorkUK
- Experimental Psychology, Division of Psychology and Language SciencesUniversity College LondonLondonUK
| | | | - Haakon Engen
- Institute for Military Psychiatry, Joint Medical ServicesNorwegian Armed ForcesNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | | | | | | |
Collapse
|
13
|
DeRosa J, Friedman NP, Calhoun V, Banich MT. Neurodevelopmental Subtypes of Functional Brain Organization in the ABCD Study Using a Rigorous Analytic Framework. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.16.585343. [PMID: 38559171 PMCID: PMC10979961 DOI: 10.1101/2024.03.16.585343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The current study demonstrates that an individual's resting-state functional connectivity (RSFC) is a dependable biomarker for identifying differential patterns of cognitive and emotional functioning during late childhood. Using baseline RSFC data from the Adolescent Brain Cognitive Development (ABCD) study, which includes children aged 9-11, we identified four distinct RSFC subtypes We introduce an integrated methodological pipeline for testing the reliability and importance of these subtypes. In the Identification phase, Leiden Community Detection defined RSFC subtypes, with their reproducibility confirmed through a split-sample technique in the Validation stage. The Evaluation phase showed that distinct cognitive and mental health profiles are associated with each subtype, with the Predictive phase indicating that subtypes better predict various cognitive and mental health characteristics than individual RSFC connections. The Replication stage employed bootstrapping and down-sampling methods to substantiate the reproducibility of these subtypes further. This work allows future explorations of developmental trajectories of these RSFC subtypes.
Collapse
Affiliation(s)
- Jacob DeRosa
- Department of Psychology and Neuroscience, University of Colorado Boulder
- Institute of Cognitive Science, University of Colorado Boulder
| | - Naomi P. Friedman
- Department of Psychology and Neuroscience, University of Colorado Boulder
- Institute for Behavioral Genetics, University of Colorado Boulder
| | - Vince Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University
| | - Marie T. Banich
- Department of Psychology and Neuroscience, University of Colorado Boulder
- Institute of Cognitive Science, University of Colorado Boulder
| |
Collapse
|
14
|
Jangraw DC, Finn ES, Bandettini PA, Landi N, Sun H, Hoeft F, Chen G, Pugh KR, Molfese PJ. Inter-subject correlation during long narratives reveals widespread neural correlates of reading ability. Neuroimage 2023; 282:120390. [PMID: 37751811 PMCID: PMC10783814 DOI: 10.1016/j.neuroimage.2023.120390] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 09/28/2023] Open
Abstract
Recent work using fMRI inter-subject correlation analysis has provided new information about the brain's response to video and audio narratives, particularly in frontal regions not typically activated by single words. This approach is very well suited to the study of reading, where narrative is central to natural experience. But since past reading paradigms have primarily presented single words or phrases, the influence of narrative on semantic processing in the brain - and how that influence might change with reading ability - remains largely unexplored. In this study, we presented coherent stories to adolescents and young adults with a wide range of reading abilities. The stories were presented in alternating visual and auditory blocks. We used a dimensional inter-subject correlation analysis to identify regions in which better and worse readers had varying levels of consistency with other readers. This analysis identified a widespread set of brain regions in which activity timecourses were more similar among better readers than among worse readers. These differences were not detected with standard block activation analyses. Worse readers had higher correlation with better readers than with other worse readers, suggesting that the worse readers had "idiosyncratic" responses rather than using a single compensatory mechanism. Close inspection confirmed that these differences were not explained by differences in IQ or motion. These results suggest an expansion of the current view of where and how reading ability is reflected in the brain, and in doing so, they establish inter-subject correlation as a sensitive tool for future studies of reading disorders.
Collapse
Affiliation(s)
- David C Jangraw
- Section on Functional Imaging Methods, NIMH, Bethesda, MD, United States; Emotion and Development Branch, NIMH, Bethesda, MD, United States; Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, VT, United States.
| | - Emily S Finn
- Section on Functional Imaging Methods, NIMH, Bethesda, MD, United States; Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - Peter A Bandettini
- Section on Functional Imaging Methods, NIMH, Bethesda, MD, United States; Center for Multimodal Neuroimaging, NIMH, Bethesda, MD, United States
| | - Nicole Landi
- Haskins Laboratories, New Haven, CT, United States
| | - Haorui Sun
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, VT, United States
| | - Fumiko Hoeft
- Haskins Laboratories, New Haven, CT, United States; Department of Psychological Sciences, University of Connecticut, Hartford, CT, United States
| | - Gang Chen
- Statistical Computing Core, NIMH, Bethesda, MD, United States
| | - Kenneth R Pugh
- Haskins Laboratories, New Haven, CT, United States; Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
| | - Peter J Molfese
- Center for Multimodal Neuroimaging, NIMH, Bethesda, MD, United States; Haskins Laboratories, New Haven, CT, United States
| |
Collapse
|
15
|
Kucyi A, Kam JWY, Andrews-Hanna JR, Christoff K, Whitfield-Gabrieli S. Recent advances in the neuroscience of spontaneous and off-task thought: implications for mental health. NATURE MENTAL HEALTH 2023; 1:827-840. [PMID: 37974566 PMCID: PMC10653280 DOI: 10.1038/s44220-023-00133-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/25/2023] [Indexed: 11/19/2023]
Abstract
People spend a remarkable 30-50% of awake life thinking about something other than what they are currently doing. These experiences of being "off-task" can be described as spontaneous thought when mental dynamics are relatively flexible. Here we review recent neuroscience developments in this area and consider implications for mental wellbeing and illness. We provide updated overviews of the roles of the default mode network and large-scale network dynamics, and we discuss emerging candidate mechanisms involving hippocampal memory (sharp-wave ripples, replay) and neuromodulatory (noradrenergic and serotonergic) systems. We explore how distinct brain states can be associated with or give rise to adaptive and maladaptive forms of thought linked to distinguishable mental health outcomes. We conclude by outlining new directions in the neuroscience of spontaneous and off-task thought that may clarify mechanisms, lead to personalized biomarkers, and facilitate therapy developments toward the goals of better understanding and improving mental health.
Collapse
Affiliation(s)
- Aaron Kucyi
- Department of Psychological and Brain Sciences, Drexel University
| | - Julia W. Y. Kam
- Department of Psychology and Hotchkiss Brain Institute, University of Calgary
| | | | | | | |
Collapse
|
16
|
Kim J, Andrews-Hanna JR, Eisenbarth H, Lux BK, Kim HJ, Lee E, Lindquist MA, Losin EAR, Wager TD, Woo CW. A dorsomedial prefrontal cortex-based dynamic functional connectivity model of rumination. Nat Commun 2023; 14:3540. [PMID: 37321986 PMCID: PMC10272121 DOI: 10.1038/s41467-023-39142-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Rumination is a cognitive style characterized by repetitive thoughts about one's negative internal states and is a common symptom of depression. Previous studies have linked trait rumination to alterations in the default mode network, but predictive brain markers of rumination are lacking. Here, we adopt a predictive modeling approach to develop a neuroimaging marker of rumination based on the variance of dynamic resting-state functional connectivity and test it across 5 diverse subclinical and clinical samples (total n = 288). A whole-brain marker based on dynamic connectivity with the dorsomedial prefrontal cortex (dmPFC) emerges as generalizable across the subclinical datasets. A refined marker consisting of the most important features from a virtual lesion analysis further predicts depression scores of adults with major depressive disorder (n = 35). This study highlights the role of the dmPFC in trait rumination and provides a dynamic functional connectivity marker for rumination.
Collapse
Affiliation(s)
- Jungwoo Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Jessica R Andrews-Hanna
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- Cognitive Science, University of Arizona, Tucson, AZ, USA
| | - Hedwig Eisenbarth
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| | - Byeol Kim Lux
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Hong Ji Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Eunjin Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Martin A Lindquist
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Elizabeth A Reynolds Losin
- Department of Psychology, University of Miami, Miami, FL, USA
- Department of Biobehavioral Health, Penn State University, State College, PA, USA
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
| | - Choong-Wan Woo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea.
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea.
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea.
- Life-inspired Neural Network for Prediction and Optimization Research Group, Suwon, South Korea.
| |
Collapse
|
17
|
Korda Ž, Walcher S, Körner C, Benedek M. Effects of internally directed cognition on smooth pursuit eye movements: A systematic examination of perceptual decoupling. Atten Percept Psychophys 2023; 85:1159-1178. [PMID: 36922477 PMCID: PMC10167146 DOI: 10.3758/s13414-023-02688-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/17/2023]
Abstract
Eye behavior differs between internally and externally directed cognition and thus is indicative of an internal versus external attention focus. Recent work implicated perceptual decoupling (i.e., eye behavior becoming less determined by the sensory environment) as one of the key mechanisms involved in these attention-related eye movement differences. However, it is not yet understood how perceptual decoupling depends on the characteristics of the internal task. Therefore, we systematically examined effects of varying internal task demands on smooth pursuit eye movements. Specifically, we evaluated effects of the internal workload (control vs. low vs. high) and of internal task (arithmetic vs. visuospatial). The results of multilevel modelling showed that effects of perceptual decoupling were stronger for higher workload, and more pronounced for the visuospatial modality. Effects also followed a characteristic time-course relative to internal operations. The findings provide further support of the perceptual decoupling mechanism by showing that it is sensitive to the degree of interference between external and internal information.
Collapse
Affiliation(s)
- Živa Korda
- Department of Psychology, University of Graz, Graz, Austria.
| | - Sonja Walcher
- Department of Psychology, University of Graz, Graz, Austria
| | | | | |
Collapse
|
18
|
Kilpatrick LA, Siddarth P, Krause-Sorio B, Milillo MM, Aguilar-Faustino Y, Ercoli L, Narr KL, Khalsa DS, Lavretsky H. Impact of Yoga Versus Memory Enhancement Training on Hippocampal Connectivity in Older Women at Risk for Alzheimer's Disease. J Alzheimers Dis 2023; 95:149-159. [PMID: 37482992 PMCID: PMC10578221 DOI: 10.3233/jad-221159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Yoga may be an ideal early intervention for those with modifiable risk factors for Alzheimer's disease (AD) development. OBJECTIVE To examine the effects of Kundalini yoga (KY) training versus memory enhancement training (MET) on the resting-state connectivity of hippocampal subregions in women with subjective memory decline and cardiovascular risk factors for AD. METHODS Participants comprised women with subjective memory decline and cardiovascular risk factors who participated in a parent randomized controlled trial (NCT03503669) of 12-weeks of KY versus MET and completed pre- and post-intervention resting-state magnetic resonance imaging scans (yoga: n = 11, age = 61.45±6.58 years; MET: n = 11, age = 64.55±6.41 years). Group differences in parcellated (Cole-anticevic atlas) hippocampal connectivity changes (post- minus pre-intervention) were evaluated by partial least squares analysis, controlling for age. Correlations between hippocampal connectivity and perceived stress and frequency of forgetting (assessed by questionnaires) were also evaluated. RESULTS A left anterior hippocampal subregion assigned to the default mode network (DMN) in the Cole-anticevic atlas showed greater increases in connectivity with largely ventral visual stream regions with KY than with MET (p < 0.001), which showed associations with lower stress (p < 0.05). Several posterior hippocampal subregions assigned to sensory-based networks in the Cole-anticevic atlas showed greater increases in connectivity with regions largely in the DMN and frontoparietal network with MET than with KY (p < 0.001), which showed associations with lower frequency of forgetting (p < 0.05). CONCLUSION KY training may better target stress-related hippocampal connectivity, whereas MET may better target hippocampal sensory-integration supporting better memory reliability, in women with subjective memory decline and cardiovascular risk factors.
Collapse
Affiliation(s)
- Lisa A. Kilpatrick
- Department of Psychiatry, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, CA, USA
- Goodman-Luskin Microbiome Center, University of California, Los Angeles, CA, USA
| | - Prabha Siddarth
- Department of Psychiatry, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Beatrix Krause-Sorio
- Department of Psychiatry, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Michaela M. Milillo
- Department of Psychiatry, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Yesenia Aguilar-Faustino
- Department of Psychiatry, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Linda Ercoli
- Department of Psychiatry, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Katherine L. Narr
- Department of Neurology, Brain Research Institute, University of California, Los Angeles, CA, USA
| | | | - Helen Lavretsky
- Department of Psychiatry, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| |
Collapse
|
19
|
Relationships between resting-state EEG functional networks organization and individual differences in mind wandering. Sci Rep 2022; 12:21224. [PMID: 36482176 PMCID: PMC9731960 DOI: 10.1038/s41598-022-25851-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
When performing cognitively demanding tasks, people tend to experience momentary distractions or personal associations that intercept their stream of consciousness. This phenomenon is known as Mind Wandering (MW) and it has become a subject of neuroscientific investigations. Off-task thoughts can be analyzed during task performance, but currently, MW is also understood as a dimension of individual differences in cognitive processing. We wanted to recognize the intrinsically-organized functional networks that could be considered the neuronal basis for MW dispositional variability. To achieve this goal we recruited a group of normal adults, and eventually divided the group in half, based on participants' scores on the scale measuring dispositional MW. Next, these groups were compared regarding the arrangement of preselected intrinsic functional networks, which were reconstructed based on multi-channel signal-source resting-state EEG. It appeared that subjects who tend to mind wander often exhibited decreased synchronization within the default mode network, and, simultaneously, strengthened connectivity between 'on-task' networks of diverse functional specificity. Such within- and between networks integrity patterns might suggest that greater Mind Wanderers present an atypical organization of resting-state brain activity, which may translate into attenuated resources needed to maintain attentional control in task-related conditions.
Collapse
|
20
|
van Vugt M, Jamalabadi H. Too Much Flexibility in a Dynamical Model of Repetitive Negative Thinking? PSYCHOLOGICAL INQUIRY 2022. [DOI: 10.1080/1047840x.2022.2149195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Marieke van Vugt
- Bernoulli Institute of Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Groningen, Netherlands
| | - Hamidreza Jamalabadi
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- National Center of Affective Disorders, Marburg, Germany
| |
Collapse
|
21
|
Abnormalities in the default mode network in late-life depression: A study of resting-state fMRI. Int J Clin Health Psychol 2022; 22:100317. [PMID: 35662792 PMCID: PMC9156943 DOI: 10.1016/j.ijchp.2022.100317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background/Objective Neuroimaging studies have reported abnormalities in the examination of functional connectivity in late-life depression (LLD) in the default mode network (DMN). The present study aims to study resting-state functional connectivity within the DMN in people diagnosed with late-life major depressive disorder (MDD) compared to healthy controls (HCs). Moreover, we would like to differentiate these same connectivity patterns between participants with high vs. low anxiety levels. Method The sample comprised 56 participants between the ages of 60 and 75; 27 of them were patients with a diagnosis of MDD. Patients were further divided into two samples according to anxiety level: the four people with the highest anxiety level and the five with the lowest anxiety level. Clinical aspects were measured using psychological questionnaires. Each participant underwent functional magnetic resonance imaging (fMRI) acquisition in different regions of interest (ROIs) of the DMN. Results There was a greater correlation between pairs of ROIs in the control group than in patients with LLD, being this effect preferentially observed in patients with higher anxiety levels. Conclusions There are differences in functional connectivity within the DMN depending on the level of psychopathology. This can be reflected in these correlations and in the number of clusters and how the brain lateralizes (clustering).
Collapse
|
22
|
Paquola C, Amunts K, Evans A, Smallwood J, Bernhardt B. Closing the mechanistic gap: the value of microarchitecture in understanding cognitive networks. Trends Cogn Sci 2022; 26:873-886. [PMID: 35909021 DOI: 10.1016/j.tics.2022.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022]
Abstract
Cognitive neuroscience aims to provide biologically relevant accounts of cognition. Contemporary research linking spatial patterns of neural activity to psychological constructs describes 'where' hypothesised functions occur, but not 'how' these regions contribute to cognition. Technological, empirical, and conceptual advances allow this mechanistic gap to be closed by embedding patterns of functional activity in macro- and microscale descriptions of brain organisation. Recent work on the default mode network (DMN) and the multiple demand network (MDN), for example, highlights a microarchitectural landscape that may explain how activity in these networks integrates varied information, thus providing an anatomical foundation that will help to explain how these networks contribute to many different cognitive states. This perspective highlights emerging insights into how microarchitecture can constrain network accounts of human cognition.
Collapse
Affiliation(s)
- Casey Paquola
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany.
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany; Cécile and Oscar Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Alan Evans
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | | | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.
| |
Collapse
|